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Abstract: Traditional goodness-of-fit tests such as the Kolmogorov-Smirnov and �2 tests are easily applied to
data of the continuous or discrete type, respectively. Occasionally, however, the case arises when continuous
data are recorded into discrete categories due to an imprecise measurement system. In this instance, the
traditional goodness-of-fit tests may not be wholly applicable because of an unmanageable number of ties in the
data, sparse contingency tables, or both; therefore, a flexible alternative to goodness-of-fit tests for discretely
measured continuous data is presented. The proposed methodology bootstraps confidence intervals for the
difference between selected percentiles of the empirical distribution functions of two samples. Application of the
approach is illustrated with a comparison of loblolly pine (Pinus taeda L.) tree crown density distributions at the
10th, 25th, 50th, 75th, and 90th percentiles simultaneously. FOR. SCI. 53(5):590–599.
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ABASIC TASK in scientific research is to determine
the extent to which two independent samples differ
from one another, and one of the most common

ways of doing so is by comparing the means or medians of
the two groups. Consider the null hypothesis,

H0: �1 � �2, (1)

where �i is a measure of location associated with group i
(i � 1, 2). The null Hypothesis 1 can be tested by calculat-
ing a two-sided 100 (1 � �)% confidence interval for the
difference � � (�1 � �2). If this confidence interval does
not include 0, then Hypothesis 1 is rejected at the �th level
of significance (Montgomery 1997). Although comparisons
based on a single measure of location are often imple-
mented, Wilcox (1995) illustrates how they may miss im-
portant differences between two groups, especially if the
distributions are heavy tailed or skewed.

To avoid missing important differences that may exist
between groups, Wilcox (1995) expanded Hypothesis 1 to
include multiple location parameters and tested the ex-
panded hypothesis by calculating simultaneous confidence
intervals for �(xp) � yp � xp where p is the pth quantile of
groups x and y (p � 0.1, 0.2, . . . , 0.9) and �(xp) is a
measure of how much group x must be shifted so that it is
comparable to group y. This function �(xp) is known as the
shift function and was first introduced by Doksum (1974)
and Doksum and Sievers (1976).

Another common method of comparing two groups is
goodness-of-fit testing. A two-sample goodness-of-fit test is
a test of the null hypothesis,

H0: F�x� � H(x) for all x, (2)

where F(x) and (Hx) are the unknown distribution functions
associated with the populations being studied. The alterna-

tive hypothesis is usually of the general form F(x) � H(x)
(Reynolds et al. 1988). There are two classical formulations
of this hypothesis, the Pearson �2 test and the empirical
distribution function (EDF) tests.

The Pearson �2 test is used with discrete data or contin-
uous data that can be naturally grouped. Let X1, X2, . . . , Xn

be a random sample and let I1, I2, . . . , Ik be the partitioned
classes for the set of possible values for X. Then the �2

statistic is

�2 � �
i�1

k � fi � ei�
2

ei
,

where fi is the observed number of observations falling in Ii

and ei � npi with pi being the probability of Ii under the null
hypothesis (Reynolds et al. 1988). Goodness-of-fit tests for
continuous data are based on the EDF. The EDF is defined
as follows (Stephens 1986): Let X1, X2, . . . , Xn be a random
sample, and let X(1), X(2), . . . , X(n) be the random sample in
rank order. Then,

Fn� x� � 0 x � X�1�

Fn� x� � i⁄n X�i� � x � Xi�1, i � 1, . . . , n � 1
Fn� x� � 1 X�n� � x.

Fn(x) is a nondecreasing, random function that goes from 0
to 1 in height. It is a step function with steps of height 1/n
occurring at the sample values (Conover 1999). For any x,
Fn(x) is the proportion of observations �x. Fn(x) is a con-
sistent estimator of F(x), the population cumulative distri-
bution function, and as n goes to infinity, �Fn(x) � F(x)�
decreases to 0 with probability 1 (Stephens 1986). The most
well-known EDF goodness-of-fit test is based on the
Kolmogorov-Smirnov (KS) supremum statistic:
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KS � supx�Fn(x) � F(x)� � max(KS�,KS�).

Other goodness-of-fit statistics are the Anderson-Darling
and Cramér-von Mises statistics,

Q � n�
��

�

	Fn�x� � F�x�
2��x� dF�x�,

where �(x) is a function that gives weights to the squared
difference {Fn(x) � F(x)}2. For the Anderson-Darling sta-
tistic �(x) equals [{Fn(x)}{1 � F(x)}]�1, and for the
Cramér-von Mises statistic �(x) equals 1 (Stephens 1986).

In general, the EDF tests are more powerful than the �2

tests (Stephens 1974), but they are not well-adapted for truly
discrete distributions or for continuous distributions that
appear discrete because the data have been grouped (Pettitt
and Stephens 1977). When EDF tests are applied to largely
discretized data (i.e., data with many ties), the probability of
a type I error drops below the nominal level of significance
(Wilcox 1997, O’Reilly et al. 2003). �2 tests are applicable
to data sets with many classes, but use of them with a sparse
data set (i.e., several classes with expected cell frequencies
�5) may result in poorly approximated test statistics
(Agresti 1996). �2 approximations for sparse data sets may
be improved by combining some of the classes, but doing so
often eliminates or obscures important information about
the distribution, especially the tails.

Pettitt and Stephens (1977) gave an example of dis-
cretized continuous data: angles of inclination of pebbles in
moraine deposits, measured to the nearest 5°. Discretized
continuous data also occur in image analysis and economet-
ric problems (O’Reilly et al. 2003) and, as will be illus-
trated, in the analysis of tree crown condition. In reality, all
continuous data are subject to some discretization because
of imprecise measuring systems but often the impacts of
discretization are negligible (Pettitt and Stephens 1977).
Regarding the use of discretized continuous data, Schwarz
(2006) gives the following rule of thumb: “If the discreti-
zation is less than 5% of the typical value, then a discretized
continuous variable can be treated as continuous without
problems.” When discretization is greater than 5% and
when the data are too sparse for a �2 test, an alternative to
the EDF and �2 tests is needed. Hence, the purpose of this
article is to illustrate a general, large-sample methodology
for comparing largely discretized data. The proposed ap-
proach improves on the traditional goodness-of-fit method-
ologies by incorporating more than one measure of location
and by accommodating sparse data. These adaptations pro-
vide greater flexibility in goodness-of-fit analysis and inter-
pretation. The methodology is similar to the shift function of
Wilcox (1995, 1997) but with modifications.

Proposed Methodology

Consider the null hypothesis,

H0:
p� � �pX � pY� � 0 for all p, (3)

where p� equals the population parameter describing the
differences between the pth percentile of the distribution of
populations X and Y, respectively. This hypothesis can be

tested using a 100 (1 � �)% confidence interval for p	,
which is the sample estimator of p� based on the EDFs of
samples taken from X and Y. Hypothesis 3 is rejected if the
confidence interval for p	 does not include 0. Any percentile
may be selected and multiple percentiles can be tested
simultaneously, but the level of discretization should be the
same for the two groups being compared. Wilcox (1995)
used nine percentiles (p � 0.1, 0.2, . . . , 0.9) with contin-
uous data. However, with discretized data the level of
discretization should be considered to avoid redundant com-
parisons. If the data are largely discretized so that there are
few classes and many observations in each class (i.e., many
ties in the data), testing every 5th or 10th percentile may
result in redundant comparisons because adjacent percen-
tiles are likely to be equal. Redundant comparisons should
be avoided because they reduce the power of the hypothesis
test when the probability of a type I error is controlled
simultaneously across all comparisons. To illustrate this
phenomenon, one might want to primarily test the following
percentiles: 5th, 25th, 50th, 75th, and 95th. However, the
researcher, on second thought, might also want to test the
20th, 30th, and 35th percentiles as well. These additional
percentiles would be redundant and reduce the power of the
overall test. Thus, this proposed method is not intended as a
broad data snooping option but as a tight hypothesis testing
vehicle.

To calculate a confidence interval for p	, an estimate of
standard error is needed. No analytic formula exists for the
standard error of differences between percentiles (Mooney
and Duval 1993). However, bootstrapping can be used to
overcome this limitation. The bootstrap was first introduced
by Efron (1979) and provides for the estimation of standard
errors for measures of scale and location, such as the mean,
variance, skewness, and kurtosis, as well as the median and
other percentiles. Hypothesis 3 is tested via bootstrapping
with the following generalized algorithm (Carpenter and
Bithell 2000):

Designate the first group under consideration as X � {x1,
x2, . . . , xn}, a sample of n independent observations, then

1. Sample n observations randomly and with replace-
ment from X to obtain a bootstrap data set, denoted X*.

2. Based on X*, calculate the p percentile(s) of interest.

3. Repeat steps 1 and 2 i times, generally i � 1,000 or
more, to obtain i estimates of the p percentile(s) of
interest.

Next, replace X with Y and repeat steps 1 through 3 the
same number of i times. Then calculate p	*i � {pX*i � pY*i},
where pX*i and pY*i equal the estimate of the pth percentile
from the ith bootstrap for groups X and Y, respectively. This
calculation establishes the bootstrap distribution of p	 (des-
ignated p	*). This process estimates all of the selected
percentiles each time a bootstrap resample is made (step 1).
For example, if p � (0.25, 0.50) then both percentiles are
calculated from the ith bootstrap resample in step 2. This
approach is in contrast to that taken by Wilcox (1995), in
which only one percentile was estimated from each boot-
strap sample (requiring the repetition of steps 1–3 for every
pth percentile). Wilcox (1997) estimated all percentiles
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from a single bootstrap sample in the comparison of two
dependent groups and acknowledged that this approach
might also be used for independent groups. Although the
accuracy of confidence intervals based on estimating all
percentiles from a single bootstrap has not been fully in-
vestigated, it is our opinion that the difference in accuracy
between the two approaches will be inconsequential as long
as i is sufficiently large (
5,000).

An estimate of the standard error of p	 is no longer
needed once the bootstrap sampling distribution p	* is es-
tablished because the confidence interval for p	 can be
determined from p	* directly. Several options exist for
calculating a confidence interval from a bootstrap distribu-
tion (Chernick 1999, Carpenter and Bithell 2000), the sim-
plest of which is the percentile (PCTL) method. To illustrate
the PCTL method, assume that p	* consists of 1,000 esti-
mates of p	 and let p	*(1),

p	*(2), . . . , p	*(1,000) represent the
ordered set so that p	*(i) � p	*(j), for 1 � i � j � 1,000. The
lower limit of a two-sided 90% PCTL confidence interval is
the 5th percentile of p	*, i.e., p	*(50), and the upper limit is
equal to the 95th percentile, or p	*(950).

A disadvantage of the PCTL method is that it assumes
that p	*i and p	 are unbiased estimators of p	 and p�, respec-
tively. To overcome this restriction, the bias corrected (BC)
bootstrap confidence interval method makes a correction for
median bias by adjusting the upper and lower confidence
limit endpoints according to a standardizing transformation
that centers the bootstrapped sampling distribution on the
point estimator, p	. Typically, the transformation assumes
that the bias is normally distributed, although in general,
any distributional form may be specified (Mooney and
Duval 1993). If the distribution of p	* is symmetric about
p	, i.e., unbiased, then the BC confidence limits are the
same as those of the PCTL method. See Chernick (1999) or
Mooney and Duval (1993) for further computational details
and discussion of other bootstrap confidence interval meth-
ods (e.g., the normal approximation and percentile-t
methods).

Illustration

Application of this methodology is illustrated with US
Forest Service crown condition data. The US Forest Service
is charged with reporting the status and trends in forest
ecosystem health in the United States. To this end, the US
Forest Service Forest Inventory and Analysis (FIA) Pro-
gram assesses a suite of ecological indicators on a portion of
its national network of forest inventory plots (Riitters and
Tkacz 2004). One of the ecological indicators of forest
health that FIA measures is tree crown density, defined as
the amount of crown branches, foliage, and reproductive
structures that blocks light visibility through the projected
crown outline (US Forest Service 2004). Crown density is
visually assessed by a two-person field crew and recorded in
5% increments from 0 to 100.

To be an effective indicator of forest health, tree crown
density must be separable into categories of good and poor
condition. This requires setting threshold limits to identify
the crown densities that signal a decline in tree health.
Ideally, this separation should be based on the biological

relationship between crown density and another measure of
tree vigor (such as diameter increment). Thresholds of this
nature are difficult to pinpoint, however, so thresholds
based on the statistical distributions are being used until
further research is accomplished (Zarnoch et al. 2004).

Statistical thresholds isolate observations in the tails of
distributions for designation as either poor or good condi-
tion. For example, crown density was initially classified into
three categories: poor, 0–20% crown density; moderate,
21–50% crown density; and good, 51–100% crown density
(Bechtold 1992). The disadvantage of using such statisti-
cally based thresholds is that some observations will be
designated as poor even in the absence of a problem
(Zarnoch et al. 2004). Furthermore, because of physiologi-
cal differences, some tree species may be able to tolerate
lower levels of crown density than others; hence, one set of
thresholds is likely to be insufficient for all species (Ran-
dolph 2006). One way to determine whether one set of
thresholds is adequate for two groups is to compare the
cumulative distribution functions of the groups. If the dis-
tributions are not significantly different from one another
then a single set of thresholds may be applied to both
groups. If the distributions are significantly different then a
single set of thresholds is probably inadequate.

To illustrate the proposed methodology, pairwise com-
parisons were made between the loblolly pine (Pinus taeda
L.) crown densities in Alabama, North Carolina, and South
Carolina. Five levels of p were included in the testing of
Hypothesis 3: p � 0.10, 0.25, 0.50, 0.75, and 0.90. These
five percentiles provide reasonable coverage of the entire
distribution and minimize potentially redundant compari-
sons. Additional percentiles from the tails could have been
included (e.g., 5th and 95th percentiles); however, five
percentiles were deemed adequate for illustrative purposes.

The experiment-wise type I error rate � was set at 0.10
and 0.20 and a Bonferroni-type correction was implemented
so that per comparison confidence intervals were calculated
with a confidence level of �/m, where m equals the total
number of hypotheses tested (Shaffer 1995). For each state,
i � 5,000 bootstrap resamples were made. The PCTL boot-
strap confidence interval method was used to determine the
confidence limits for p	. The BC bootstrap confidence in-
terval method was not used because no method to correct
the bias of all percentiles simultaneously is available. Null
Hypothesis 3 was rejected if any of the confidence intervals
in the set excluded 0. The bootstrapping algorithm was
performed with SAS software macros available from the
SAS Technical Support Web site (SAS Institute, 2004).

Application of the proposed methodology for the com-
parison of the crown density distributions is warranted
because, first of all, a comparison of a single measure of
central tendency would be inadequate for describing differ-
ences that may occur in the distribution tails that delineate
the poorest and best crown conditions. Second, a �2 test on
the data as presented in Table 1 results in a �2 value that
may not be valid because a large portion of the cells have
expected counts less than the recommended minimum value
(typically, 5). Third, if we assume that 40% is a typical
crown density value, the level of discretization exceeds the

592 Forest Science 53(5) 2007



rule of thumb given by Schwarz (2006), which suggests that
the EDF test statistics may be questionable also.

Results
Traditional Goodness-of-Fit Tests

As a point of comparison with the proposed methodol-
ogy, Hypothesis 2 was tested with the Pearson �2 and KS
tests for the three pairwise comparisons. Significant �2

values (P � 0.0001) (Table 2) resulted for all comparisons,
but combining of the extreme tail observations into the 25
and 65% categories was required to meet the standard rule
of thumb of having expected cell frequency 
5 for all cells.
This aggregation of data affects the tails, which is a key
concern for the US Forest Service when identifying healthy
and unhealthy trees. Likewise, Hypothesis 2 was rejected
(P � 0.0001) for the three comparisons when tested with the
KS statistic (Table 2). The points of maximum deviation
were determined via the KS test to be at crown density
values of 35% for the Alabama–North Carolina comparison
and 40% for the North Carolina–South Carolina and Ala-
bama–South Carolina comparisons.

Proposed Goodness-of-Fit Test

Hypothesis 3 was rejected at both the 80% and 90%
simultaneous confidence levels based on all selected per-
centiles for the Alabama–South Carolina and North Caro-
lina–South Carolina comparisons. That is, p	 � 0, p � 0.10,
0.25, 0.50, 0.75, and 0.90 (Tables 3 and 4). Examination of
the specific confidence intervals shows only one difference
between Alabama and North Carolina (0.9	 � 0) (Table 5).
The 90th percentile was 5% higher in North Carolina than in
Alabama. All percentiles in South Carolina were 10–15%
higher than those in Alabama and 5–10% higher than those
in North Carolina. There are numerous possibilities for the
differences between the loblolly pine crown density distri-
butions. These range from field crew bias in assessment
technique to true differences in crown form or crown con-
dition. The specific reasons for the differences are not
explored further here; however, they may be investigated in
other research efforts.

The conclusions drawn from the results of the proposed
methodology are the same as those drawn from the KS
and �2 tests for the Alabama–South Carolina and North
Carolina–South Carolina comparisons. Results from the
Alabama–North Carolina comparison are somewhat differ-
ent, however, and illustrate the impact of tied values on the
KS test. For the Alabama–North Carolina comparison, only
0.9	 was declared significantly different by way of the
proposed methodology. This suggests no differences be-
tween the distributions except in the upper tail. On the other
hand, the point of maximum deviation determined by the
KS test was near the 25th percentile at a crown density
value of 35%. This finding suggests differences between the
distributions in the lower tail. The difference in conclusions
is due to the fact that the KS test is not designed to handle
an excessive number of ties in a data set. Notice in Figure
1 that the North Carolina and Alabama distributions are
fully separated at the initial occurrence of 35% crown
density, but that repeated observations at 35% crown den-
sity in North Carolina cause the EDFs to overlap near the
50th percentile. This stacking of the EDF is not considered
in the calculation of the KS supremum statistic and results
in misleading conclusions about the deviation between the
distributions. The proposed methodology accommodates
the tied values through bootstrapping and expresses the
magnitude of p	 by the confidence interval width (Table 5).

One peculiarity associated with bootstrapping discretized
data is evident in the confidence interval for the difference
between the 90th percentile of the Alabama–North Carolina
crown density distributions where the upper and the lower

Table 1. Observed frequencies for loblolly pine crown density mea-
sured between 1995 and 1999 in Alabama, North Carolina, and South
Carolina

Crown density Alabama North Carolina South Carolina

(%) . . . . . . . . . . . .(no. of trees) . . . . . . . . . . . .
0 0 1 0
5 0 1 0

10 0 0 0
15 10 3 0
20 23 1 1
25 62 20 3
30 184 51 3
35 271 84 18
40 247 197 97
45 152 138 156
50 106 95 130
55 47 59 175
60 9 23 112
65 3 15 50
70 2 1 6
75 1 0 7
80 0 0 2
85 0 0 2
90 0 0 0
95 0 0 0

100 0 0 0
Total 1,117 689 762

Table 2. Results of the Pearson �2 and KS goodness-of-fit tests comparing loblolly pine tree crown density in Alabama, North Carolina, and South
Carolina

Test

Original data Collapsed dataa Kolmogorov-Smirnov

�2 value df Pb �2 value df Pb D Pb

AL-NC 152.06 14 �0.0001 138.40 8 �0.0001 0.26 �0.0001
AL-SC 720.61 14 �0.0001 719.28 8 �0.0001 0.55 �0.0001
NC-SC 290.16 16 �0.0001 286.63 8 �0.0001 0.36 �0.0001
a Original data were collapsed into fewer categories to achieve expected cell frequencies of 
5 for all cells.
b Probability of observing a larger test statistic under the null hypothesis.
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confidence limits were the same (Table 5). The interval
[�5, �5] is a function of both the original data and the
bootstrap resamples. The cumulative EDFs for both states
are vertical at and around the 90th percentile (Figure 1),
which indicates that there is little variation (i.e., many ties)
in the crown density values near this percentile. Contrast
this finding with the 50th percentile where the cumulative
EDF for Alabama is horizontal, which indicates that the
50th percentile occurs near the transition between two
crown density classes. When the bootstrap resamples are
drawn, the observations for the 90th percentile have very
little variation, whereas the observations for the 50th per-
centile are more heterogeneous. Thus, when the difference
at the 90th percentile is calculated, it is nearly constant.

Because a confidence interval with equal endpoints
would be extremely unlikely for continuous data, we ex-
plored the reasonableness of such an interval for discretized
continuous data by perturbing the Alabama and North Caro-

lina data and recalculating the confidence intervals. Recent
reports outlining the results from the US Forest Service
Forest Health Monitoring Quality Assurance (QA) program
discuss the observational differences between two field
crews for the crown density indicator and show that there is
some variation between the assessments of the same trees
by different crews (Pollard and Smith 1999, 2001). Thus,
the distribution of observational variation for loblolly pine
trees from 6 years of QA assessments (Table 6) was used to
perturb the original Alabama and North Carolina crown
density distributions. Random numbers were drawn from
the uniform (0,1) distribution and the magnitude of varia-
tion added to each observation was determined by compar-
ing the random number to the QA cumulative proportion in
Table 6. For example, �5 was added to the observation if
the random number was �0.09 but �0.23.

The resulting proportions of variation added to the crown
densities matched well the proportions observed in the

Table 4. Observed percentile estimates for North Carolina and South Carolina loblolly pine tree crown density and bootstrap confidence intervals
for the difference between observed percentiles (p)

p

Observed estimate 90% simultaneousa 80% simultaneousb

NC SC Difference (NC-SC) LCL UCL LCL UCL

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.10 30 40 �10 �10 �5 �10 �5
0.25 40 45 �5 �10 �5 �10 �5
0.50 40 50 �10 �15 �5 �12.5 �5
0.75 50 55 �5 �10 �5 �10 �5
0.90 55 60 �5 �10 �5 �10 �5

LCL, lower confidence limit; UCL, upper confidence limit.
a � � 0.02 per comparison.
b � � 0.04 per comparison.

Table 5. Observed percentile estimates for Alabama and North Carolina loblolly pine tree crown density and bootstrap confidence intervals for
the difference between observed percentiles (p)

p

Observed estimate 90% simultaneousa 80% simultaneousb

AL NC Difference (AL-NC) LCL UCL LCL UCL

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.10 30 30 0 �5 0 �5 0
0.25 35 40 �5 �10 0 �10 0
0.50 40 40 0 �10 0 �10 0
0.75 45 50 �5 �5 0 �5 0
0.90 50 55 �5 �5 �5 �5 �5

LCL, lower confidence limit; UCL, upper confidence limit.
a � � 0.02 per comparison.
b � � 0.04 per comparison.

Table 3. Observed percentile estimates for Alabama and South Carolina loblolly pine tree crown density and bootstrap confidence intervals for
the difference between observed percentiles (p)

p

Observed estimate 90% simultaneousa 80% simultaneousb

AL SC Difference (AL-SC) LCL UCL LCL UCL

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.10 30 40 �10 �15 �10 �15 �10
0.25 35 45 �10 �15 �10 �15 �10
0.50 40 50 �10 �15 �10 �15 �10
0.75 45 55 �10 �15 �10 �15 �10
0.90 50 60 �10 �15 �10 �15 �10

LCL, lower confidence limit; UCL, upper confidence limit.
a � � 0.02 per comparison.
b � � 0.04 per comparison.
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original data (Table 6). Truncation to 0 was necessary for
seven observations, six in Alabama and one in North Caro-
lina. The addition of the variation smoothed the EDFs
(Figure 2); i.e., the steps from one observed crown density
to the next were not as high as the original data. Hypothesis
3 was tested with the perturbed data and again was rejected
at the 90% confidence level. The perturbation alleviated the
zero-width interval for 0.9	 but resulted in an interval of
[�5, �5] for 0.5	 (Table 7). Note in Figure 2 that the
cumulative EDFs for both states are vertical near the 50th
percentile. Recall that this same pattern was evident near the
90th percentile before the addition of observer variation
(Figure 1). Thus, even with increased variation, confidence
intervals with equal endpoints may result because of the
abundance of ties in the data.

Although zero-width confidence intervals may seem to
be intuitively incorrect, it is beneficial to remember that the
value of each discretized continuous observation is an in-
terval in and of itself. For example, with the exception of
0% crown density, all of the crown density observations
represent an interval of 5%: a crown density of 5% includes

densities of 1–4%, a crown density of 10% includes densi-
ties of 6–10%, and so on (US Forest Service 2004). Thus,
there is some inherent width for an interval of [�5, �5] due
to the discretized nature of the data.

Discussion

A noteworthy distinction between the proposed alterna-
tive methodology and the KS test is that the alternative
methodology compares crown density values at selected
EDF values (percentiles), whereas the KS test compares all
EDF values at each level of crown density. That is, in
reference to the EDF plots (Figure 1), the KS test considers
vertical differences between the EDFs at each observation
along the horizontal, whereas the proposed alternative con-
siders horizontal differences between the EDFs at selected
points along the vertical. This characteristic gives the pro-
posed methodology greater flexibility over the traditional
goodness-of-fit tests by not only allowing the comparison of
percentiles anywhere along the distribution but also by

Table 6. Observed observer variation from FIA QA assessments and proportions of variation added to the observed Alabama and North Carolina
crown densities

QA observer variationa Simulated observer variation

Density
variation

(%)b Proportion
Cumulative
proportion

Proportion
(AL)

Cumulative
proportion

(AL)
Proportion

(NC)

Cumulative
proportion

(NC)

�20 0.01 0.01 0.01 0.01 0.01 0.01
�15 0.03 0.04 0.03 0.04 0.04 0.05
�10 0.05 0.09 0.05 0.09 0.05 0.10
�5 0.14 0.23 0.15 0.24 0.14 0.24

0 0.23 0.46 0.24 0.48 0.22 0.46
5 0.22 0.68 0.21 0.69 0.24 0.70

10 0.16 0.84 0.15 0.84 0.15 0.85
15 0.09 0.93 0.09 0.93 0.08 0.93
20 0.02 0.95 0.02 0.95 0.02 0.95
25 0.03 0.98 0.03 0.98 0.02 0.97
30 0.02 1.00 0.02 1.00 0.03 1.00

a From 6 years of QA assessments of loblolly pine in the Southern United States.
b Difference between crown density assessments of individual trees by two separate field crews.

Figure 1. Cumulative empirical distribution functions for Alabama,
North Carolina, and South Carolina loblolly pine crown density.

Figure 2. Cumulative empirical distribution functions for Alabama
and North Carolina loblolly pine crown density after perturbation of
the original data.
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providing specific hypothesis testing results for each
comparison.

Under the proposed methodology, the individual confi-
dence intervals for p	 reveal the direction and magnitude of
the differences for all p included in the hypothesis. Even a
confidence interval of 0 width provides useful information
about p	. The direction and magnitude of the difference
between two distributions can be determined from the KS
test results but only for the single point of maximum devi-
ation. Consequently, the KS test does not identify additional
differences that might provide important information about
the inequality of two distributions.

The capability of the proposed methodology to compare
multiple percentiles is an advantage that allows the inves-
tigator to focus on areas of the distribution for which dif-
ferences may have greater consequences. Such might be the
case if the data describe conditions of health, as with the
crown density data illustrated here. In general, if multiple
percentiles are selected across the entire distribution, then
there are seven broad ways in which the distributions may
differ: at all percentiles; at the lower and middle percentiles,
lower and upper percentiles, or middle and upper percen-
tiles; or at the lower, middle, or upper percentiles individ-
ually. Each of these combinations will have its own inter-
pretation and importance, depending on the nature of the
data and research question under consideration.

Another aspect of the flexibility of the proposed meth-
odology is the ability to control the probability of a type I
error simultaneously across all comparisons. In this exam-
ple, we used a simple (single-step) Bonferroni correction for
the � level of significance to construct simultaneous confi-
dence intervals for the set of five percentiles. With the
simple Bonferroni correction, each confidence interval was
calculated at the �i � �/m level of significance, where �
equals the overall level of type I error and m equals the total
number of hypotheses under consideration. This type of
correction may be written in the general weighted form as �i

� wi�, where wi 
 0; �i�1
m wi � 1. For the simple Bon-

ferroni correction all wi are equal, i.e., wi � 1/m, although
in actuality the �i may be differentially weighted to allot
more of the overall � to the hypotheses considered “most
important” (Rosenthal and Rubin 1983, Westfall and
Krishen 2001). In our illustration, for example, differences
in the lower tail of the EDF (representing the poorest crown
conditions) might be considered more important than dif-

ferences in other segments of the EDFs, and the �i for the
lower percentiles could be given larger weights to reflect
this importance.

The Bonferroni method (weighted or nonweighted) is the
simplest multiple testing procedure for maintaining proper
coverage for type I errors; however, it is a very conservative
approach if used with many and/or highly correlated hy-
pothesis tests (Simes 1986). Other multiple testing proce-
dures exist (e.g., Holm’s sequentially rejective Bonferroni
method), but they do not have straightforward confidence
interval interpretations (Shaffer 1995, Holland and Copen-
haver 1988). As a result, the Bonferroni correction was the
most suitable method available for generating the simulta-
neous confidence intervals for p	.

Even with its flexibility in analysis and interpretation,
there are some limitations to the proposed methodology.
One drawback is that when sample sizes are small, the
percentile-type confidence intervals, including the BC
method, may not maintain true coverage accuracy. Polansky
(1999) reports that for a two-sided bootstrap percentile
confidence interval for the 50th percentile to maintain true
coverage there must be at least 25 observations in the
original sample. The number of observations necessary to
maintain true coverage for the 75th percentile is 50; 100
observations are needed for the 90th percentile and more
than 100 observations for the 95th and 99th percentiles.

The sample sizes used in the illustration were larger than
might usually be encountered; therefore, the data sets were
reduced in size to examine the sensitivity of the methodol-
ogy when applied to smaller samples. The original sample
sizes were reduced proportionately to 50, 15, and 7.5% of
the original sizes. At 7.5% of the original sample size, the
sample sizes met Polansky’s (1999) recommended number
of observations necessary to maintain true coverage at the
75th percentile but not at the 90th percentile. With the
smaller sample sizes, the confidence intervals for several p	
widened and affected which p	 were significantly different
from 0. For the Alabama–North Carolina comparison, this
affected the ultimate conclusion of Hypothesis 3. Given the
full data set, Hypothesis 3 for the Alabama–North Carolina
comparison was rejected on the basis of the 0.9	 confidence
interval, which did not include 0 (Table 5). When the
sample size was reduced to 15 and 7.5% of the original, the
upper confidence limit for 0.9	 shifted so that the interval
included 0 (Table 8); thus, Hypothesis 3 failed to be re-
jected. For the North Carolina–South Carolina comparison,
the upper confidence limits for 0.9	 and 0.75	 shifted so
that the intervals included 0 (Table 9); however, the
overall conclusion of Hypothesis 3 was unchanged (i.e.,
rejected) because the confidence intervals for the lower
percentiles remained significantly different from 0. For
the Alabama–South Carolina comparison, shifts in the
confidence limits occurred as the sample size was re-
duced, but there was no change in the individual signif-
icance for each p	 nor in the overall conclusion of Hy-
pothesis 3 (Table 10).

The wider confidence intervals observed with the smaller
sample sizes were not surprising. As sample sizes decline,
there is always less power for hypothesis testing. This was

Table 7. Bootstrap confidence intervals for the difference between
percentile estimates (p) after perturbation for Alabama and North
Carolina loblolly pine tree crown densities

p

Perturbed
difference
(AL-NC)

90% simultaneous CIa

LCL UCL

. . . . . . . . . . . . . . . (%) . . . . . . . . . . . . . . .
0.10 0 �10 0
0.25 �5 �5 0
0.50 �5 �5 �5
0.75 �10 �10 0
0.90 �5 �10 �5

LCL, lower confidence limit; UCL, upper confidence limit.
a � � 0.02 per comparison.
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evident with the Alabama–North Carolina comparison par-
ticularly. Interval endpoints for the upper percentiles were
relatively more unstable than the interval endpoints for the
lower percentiles. Thus, caution should be exercised if one
is calculating percentile-type confidence intervals for p	
when p � 0.75 and sample size is �50. Sample sizes should
be �100 if confidence intervals are desired for p � 0.90. It
is worth noting that sample size is a limitation for calculat-
ing confidence intervals for upper-level percentiles in any
situation and is not necessarily specific to this application.

Conover (1972), Pettit and Stephens (1977), and Gleser
(1985) present KS tests for discrete and discontinuous dis-
tributions for small sample sizes (n � 30). Although these

methods could be extended to larger sample sizes, they are
bound by the same limitations as the KS test, namely, as
overall goodness-of-fit tests they do not provide the addi-
tional specific insight on key percentiles as does the meth-
odology we describe.

A second caveat concerns the occurrence of confidence
intervals without width, i.e., when the upper and lower
confidence limits are equivalent. Such occurrences are re-
lated to the sample size, the discreteness of the data, and the
extent to which the two distributions are equivalent. Al-
though highly unusual for continuous data, such intervals
were explored by perturbing the data and were shown to be
a reasonable possibility for discretized data. This could be a

Table 8. Ninety percent simultaneousa bootstrap confidence intervals for the difference between observed percentiles (p) for Alabama and North
Carolina loblolly pine tree crown density distributions with reduced sample sizes

p

50% sample sizeb 15% sample sizec 7.5% sample sized

LCL UCL LCL UCL LCL UCL

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.10 �10 0 �10 0 �10 0
0.25 �10 0 �10 0 �10 0
0.50 �10 0 �10 0 �10 0
0.75 �10 0 �10 0 �10 0
0.90 �5 �5 �10 0 �10 5

Results for the original sample sizes are given in Table 5. LCL, lower confidence limit; UCL, upper confidence limit.
a � � 0.02 per comparison.
b n � 559 for Alabama and n � 345 for North Carolina.
c n � 168 for Alabama and n � 103 for North Carolina.
d n � 84 for Alabama and n � 52 for North Carolina.

Table 9. Ninety percent simultaneousa bootstrap confidence intervals for the difference between observed percentiles (p) for North Carolina and
South Carolina loblolly pine tree crown density distributions with reduced sample sizes

p

50% sample sizeb 15% sample sizec 7.5% sample sized

LCL UCL LCL UCL LCL UCL

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.10 �10 �5 �15 �5 �15 �2.5
0.25 �10 �5 �10 �5 �15 �2.5
0.50 �15 �5 �15 �5 �15 �5
0.75 �15 �5 �15 �5 �15 0
0.90 �10 �5 �15 �5 �15 0

Results for the original sample sizes are given in Table 4. LCL, lower confidence limit; UCL, upper confidence limit.
a � � 0.02 per comparison.
b n � 345 for North Carolina and n � 381 for South Carolina.
c n � 103 for North Carolina and n � 114 for South Carolina.
d n � 52 for North Carolina and n � 57 for South Carolina.

Table 10. Ninety percent simultaneousa bootstrap confidence intervals for the difference between observed percentiles (p) for Alabama and South
Carolina loblolly pine tree crown density distributions with reduced sample sizes

p

50% sample sizeb 15% sample sizec 7.5% sample sized

LCL UCL LCL UCL LCL UCL

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.10 �15 �10 �15 �10 �20 �10
0.25 �15 �10 �15 �10 �20 �7.5
0.50 �20 �10 �20 �10 �20 �10
0.75 �15 �10 �20 �10 �20 �10
0.90 �15 �10 �20 �10 �20 �5

Results for the original sample sizes are given in Table 3. LCL, lower confidence limit; UCL, upper confidence limit.
a � � 0.02 per comparison.
b n � 559 for Alabama and n � 381 for South Carolina.
c n � 168 for Alabama and n � 114 for South Carolina.
d n � 84 for Alabama and n � 57 for South Carolina.
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common occurrence; however, we do not believe it should
be considered a major hindrance to the use of the method-
ology because confidence intervals with no width still pro-
vide useful information regarding the degree of differ-
ence between two distributions. Nevertheless, investiga-
tors considering the proposed methodology should be
aware of this possibility and decide whether such occur-
rences are acceptable for the research question under
investigation.

Conclusion

The methodology presented here is a flexible goodness-
of-fit test for discretely measured continuous data. The
approach is nonparametric and can be applied to distribu-
tions of any form, but it is limited to inquiries about the
equality of locations for two distributions rather than ques-
tions about specific distributional forms, i.e., “are the data
normal?” The approach is not intended to take the place of
traditional goodness-of-fit tests but rather to provide an
alternative method of analyzing discretely measured contin-
uous data. Results of both the traditional and proposed
goodness-of-fit tests indicated significant differences be-
tween the crown density distributions of the three states;
however, the proposed methodology provided greater in-
sight into the nature of the differences. The flexibility not
only covers specific percentiles but also allows simulations
with different perturbations in a measurement system or
with different sample sizes and their effect. In a way, the
robustness of this approach is very appealing. On the other
hand, this research revealed the need to formulate a multi-
variate method of handling the bootstrap bias correction
method across several percentile estimates. In this case of
discontinuous data, such attempts would have been super-
fluous with no change to the final answers; however, in the
case of continuous data, there is a need for such multivariate
corrections when there is dependence. Further inquiries into
goodness-of-fit testing for discretized data should explore
the impact of discretization level and type I error controls
(per comparison or simultaneous) on confidence interval
widths and coverage accuracy.
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