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Abstract 

For individuals, organizations and nations, success and even survival depend upon mak- 
ing good decisions. Doing so can be extremely difficult when problems are not well struc- 
tured and situations are complex, as they are for natural resource management. Recent 
advances in computer technology coupled with the increase in accessibility brought about 
by the Internet have increased our ability to solve complex problems in natural resources. 
Scientific disciplines that have evolved to exploit this new computer-based technology 
include knowledge management and decision science. Impressive computer-based 
systems have been developed, but their use in natural resource management has been 
limited. Widespread adoption will require close cooperation among people working in 
research as well as management, across disciplines, up and down the administrative 
structure in state and federal agencies and in the private sector. 

The objectives of this chapter are: (i) to briefly review the history and recent advances 
in natural resource information and knowledge management, including decision-support 
systems and multiple-criteria decision making; (ii) to discuss some of the interrelationships 
among inventory and monitoring, statistics and modelling, information and knowledge 
management and policy science; and (iii) to offer some ideas on how to best support 
sustainability as a forest management paradigm, given the new capabilities afforded by 
progress in information and knowledge management. 

Knowledge Management 

Overview 

Until fairly recently, many people did not think in terms of 'managing knowledge'. 
They felt that knowledge was a personal asset accumulated from experiences, 

@CAB International 2007. Sustainable Forestry: from Monitoring and Modelling to 
Knowledge Management and Policy Science (eds K.M. Reynolds, A.J. Thomson, 
M. Kohl, M.A. Shannon, D. Ray and K. Rennolls) 
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education and trusted colleagues (Plunkett, 2001). As computer technology 
improved and became cheaper in the early 1990s, researchers began to explore 
the gains that could be made by organizing knowledge, codifying it and sharing 
it more widely. Innovators demonstrated that improving the management of 
knowledge could: (i) help scientists improve communication of research results 
to users (Rauscher, 1987); (ii) help government cope with downsized budgets 
and increased work (Plunkett, 2001); and (iii) help private industry to gain 
competitive advantages (Heinrichs et al., 2003). The advancement of informa- 
tion management technologies presented new opportunities for business and 
governmental organizations. In some cases, the implementation of information 
technologies represented major changes for organizations, as knowledge was 
now viewed by some as a resource, much like facilities, finances, equipment 
or workers (Nesbitl et al., 1996; Evans and Wurster, 2000). Some existing appli- 
cations of information technologies for managing - primarily natural resources - 
knowledge appear in Table 26.1. 

Knowledge exists in either explicit or tacit states. Explicit knowledge is ihat 
which has been codified in some way, such as in scientific journal articles, 
operating procedures, best management practices and simulation models. 
Tacit knowledge is that which people carry in their minds. It consists of facts, 
opinions, intuition, feelings and judgements. People seldom fully understand 
their own knowledge stores. As Polyani (1958) said, 'We know more than we 
know how to say.' 

Knowledge management (KM) can be defined as the systematic strategy of 
creating, conserving and sharing knowledge to increase performance (Plunkett, 
2001; Heinrichs et al., 2003). KM provides methods for managing both explicit 
and tacit knowledge. Some methods help people to exchange knowledge. 
Others make existing explicit knowledge more readily accessible (Hansen et al., 
1999). But KM also concentrates on methods that help to codify tacit knowledge 
so that it can be converted to explicit knowledge for general use (Heinrichs et al., 
2003). Nonaka and Takeuchi (1995) describe four processes for conversion of 
knowledge from one form to another: 

Socialization. Tacit knowledge is shared through shared experiences. 
Externalization. Tacit knowledge is articulated into explicit knowledge. 
Combination. Explicit knowledge is organized, systematized and refined. 

,-Internalization. Explicit knowledge is converted into tacit knowledge. 

Knowledge about natural resource management is multifaceted and spans 
the biological, physical and social sciences (Sirnard, 2000; Innes, 2003). Such 
knowledge includes facts, propositions, laws and theories that provide general 
knowledge about the behaviour and functioning of ecosystems and their interac- 
tions with social systems. It also includes knowledge about places, events at 
specific times and implications for management. 

KM uses information technology to identify, create, structure and share 
knowledge, with the goal of improving decision making (Tyndale, 2002). A 
number of technologies commonly associated with the term 'knowledge man- 
agement' have been evaluated for their potential to support management pro- 
cesses (Ruggles, 1997; Plunkett, 2001; Tyndale, 2002). Table 26.1 provides a 
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Table 26.1. Continued. 

Class of KM tool Description Links 

Web-based learning 

Scientific content 
management sites 

Simulation models 

Free-content 
information 
collaboratories 

Time maps 

Allows translation of a typical classroom experience to an online media to 
offer students the opportunity to learn codified knowledge in a structured 
way at their own pace. 

Collects knowledge in some kind of web-based content management system. 
First, the knowledge has to be found, organized, synthesized, reviewed for 
quality and uploaded for availability. Secondly, the knowledge content has 
to be updated and maintained so that it keeps its currency. Software 
systems exist that support both of these functions. 

Mathematical models are a popular way to organize specific problem-solving 
knowledge and provide precise, quantitative answers to guide natural 
resource managers. Most such models have not yet been converted to 
be executed over the Internet; however, many simulation models can be 
downloaded from the Internet and then executed on a stand-alone computer. 

Create and,distribute free information content, e.g. encyclopedia. Articles 
are edited by volunteers and are subject to change by nearly anyone. 
They cover a wide range of topics, but lack the authority of traditional 
materials and lack the opportunity for quality control regarding the content. 

A visual-matrix index of the events, research topics, people and publications, 
organized by time, for a specific area. An electronic zoomable canvas 
allows the embedding of a large amount of information in a single plane. 
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pariial list of some web-based methods that are currently being used for KM in 
the natural resource field; this list is not intended to be exhaustive. 

One example of the application of knowledge management tools has 
occurred in the area of scientific content management. Other KM tools in 
Table 26.1 have similar histories but, for brevity, are not reviewed here. 
Rauscher (1987) introduced the concept of modern knowledge management 
to the natural resource field in the same year that the first hypertext software 
programs became available for IBM1 PC and Apple Macintosh1 computers. 
Rauscher (1991) then provided the first electronic hypertext encyclopedia in 
forestry - 'The encyclopedia of A1 applications to forest science'. The purpose of 
this encyclopedia was to demonstrate the functional difference between elec- 
tronic hypertext and print-based methods by taking the same content published 
in the scientific journal AI Applications and providing it on a disk as an insert for 
that issue. Other hypertext products for non-networked personal computers fol- 
lowed in rapid succession: 'Managing the global climate change scientific knowl- 
edge base' (Rauscher et al., 1993); 'Computer-assisted diagnosis using expert 
system-guided hypermedia' (Thomson et al., 1993); 'A hypermedia reference 
system to the forest ecosystem management assessment team report' (Reynolds 
et a!., 1995); and 'Oak regeneration: a knowledge synthesis' (Rauscher et al., 
1997) among others. 

As the Internet became more popular, it was obvious to some that KM 
systems using web-based hypertext had an enormous competitive advantage 
over stand-alone systems. Saarikko (1994) authored an early comprehensive 
summary of forestry information resources available on the Internet. He con- 
cluded in 1994 that Internet activity had been growing exponentially and that 
such growth would continue. In a pioneering effort, Thomson et al. (1998) com- 
bined knowledge-based systems processing and a hypertext user interface 
(HTML) to provide forest tree disease diagnosis over the Internet. A primary 
benefit of this approach was that anyone with a web browser could access the 
diagnostic software from any Internet-connected computer. Universally available 
access and inexpensive updating appear to be the critical elements for making 
scientific content management in natural resource management an attractive 
alternative to traditional, paper-based methods. Examples of scientific content 
management for natural resources on the Internet can b'e found at the Forest 
Encyclopedia Network, which contains a growing number of scientific encyclo- 
pedias (Kennard et al., 2005). More and more knowledge management services 
of different types are appearing at a dizzying rate. 

Future directions 

Plunkett (2001) observed that 'Knowledge management consists of three fun- 
damental components: people, processes, and the supporting technology.' As 
extensive web-based KM sites illustrate, we have progressed quite dramatically 
in our technical capabilities. Within the context of natural resources, it is 
much less clear that we have advanced equally far in changing our institutional 
processes and educating our people to use KM efficiently. It is challenging for 
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organizations to properly value and use both tacit and explicit knowledge in the 
management of environmental problems while promoting a climate of learning 
that encourages the recognition and sharing of employees7 experiences (Boiral, 
2002). While we know of no study to objectively document the low level of use 
of KM tools in the natural resource field, anecdotal evidence suggests that 
many workers are very reluctant to use them. This may be a more serious prob- 
lem for the public sector than the private sector, where organizational policies 
can be enforced more rigorously. In any case, a thorough evaluation of how 
natural resource management and science institutions support KM processes 
and how workers in this field use the available KM tools does not currently 
exist. 

An effective KM strategy for an organization might have the following goals: 

All new employees are introduced to the KM strategy and their roles as con- 
sumers and contributors of knowledge. 
All employees are part of an explicit KM system for their entire professional 
life and are rewarded appropriately for how well they share their tacit as well 
as explicit knowledge. 
Processes for KM exist and are strongly supported at all levels of an organi- 
zation. Among these processes are periodic stocktaking assessments, 
after-action reporting, mentoring and apprenticeship programmes, storytell- 
ing opportunities, effective and active communities of practice, periodic 
assessments of both internal and external client groups, and visible and 
vocal leadership endorsement of all effective KM processes. 
KM support technologies (see Table 26.1) are available and effective. They 
are used routinely by all members of an organization. 
Mission-critical knowledge has been identified, structured and codified. It is 
readily available. A system exists to monitor the availability and quality of 
this mission-critical knowledge, either tacit or explicit. 

a Security of confidential and proprietary information is high where necessary. 
Knowledge is routinely re-evaluated to make sure that those people who 
should have access do have access. 

KM is a young discipline, so a generally accepted framework for it has not 
yet been established. Instead a variety of approaches to KM have been imple- 
mented across a variety of organizations (Rubenstein-Montano et al., 2001). 
Knowledge gains economic value when it is used to solve problems, explore 
opportunities and make decisions that improve performance. Hence, the prob- 
lem-solving process is the vehicle for connecting knowledge and performance 
(Gray, 2001). Ways must be sought to enhance and promote KM in organiza- 
tions (Girad and Hubert, 1999), because KM increases efficiency and generates 
value. These are important whether the organization is a commercial enterprise 
trying to reduce costs or a government agency competing for shared funding 
resources. 

We must remember that knowledge is only in the past tense. Learning is only in 
the present tense, and prediction is only in the future tense. To manage sustainable 
forests, we need to be able to linow, to learn, and to predict. 

Chris Maser, 1994 
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Decision-support Systems 

Overview I 
For the purposes of this discussion, we adopt the definition of decision-support 

I 

systems (DSSs) from Holsapple (2003, p. 551): 'A computer-based system 
composed of a language system, a presentation system, a knowledge system, 
and a problem-processing system whose collective purpose is the support of 
decision-making activities.' Two key attributes in Holsapple's definition are a 

! 
problem-processing system and purposeful support of a decision-making pro- 
cess. A decision-making process is a method that guides an individual or group I 

through a series of tasks from problem identification and analysis to design of 
alternatives and selection of an alternative (Mintzberg et al., 1976). 

Systems that generally fulfil the Mintzberg and Holsapple definitions include 
multi-criteria analysis techniques like the analytic hierarchy process, Electre, and 
Promethee; knowledge-based systems that provide a framework for applying 
procedural or reasoning knowledge to decision problems; and, perhaps somewhat 
more arguably, optimization systems including linear or goal programming. While 
geographic information, spreadsheet, and database systems may be critical 
components of a DSS, it stretches the definition of a DSS beyond usefulness to 
classify these types of applications as DSSs. 

(Reynolds, 2005) 

Numerous simulation systems have been developed to support many aspects of 
forest planning (Schuster et al., 1993; Mowrer et al., 1997), but most should be 
considered as potential tools in a DSS framework as opposed to DSS per se 
(Reynolds, 2005). In most cases, these systems aid in the analysis phase of the 
decision process, but fail to directly support the other decision steps. 

The adaptive management process provides the theoretical framework for 
most modern DSSs (Rauscher, 1999; Reynolds, 2005). Adaptive management 
consists of four components (Walters, 2002): 

Planning. The planning and decision-making process of Mintzberg et al. 
(1976) is a useful supplement to the adaptive management model, the end 
point of which is a set of goals and constraints that guide the action phase of 

,.the process. This phase prescribes how, when and where to implement 
activities to achieve the identified goals within the constraints. Identifying 
suitable hypotheses concerning expected outcomes of actions is critical at 
this stage to support the experimental nature of management actions and 
promote efficient learning. KM tools may support the identification of 
possible treatments and likely outcomes. 
Implementation. This phase puts the plan into action. Each activity imple- 
mented on the landscape must be adequately documented so that it is clear 
what the conditions prior to adion were and how the management activity 
changed those prior conditions. 
Monitoring. This phase requires periodically examining the implemented 
management activities and recording current conditions over time. Adequate 
documentation must be developed because different people may need to 
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use this information over many years in order to learn whether goals were 
achieved by a treatment or not. KM tools may be used here to convert tacit 
knowledge to explicit knowledge. 
Evaluation. Hypotheses are tested in the evaluation phase by comparing 
actual and expected outcomes. The learning part of adaptive management 
comes from the differences found between the actual and expected out- 
comes and what changes these differences require in the next cycle. Results 
from this phase provide a starting point for the next iteration of planning 
(e.g. lessons learned, storytelling). 

Future directions 

Reynolds (2005) concludes that recent versions of DSSs designed to support 
ecosystems and sustainable forest management represent great improvements. 
He writes: 

The task posed to the DSS development community, to deliver effective, integrated 
decision support for sustainable forest management, was too large and complex to 
be achieved in a single development cycle. It has required, instead, an incremental 
and adaptive approach to system design. 

In retrospect, it is difficult to understand that we did not anticipate this result. Not 
surprisingly, much work still needs to be done especially in the following areas. 

lmprove DSS niche identification 
Even analysing only three out of possibly a dozen candidate DSSs, Reynolds 
(2005) found that each one occupies a different niche based on scale (landscape, 
forest level, operational level), support for all or only some parts of the four 
components of adaptive management listed above, access to different decision- 
analysis methods and an ability to make the entire planning process understand- 
able to the user. There is a great need for all DSSs to be accessible to users and 
well documented and supported. In addition, there is a need to classify many pop- 
ular software products such as spreadsheets, GIs and growth-and-yield models to 
clarify their supporting role within larger DSSs (Rauscher, 1999). Right now, these 
products reside in a poorly organized 'grab bag' of tools. Many, if not most, sup- 
port&~ resources used by DSSs were not designed to be a part of a DSS. As DSSs 
proliferate, the problem of clarifying the role of various supporting resources is 
compounded and logistically, technologically and administratively challenging. 

lmprove communications between DSSs operafing at different scales 
Multiple DSSs have been designed to function at the landscape, forest and pro- 
ject scales. Most DSSs embrace a hierarchical approach to planning (e.g. Martell 
et al., 1998). Only a few definitive examples of integrated, multi-scale forest- 
resource planning have been described (Rose et al., 1992; Reynolds and Peets, 
2001; Vacik and Lexer, 2001). DSSs are rarely able to provide information 
either up the scale to the next higher level or down the scale to the next lower 
level (Mowrer et al., 1997; Reynolds, 2005). This issue has been identified, 
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and in some cases explicitly addressed (Camenson, 1998), but these examples 
are the exception rather than the rule. 

Uniformly good support for biophysical, social and economic goals 
Most DSSs still do a better job of accounting for biophysical goals than social and 
economic goals (Mowrer eta]., 1997). European approaches to decision support 
appear to focus primarily on the forest stand or forest enterprise level, with heavy 
emphasis on timber management support (Rauscher et a/., 2005). Due to the 
heterogeneity of European ecosystems, the landscape level has not been a fre- 
quent focus of DSSs so far. The concept of forest sustainability has a long tradi- 
tion in Europe, and the paradigm is shifting from sustained yield and constant 
forest cover towards sustainability of an increasing diversity of values, goods and 
services. Researchers and forest managers in the USA and Canada have had a 
longer tradition in the development and application of DSSs. So current North 
American approaches have focused more heavily on non-timber forest products, 
such as clean water, wildlife and aesthetics, than their European counterparts 
(Rauscher et al., 2005). More emphasis needs to be placed on improving 
support for non-timber goals in most DSSs. 

lmprove group consensus tools within DSSs 
Mowrer et al. (1997) reported that tools for building group consensus were 
entirely missing from all DSSs examined. This deficiency is no longer as pro- 
nounced as it once was, as we review several recent developments in the section 
on multiple-criteria decision making below. Wide-scale acceptance and use of 
DSSs by the forest management community will depend to a great extent on 
how well these applications permit group participation in decision making. Suc- 
cessful group consensus tools will require designing the software with a human 
behaviour focus rather than a technical focus. 

lmprove use of DSSs by the management community 
Capabilities of DSSs are expanding, and the systems are being used more fre- 
quently. Nevertheless, DSSs have not yet been widely adopted as standard tools 
for forest management in most areas of the world (Lexer et al., 2005). We sense, 
however, that we are approaching a turning point - existing DSSs may soon be 
mature enough for forest managers to routinely use for complex decisions. More 
evaluations and case studies need to be conducted with management participa- 
tion in order to gain widespread acceptance. 

lmprove support for implementation and monitoring 
Evaluation and planning are typically performed over short time spans and in 
close temporal proximity to each other. However, implementation and monitor- 
ing are recurring activities that may be spread over many years in a typical adap- 
tive management cycle. Speculating a little, one might imagine a collection of 
new system components, such as task-scheduler and task-management agents, 
helping to assure that implementation plans are staying on track and that data 
are updated and summarized. They could even be helping to spot evidence that 
might trigger initiation of a new management cycle. It is difficult to overstate the 
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significance of decision-support implementations for these phases of the process. 
When we have learned how to provide practical support for the implementation 
and monitoring phases of the decision process, forest managers will be able to 
provide convincing demonstrations of successful adaptive management 
(Reynolds, 2005). Currently such efforts are extremely limited by time, money 
and support tools. 

Provide greater flexibility for choosing alternatives 
Simon (2003) observed that: 

In decision theory, the discussion of choice criieria has largely focused on two polar 
opposite alternatives: optimizing, that is, selecting the best alternative according to 
some criterion; and satisficing, that is, selecting an alternative (not necessarily 
unique) ihat meets some specified standard of adequacy. 

Optimization methods have been criticized primarily because: it is difficult to incor- 
porate real-world complexities into the mathematical approaches; solution 
mechanics have made it extremely difficult to explain to users why the solution 
came out as it did; and it takes a great deal of formal education and mathematical 
expertise to properly formulate a problem (Gigerenzer and Todd, 1999; Simon, 
2003). The satisficing methods have been criticized primarily because solutions 
are not optimal. Despite a few dissenting voices (Howard, 1991), forest scientists 
are found overwhelmingly in the optimization camp. Many modern DSSs 
designed to address ecosystem and sustainable forest management problems use 
the satisficing method (Andersson et al., 2005; Lexer et al., 2005; Twery et al., 
2005). We believe that both satisficing and optimizing methods are legitimate 
strategies for choosing among alternatives. DSSs should routinely offer a wider 
range of alternative selection tools than they typically provide today. 

Multi-criteria Decision Making and Satisficing 

Overview 

A traditional decision analysis has three elements: (i) a decision maker; (ii) a set 
of feasible alternatives; and (iii) a well-defined criterion (or objective) by which 
each alternative can be mathematically evaluated (Romero and Rehman, 2003). 
This objective function is commonly augmented with a set of mathematically 
defined constraints. One of many optimization algorithms can then be applied 
(depending on the form of the problem) to find the optimal value for the objec- 
tive function within the feasible space. 

The early successes of operations research methods resulted primarily from 
their focus on well-constrained problems in tactical planning. These methods 
were developed to address needs in industrial and business operations, where 
inputs, outputs, resources, actors, flows and other problem components could 
be described with completeness and certainty. Gradually these operations 
research methods were applied to planning in forest and natural resources man- 
agement. In an era of forest management that was focused primarily on timber 
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harvesting - with its real similarities to industrial operations - direct application 
of these optimization methods seemed to work well. 

Traditional optimization-based decision analysis depends, however, upon 
some critical fundamental assumptions. One of these assumptions is that the 
decision maker is seeking to optimize a well-defined single objective (Klein and 
Methlie, 1990). A second assumption is that not only is there one best 'right 
answer' but it can be discovered through an objective technical process (Smith, 
1997, p. 420). A third assumption is that the natural world is both predictable 
and knowable in a mechanistic and deterministic way (Smith, 1997, p. 420). All 
that is needed is to collect enough data. Finally, it is assumed that the values pro- 
vided for mathematical expression are known quantities with no uncertainties. In 
situations where any one of these assumptions cannot be reasonably justified, 
any selected soluiions, while possibly good ones, are no longer optimal. Given 
these constraining preconditions, then, some would ask why we use such exact- 
ing methods. In fact, optimization analyses have been quite successful in many 
situations. They have excelled in addressing mathematically well-defined 
problems and in addressing the quantitative components of larger problems. 

However, Romero and Rehman (2003) posit that it is equally b e  that there 
exists considerable evidence that undermines the validity of the assumptions 
behind optimization. The primary argument is that, while traditional optimization 
processes are mathematically and logically sound, such formulations simply do 
not reflect real-life problems faithfully enough (Mendoza and Martins, 2005). As 
Levy et al. (2000) noted, ill-defined and messy problems create a decision envi- 
ronment containing imprecision and conflicting performance indicators. The pre- 
viously applied optimization methods were difficult to fit reliably and effectively 
into this framework. In many situations, problem complexity prevents formulation 
of an adequately representative utility function (Gigerenzer and Todd, 1999; 
Romero and Rehman, 2003; Simon, 2003). Natural systems 'can be surprisingly 
simple and still be too complex for us to predict exact conditions only moderately 
far into the future' (Smith, 1997, p. 421). Furthermore, considerable uncertainty 
often exists in the data used to formulate the problem. Even multiple-objective 
programming (Mendoza et aL, 1987) and multiple-objective fuzzy linear program- 
ming (Gupta et al., 2000) are essentially extensions of the linear programming 
model to several well-defined objectives. To address this new class of decision 
problems, multiple-criteria decision-making (MCDM) techniques were developed, 
beginning in the 1970s. Stewart (1992) reviewed those approaches, and Mendoza 
and Prabhu (2000) identified several important features of MCDM, including: 

Accommodation of multiple criteria (or attributes) in the analysis. 
Allowing direct involvement of multiple experts, interest groups or 
stakeholders. 
Not data-intensive: expert opinion can be used in place of data. 
Effective for both quantitative and qualitative data. 
Transparent analyses so that participants could understand what was hap- 
pening and why. 

In reality, the decision maker is frequently looking for an optimal compromise 
among several objectives. That situation may call for MCDM or for satisficing a 
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set of goals. We first discuss MCDM in more detail, followed by a very brief 
overview of satisficing. 

I 
Multiple-criteria decision-making theory 

One of the earliest MCDM methods is multi-attribute utility theory (MAUT) or 
value theory (Keeney and Raiffa, 1976; von Winterfeldt and Edwards, 1986). 
In its simplest form, MAUT provides a set of utility functions (one function for 
each attribute, or performance indicator), and then scores each decision alter- 
native on each attribute. Scores across all attributes are combined for each 
alternative (often using an additive model), with individual attribute scores 
being appropriately scaled for comparability and weighted according to impor- 
tance. The decision alternative with the highest aggregate utility (or value) 
score is then preferred. This general MAUT framework has spawned a large 
number of variants. Each variant modifies one or more aspects of the tradi- 
tional implementation: to assign weighting values, to scale attribute scores, to 
combine scores across attributes (e.g. non-additive models), to elicit utility 
functions, etc. As a result, MAUT has been modified in a wide variety of ways. 
Furthermore, MAUT has been augmented by other multiple-criteria decision 
methods and other decision aids to make it more complete in some cases and 
to improve its applicability in other cases. 

Another MCDM approach that was developed about the same time as 
MAUT and has all its components is the analytical hierarchy process (AI-lP). The 
AHP provides for: decomposition of the decision problem into a multi-level hier- 
archy of criteria, direct pairwise comparisons of the decision alternatives (or, 
alternatively, rating them individually) and rigorous mathematics to generate a 
preference structure for the alternatives. Schmoldt et al. (2001) describe many 
applications of AHP to environmental and natural resources decision making. 
While many have used the AHP as an MCDM technique by itself, others have 
used it in combination with other MCDM methods (e.g. Prato, 1999; Lexer, 
2000; Hill et al., 2005). In other MCDM developments, Leskinen et al. (2003) 
have used statistical methods to estimate ecological values and to account for 
interactions among the decision variables. Drechsler (2004) demonstrated the 
integration of quantitative population models with MCDM to evaluate decision 
conflicts. Recently, the network structure of the analytical network process has 
been used to model the complexity of forest decision problems in evaluating 
sustainable forest management strategies by using a criterion and indicator 
approach (Wolfslehner et al., 2005). These several examples, and many others 
not cited, attest to the versatility and extensibility of MCDM methods in general. 

1 Future directions for MCDM 

Research in MCDM methodologies continues at a rapid pace to improve their 
problem-solving power. The following R & D areas represent several of the most 
active. 
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Integrating geographic information systems 
Given the geo-spatial context of most forestry decision problems, it is not surpris- 
ing that considerable recent effort has gone into integrating geographic informa- 
tion systems (GISs) and MCDM (Jankowski and Nyerges, 2001; Jankowski eta]. ,  
2001; Feick and Hall, 2004; Sakamoto and Fukui, 2004; Hill et  al., 2005). 
Map-based displays enable better elicitation of utility functions and present deci- 
sion resulk in ways that encourage understanding and iterative analysis. 

Support for group decision making 
Because single individuals rarely make natural resource management decisions, 
group decision making has become a priority topic in MCDM. Empirically, we 
have come to understand that group decisions are typically better than average 
individual performance, bui rarely as good as the best individual. Hence, while 
there are many other reasons to engage groups in decision processes, making 
the best decision choices is not one of them (Schmoldt and Peterson, 2000). These 
include broad ownership in the decisions and their implications, support for 
implementation of decisions, more complete coverage of all pertinent issues and 
viewpoints during the decision process, and the appearance of an open and 
inclusive decision process. Examples from this rapidly expanding MCDM focus 
area include Mendoza and Prabhu (2000), Schmoldt and Peterson (2000), 
Jankowski and Nyerges (2001), Jankowski et  al. (2001), Feick and Hall (2004) 
and Thomson (2005). Given the growing importance of inclusive and open deci- 
sion processes in forestry, it is reasonable to assume that participatory decision 
making will continue to generate new developments in and variants of MCDM. 
Some efforts have already gone into adding MCDM to virtual meeting environ- 
ments, which currently include such things as group whiteboards, shared docu- 
ments, audiolvideo connectivity, voting and Delphi processes (Kangas and 
Store, 2003). As with many other technologies, MCDM will need to become net- 
work-accessible so that decision-making processes andlor results can be shared 
among geographically dispersed participants and stakeholders. 

Expanding the suite of tools compatible with MCDM methods 
Opportunities exist for expanding the repertoire of techniques available for 
MCDM. For example, the above applications of the AHP and GIs, in combina- 
tion with other MCDM methods, have proved to be very effective. Traditional 
LPtimization or simulation techniques can also be used to generate biologically 
possible or economically feasible alternatives for evaluation within MCDM 
approaches (Kangas et  al., 2000; Kangas and Store, 2002). There exists a large 
toolkit of quantitative methods that can be very useful as part of a broader 
MCDM framework. 

Incorporating risk and uncertainty into MCDM methods 
Because all decisions occur in an uncertain environment and decision results can 
have uncertain consequences, greater effort is needed in measuring the uncer- 
tainty and risk associated with alternatives. While a decision alternative may be 
chosen precisely because it is expected to lead to a desired future condition, there 
may also be considerable risk associated with that alternative. The likelihood of 
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attaining the future condition may be low or the potential for undesirable side 
effects may be high. Currently much of this type of risk assessment needs to be 
considered by the decision maker outside the formal MCDM process, where it is 
exogenous, rather than integral, to the decision analysis process. 

Satisficing solutions 

As a decision-making method, satisficing differs markedly from optimization or 
MCDM. The originator of the satisficing concept, Herbert Simon, argues that a 
large body of evidence shows that people rarely actually engage in optimization 
(Simon, 2003). Even knowledgeable experts in the fields of optimization and 
decision analysis readily admit that they rarely apply formal decision methods in 
their personal lives (von Winterfeldt and Edwards, 1986), even when a high- 
stakes decision is involved. Why? Because obtaining detailed data and trying to 
predict future behaviour of complex natural systems is a time-consuming and 
expensive proposition (Smith, 1997). People are inclined naturally towards the 
satisficing approach. They limit their input data to the most important and avail- 
able information. They limit their alternative courses of action to a small set of 
possibilities. They choose the most acceptable option from that limited set rather 
than attempting to seek an optimal solution (Smith, 1997; Simon, 2003). In 
addition, wise satisficers make sure to monitor results of decisions to detect 
failure as soon as possible and then decide on corrective actions, which may lead 
to choosing another alternative. 

Satisficing implemented as a decision process in DSSs depends upon the 
existence of goals, also called objectives or targets. Each goal must have one or 
more measurement criteria, which can be determined by measuring the current 
state of affairs or estimated for some simulated future state (Nute et al., 2000; 
Rauscher et al., 2000). Once these goals and their measurement criteria exist, 
decision makers: (i) generate possible courses of action in numerous ways; 
(ii) measure or predict the goal criteria; and (iii) evaluate how well the goals as a 
set, and individually, have been achieved. This process of alternative generation 
and simulation is repeated until: (i) the goal criteria are satisfied; (ii) the 
satisficing criteria for unachievable goals are adjusted downward so that they can 
be aehieved (reality adjusts perceived values); or (iii) satisficing criteria for easily 
achievable goals are adjusted upward to obtain and maintain goal achievement 
at a higher level than originally thought possible. 

Satisficing has numerous attractive characteristics (Simon, 2003): 

The decision process is relatively cheap because all possible alternatives 
need not be addressed. 
Since measurement criteria for goals are commonly defined as some thresh- 
old value, e.g. grassy openings must occupy at least 5% of the area of the 
property, the requirement for precision in simulating the future is signifi- 
cantly reduced. 
There is no requirement to create and agree upon a single utility function 
from multidimensional goals. 
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Because the computational task is relatively small and the mathematical for- 
mulation of the problem is very simple, a high educational level is not 
required to implement the process. 
The causal relationships among the goals, the measurement criteria and the 
simulated state of forest ecosystems are relatively easy to explain to decision 
makers and stakeholders. 

Future directions for satisficing 

The satisficing method of alternative selection and goal satisfaction is currently 
underutilized in the natural resource field. More research is needed to compare 
and contrast satisficing with the various MCDM methods. It may be entirely 
possible to combine the .two approaches in a very effective way. 

Alternative selection and goal satisfaction methods differ significantly in 
effort and cosi. Research to better match the risk of arriving at a poor solution 
with the total effort expended can be expected to yield effective guidance to 
managers. Most problem situations require forecasting the consequences of 
actions taken today on the forest landscape at some point in the future. The fur- 
ther out into the future the forecast, the more unknowable and uncertain the pre- 
dictions are likely to be, until a point is reached where even pretending to predict 
the future is absurd. We need to scientifically examine when and whether it 
makes sense to invest large amounts of effort and money on choosing alterna- 
tives based on forecasting changes in the forest landscape unrealistically far into 
the future. The proponents of satisficing would argue thai il is better to spend less 
effort and money on the front-end of the decision problem and more on inven- 
tory and monitoring to detect failure as soon as possible. It is this failure detec- 
tion that is at the heart of the adaptive management idea. Coupled with the 
rather low-cost satisficing decision approach, increased inventory and monitor- 
ing would allow early detection of problems based on reality rather than 
overextended theory and potentially untrustworthy forecasts. 

Conclusions: How Can We Best Support Sustainability? 

~ h &  scientific community is slowly coming to grips with the concept of 
sustainability. An inherent difficulty with this concept has been that, unlike tradi- 
tional scientific investigations that seek to explain how things currently function 
or how previous events led to current phenomena, sustainability research is 
forward-looking, with the goal of understanding how both current and future 
societal needs can be met (Schmoldt, 2004). This goal is further complicated by 
an imperative for maintaining ecological and environmental integrity as well as 
staying within the parameters set by what is socially acceptable and economi- 
cally feasible. The function of a decision-support system is to organize the deci- 
sion process and provide flexible, on-demand access to the full array of methods 
and tools applicable to a particular problem situation (Rauscher and Reynolds, 
2003). In this context a 'good' decision is one that is made based on a thorough 
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understanding and analysis of the problem (Holloway, 1979). There is no guar- 
antee that a good decision will always achieve a good outcome in terms of 
sustainability. The consequences of a 'good' outcome are favourable with 
respect to the preferences of the decision maker. A decision resulting in a bad out- 
come could still be considered a good decision as long as the decision-making 
process indicated the possibility of a bad outcome. The presented methods and 
tools provide a proper documentation of the decision-making process. Thus, 
rationales and information used in arriving at a decision can be compared with 
the achieved outcome, which enables better decisions in the future. 

As the new sustainability sciences, such as ecological economics, industrial 
ecology, environmental geology and ecological engineering, organize them- 
selves and advance, we can cooperate with scientists in these new fields to help 
them reorganize what we currently know, using our full KM toolkit. Much progress 
can be made relatively rapidly by drawing new boundaries of knowledge or by 
connecting existing data, information and knowledge in new ways (e.g. Vacik 
et a/., Chapter 23, this volume). As new data, information and knowledge are 
created, we can use our KM tools to rapidly integrate that new content into the 
existing body of knowledge. We can also share that content cheaply, widely and 
immediately. There is no doubt that such integration is technologically feasible; 
what is missing now is a shared vision and the political will to implement it. The 
KM sites of Table 26.1 provide excellent support tools for this objective. 

We need to be concerned with how to make available both tacit and explicit 
knowledge. There is a temptation to concentrate primarily on explicit knowledge 
because it is tangible; we can readily organize it, check it and build taxonomies 
for it. Tacit knowledge, on the other hand, is messy. It moves from person to per- 
son and group to group. It grows and changes as it moves. KM professionals will 
have to continue to facilitate this movement of tacit knowledge (Dixon, 2000). 
The inexplicit nature of our understanding regarding sustainability concepts 
(their definitions) and practice implies that our knowledge management skills 
and tools will be severely challenged. This problem is further exacerbated by var- 
ied and inexplicit value systems (national, local and organizational), which must 
enter into any sustainability discussion. The struggle to implement the concept of 
sustainable forest management can be supported by many of the more tacit 
knowledge-oriented tools of Table 26.1: communities of practice, free-content 
information collaborations and best practices and lessons learned sites. 

We can use our existing DSSs to define new goals and measurement criteria 
that better address forest sustainability. The use of MCDM and satisficing tech- 
niques and their various combinations will allow us to model the trade-offs 
between conflicting resource goals and will help us to identify compromise solu- 
tions. From there, we can identify in very precise terms what data, information 
and knowledge are needed to make the kinds of decisions we are looking for. On 
the other hand, a tension exists between the application of DSSs and the present 
use of inventory data. It may not even be possible to inventory a measurement 
criterion in a real forest or forecast the future value of that measurement criterion 
by using currently available prediction systems. Such examples are numerous 
and provide great opportunity to focus new research efforts to fill these major 
knowledge gaps. 
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Some people have advocated models designed to signal ecological prob- 
lems before they occur - anticipatory research. Most ecological models are not 
constructed with this intent in mind, and few researchers place sufficient confi- 
dence in their models to extrapolate to unrecognized problems. However, with 
proper attention to ecological scale combined with a system science approach to 
investigation, we may have the tools in place to conduct anticipatory research. 
Given a sufficiently sound understanding of a system's dynamics and modelling 
those dynamics at the appropriate scale(s), we may be positioned to make 
informed predictions about system behaviour within an ecologically meaningful 
context. Armed with this knowledge, we will be positioned to direct policy dis- 
cussions - if not policy itself - towards sustainable practices. As our environmen- 
tal problems become more complex and far-reaching, the ability to anticipate 
impacts (or understand them shortly after they are uncovered) will greatly 
improve our reaction time and inform our alternatives. 

Policy science must play an important role in the effort to define sustainable 
forest management and design implementation strategies. There is great oppor- 
tunity to better understand the nature of the environmentally based conflicts that 
have energized a broad spectrum of the world's public. Policy scientists must 
take the forefront in analysing and communicating results from such studies. 
Another important focus area for policy science is the area of group decision- 
making dynamics and methods. There is an urgent need to analyse and summa- 
rize the experience of the last 20 years and communicate the results as lessons 
learned and best practices for group decision making. Finally, policy scientists 
should increase their focus on examining the environmentally based conflicts 
from a global perspective with a view to crystallizing the descriptive, factual 
knowledge. Who produces what kind of forest product and who consumes it in 
what quantities? Which forest regions in the world are best suited to sustainably 
produce what kind of product and in what quantity? What are the social, 
economic and ethical consequences for a country to reduce its forest product 
production while at the same time increasing the quantity of forest products 
it imports from other regions of the world? Such questions and their answers 
need to be widely known and commonly agreed upon before a truly sustain- 
able regional and national forest management policy can be successfully 
implemented. The many powerful tools of KM can help us achieve these goals. 

Note 

1. Trade names are used for informational purposes only. No endorsement by the 
US Department of Agriculture is implied. 
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