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Abstract: Timber product markets are subject to large shocks deriving from natural disturbances and policy
shifts. Statistical modeling of shocks is often done to assess their economic importance. In this article, I simulate
the statistical power of univariate and bivariate methods of shock detection using time series intervention models.
Simulations show that bivariate methods are several times more statistically powerful than univariate methods
when underlying series are nonstationary and potentially involved in cointegrating relationships. In an empirical
application to detect the long-run price impacts of the voluntary phase-out of chromated copper arsenate in
pressure-treating southern pine lumber for residential applications, I find the multivariate methods to be more
powerful as well. I identify highly significant long-run price increases of 11% for two of three treated southern
pine dimension lumber price series evaluated using multivariate approaches. The univariate method detected a
long-run increase only for the third product, and the statistical significance was weak, although comparable, in
magnitude to the first two products. FOR. SCI. 55(1):48—63.
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OMMODITY MARKETS are regularly affected by

changes in regulations and technology shifts, which

result in alterations of production and consumption.
Resulting supply and demand movements affect prices,
profits, and consumer welfare. An example of a demand
shift in the building sector is the movement away from
traditional solidwood products because of their increasing
prices relative to available substitutes, a result of technology
advances and government timber harvest policy changes
(Eastin et al. 2001, Shook and Eastin 2001). A recent
example of a regulatory shift in the US forest product sector
is the voluntary phase-out of the wood preservative chro-
mated copper arsenate (CCA) and its replacement by alter-
native treatments (especially alkaline copper quaternary
[ACQ]) by treated lumber processors as a result of an
agreement with the Environmental Protection Agency.

Although regulatory changes may have large economic
impacts, the temporal dynamics of the resulting price and
production shifts are not as well understood. Accurate as-
sessments of the price and quantity effects of regulatory
changes may help lawmakers and agency administrators
more accurately compare the costs and benefits of the
changes. Such assessments can provide all parties with a
scientific benchmark for negotiations regarding economic
injuries suffered after such a policy change.

Identification of the effects of market shocks can proceed
using alternative approaches, but the statistical power (rates
of correct hypothesis rejections) of competing approaches
has not been subject to systematic evaluation. Intervention
models (e.g., Enders 1995) exploit the time series properties
of a variable or variables and intuition about the timing of
changes in their data generation processes to quantify the
effects of shocks. Univariate intervention modeling ap-

proaches include those by Holmes (1991), who examined
the timber market effects of a southern pine beetle outbreak
in Louisiana and Texas, and Yin and Newman (1999), who
modeled timber prices in South Carolina after Hurricane
Hugo. A bivariate example is Prestemon and Holmes
(2000), who also modeled the timber price impacts of Hur-
ricane Hugo. In the bivariate example, positive long-run
price effects were identified, whereas none were identified
in the univariate example.

In identifying the existence of a relatively small shock in
a time series process, modeling the difference of two vari-
ables that share a common trend but not the hypothesized
shock could be statistically more powerful than other meth-
ods. The added power available from the paired time series,
compared with the power of a univariate method, could
emanate from a co-relation that is “less noisy” than the
process of the shocked individual series alone. The contrast-
ing findings regarding timber prices after Hurricane Hugo,
for example, might be related to power differences of the
intervention models used.

In this article, I evaluate the relative statistical power and
size of competing univariate and bivariate intervention
methods to identify a permanent shift in level in a data
generation process. I use simulation methods to measure the
power of the univariate method and the bivariate method
and compare them. The primary objective of the Monte
Carlo simulations is to identify the circumstances in which
a permanent shock to a simulated time series is best detected
using a bivariate approach and under which circumstances it
is best detected using a univariate approach. In an empirical
application, I compare the results of univariate, bivariate,
and trivariate intervention methods in detecting long-run
price shifts for three treated southern pine (especially Pinus
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taeda L., Pinus elliottii Engelm., Pinus palustris Mill, and
Pinus echinata Mill.) lumber products, related to the vol-
untary phase-out of CCA. Also for the empirical applica-
tion, a secondary objective was to identify short-run price
dynamics related to the 22-month phase-out epoch for CCA.

Theoretical Background

Specify a data generation process of n cointegrated I(1)
variables p as

k
Ap,=a+1p,_, + E D Ap,_; + &, (D

i=1

with a lag order of k in the error correction process, where
a is a constant, IT is an (n X 1) vector containing the
cointegrating parameters, ®; is an (n X 1) vector containing
the parameters of an error correction process for lag period
i, and g, is an (n X 1) realization of a mean-zero random
error process. Engle and Granger (1987) outlined a simple,
two-step method for evaluating the significance of the pa-
rameters of II. Gonzalo (1994) showed that the Engle and
Granger (E-G) two-step method is as powerful as alternative
approaches (e.g., Johansen 1991), at least in the bivariate
case. Further, the E-G method in this case does not run as
high a risk of misspecification from incorrect lag specifica-
tion in the vector autoregression. Phillips (1998) also warns
of the greater risk of misspecification of the cointegrating
relation in multivariate relationships, compared with the
E-G approach.

Now, consider a two-period regime switch in the case of
two or more I(1) variables, p; and p,,, where one series, pg,
experiences a shift in level, permanently altering the cointe-
grating relation with variables contained in a vector of other
series, p,. Call the preshift period of the relationship “epoch
1” and the postshift period “epoch 2.” In epoch 1, the
cointegrating relation may be specified as

Pri= 0t a{pu,r tu U= u Tt oo, 2)

where @, is an (n X 1) vector of parameters describing the
long-run relation between py, and the n variables contained
in py,, the second equation quantifies with ¢ a simple
AR(1) process, consistent with a first-order lag process
shown in Equation 1, and w, is a Gaussian error process. In
epoch 2, the process can be quantified as a permanent
change in the price difference,

Pri= 0 t afpu,z tytu u=oQuot o, (3)

where the parameter y quantifies the permanent shift in the
price difference. An alternative version of Equation 3 would
allow the shift to be manifested in the price ratio(s) rather
than the difference

Pr:= ay t (o + 3)’pu,1 +u ouw=ou_ to, @)

where 6 contains the changes in the price ratio(s). A third
version would allow for both level and proportional shifts
(i.e., including y in Equation 4 as an intercept shifter).
The parameters of Equation 3 or 4 could be estimated
using the E-G method, inserting dummy variables (D,),
equal to zero in epoch 1 and unity in epoch 2, which would

correspond with the change in epochs measured by -y and 8.
Because of the possibility, in empirical applications, that the
nonstationary series are not related (there is no stable long-
run relation), it is important to test for existence of the
relations in the epoch 1 time series before proceeding to a
multivariate modeling approach as outlined in Equations
2-4.

The existence and size of any change in price relation-
ships can be quantified in a second stage by creating a
pseudoresidual series. The pseudoresidual series subtracts
out an estimated epoch 1 long-run relationship between pg
and p,, from the entire time series and quantifies y or &
using a perturbed autoregressive (AR) moving average
(ARMA) model estimate. The pseudoresidual series is gen-
erated by (Prestemon and Holmes 2000):

Erur =Prr— Qy — &{Pu,n (5)

where “hats” indicate estimates of the parameters shown in
Equations 2-4. An ARMA(k, 0) model, for example, that
quantifies y would be consistently estimated by regressing
&gy, on a constant, k lagged levels of &g, and a dummy
variable equal to zero in epoch 1 and unity in epoch 2:

k
Eru, = ag + E ayiépy, -1 + aoD, + ey, (6)

i=1

where e, is a Gaussian innovation with Cov(e,, e,) = 0 (s #
1). Estimates of a, and the a,; can be used to estimate vy as
9 = a,/(1 — >*_,4,). The variance of 4 can be approxi-
mated with the delta method,

0% = 0?2;2%2 + 2 Oili')’zli
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where 7. is the first derivative of the function with respect to
the subscripted variable.

The advantage of the univariate approach to the mea-
surement of vy or & is that it does not require pg, to be
cointegrated with any other series and does not require
nonstationarity. This approach merely requires inclusion of
dummy variables suitable for detecting y or &. In other
words, if two or more series possess significant common
trends but are not cointegrated, price differences or ratios
could be modeled in the same fashion as described in
Equation 6.

An alternative procedure is to model a supposedly
shocked series as an ARMA process if stationary or a
differenced series if nonstationary. If stationary, the esti-
mate of vy can be done with a simple augmented ARMA
model of the form

k m
Pre = Bo T 2 BiiPri—1 T E Baierj (7
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where variables are as earlier defined. A differenced version
of Equation 7, for the case of a nonstationary series would
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require a redefinition of D, as being equal to unity for only
the single period when the change in level is hypothesized
to have occurred.

Monte Carlo Simulations

The power of any statistical test to evaluate the existence
of a shock depends on several factors, and our approach in
the simulation exercise is to test the power of alternative
intervention methods across a range of these factors. For
example, statistical power is likely to be related to the size
of the shock relative to the size of the variance of the
underlying time series and the degree of autoregressive
behavior in the underlying series containing the shock. The
power of the bivariate method to detect a shock may also be
related to the strength of co-relations among variables (the
autocorrelation parameter of the cointegrating relation) and
the variance of innovations in that relation.

In our Monte Carlo simulations, time series are specified
as ARI(1, 1) processes with Normal, mean-zero, and con-
stant variances (¢?) of innovations (the random errors).
Shocks range from 0.50 to 20. The first-order autocorrela-
tion parameter is varied from 0.10 to 0.95. The size of the
autocorrelation parameter in the linear cointegrating relation
specified between two paired series, one containing the
shock and the other not, is varied from 0.0 to 0.95. The
variance of this cointegrating relation is further varied from
0.50 to 20. The number of usable observations is 240,
similar in length to the monthly series on lumber price data
that I will subsequently analyze. Two epochs are defined in
the shock detection simulation exercise. Epoch 1 runs from
period 1 to 192 and epoch 2 from period 193 to 240. The
cointegrating relation is specified as pp, = 0 + 1 py,, + u,
in epoch 1. At the beginning of the simulation, the starting
values (period 1) of both series are 5.0. When I vary the
autocorrelation parameters, the SD of both the cointegrating
relation (variance of u,) and the individual series (pg » Py,
variances are set at 0> = 0.0036. [1] When I jointly vary the
SDs of the two individual series from 0.50 to 2o, the
autocorrelation parameter in the AR processes of the two
series are both set at 0.5 and the variance of the cointegrat-
ing relation is set at o~

The simulation results (Tables 1-3) generate a number of
relevant conclusions. (1) The bivariate method, when the
AR term of the cointegrating relation is less than 0.8, carries
with it a slight positive bias of approximately 4% in the
estimated size of the effect. The univariate method appears
to be unbiased. (2) The power of a bivariate approach is
high with power, averaged across all simulation scenarios,
of 0.73 at 5% nominal significance, compared with power
of 0.08 for the univariate approach. With a small shock (half
of the SD of the first differences of the series) (Table 3), the
power of the bivariate approach drops to 0.38, on average,
whereas the univariate power at the same significance
threshold is 0.045, about the same as its nominal signifi-
cance. With a shock double the variance of first differences
(Table 2), the bivariate power is 0.89 and the univariate
power is 0.21 at 5% significance. (3) The bivariate approach
is weakest when the first-order autoregression parameter of
the cointegrating relation is high, in particular 0.7 or higher.
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When the autoregression parameter is 0.4 or lower, the
power is more than 0.9. (4) The univariate approach is
almost always weaker than the bivariate approach. The
univariate approach is at its most powerful when the size of
the shock is large relative to the variance of the time series
innovations (Table 2); even then, the bivariate approach
outperforms it. For a shock that is double the SD of the
innovations, the bivariate approach is still more than twice
as powerful as the univariate approach. (5) The only cases
in which the univariate approach is more powerful is when
the autoregression parameter of the cointegrating relation is
high (the cointegrating relation allows for price differences
to wander far from their mean) and the shock is at least
twice as large as the SD of the innovations (Table 2). Given
these findings, I conclude that the bivariate approach should
be substantially more powerful for detecting a shock than a
competing univariate approach, as long as the first-order
autocorrelation of the cointegrating relation is 0.70 or lower.

Empirical Application

Treatment of wood to combat decay and attack by insects
is especially important in warm and humid climates, and
interest in treatment of wood or using products that can
withstand these natural decay processes is strong. Pressure
treatment of lumber dates to the 1940s. Although it was a
very minor part of southern pine production in the United
States before the 1980s, the share of southern pine lumber
dedicated to pressure treatment grew from a few percent in
1985 to about 40% by 2006 (W. Camp, Southern Pine
Council, pers. comm., March 19, 2007). Today, pressure-
treated lumber is commonly used in outdoor settings, in-
cluding decks, fences, and children’s playground equip-
ment. Pressure-treated southern pine residential decking is a
low-cost alternative to more expensive alternative decking
and patio material substitutes, such as concrete, kiln-dried
western redcedar (Thuja plicata Donn), redwood (Sequoia
sempervirens [D. Don] Endl.), tropical hardwood species,
wood-plastic composites, and plastic lumber (Shook and
Eastin 2001). Pressure-treated southern pine lumber com-
prised approximately 90% of the US treated lumber market
in 2006 (W. Camp, Southern Pine Council, pers. comm.,
March 19, 2007, Random Lengths, Inc. 1999, 2007a,
2007b). In 2002, the treated lumber industry employed more
than 12,000 people, had value-added production of $870
million, and had a value of shipments of $4.4 billion (US
Census Bureau 2005).

Before 2004, CCA was the most common chemical used
in pressure treatment of southern pine. However, CCA has
been known for many years to be toxic to humans and
animals, having been linked to cancers and other health
ailments (Fields 2001). Growing public concern about the
long-term health and environmental risks associated with
CCA motivated a voluntary agreement between the major
treated lumber manufacturers and the Environmental Pro-
tection Agency, announced on February 12, 2002, to phase
out the use of CCA by January 1, 2004. Since January 1,
2004, CCA-treated lumber cannot be used for residential
purposes and has been effectively (but not legally) elimi-
nated from US markets (US Environmental Protection



Table 1.

one time series, effect size equals series SD

Monte Carlo simulations of statistical power and bias of bivariate cointegration and univariate regime shifts (shocks) to

Power of Power of
bivariate by univariate by
nominal nominal
. . significance significance
Autoregressive  Autoregressive ) ) level level Bias in effect estimate
Effect parameter of parameter Variance of  Variance

size cointegration of series cointegration  of series 1 5 1 5 Bivariate  Univariate

..................... (Po). o oo
0.06 0.50 0.50 0.0036 0.0005 0.883 0947 0.038 0.128 6.08 —6.84
0.06 0.50 0.50 0.0036 0.001 0.883 0947 0.055 0.132 391 2.86
0.06 0.50 0.50 0.0036 0.002 0.889 0945 0.026 0.093 3.73 —12.59
0.06 0.50 0.50 0.0036 0.003 0.897 0947 0.020 0.087 3.40 —1.60
0.06 0.50 0.50 0.0036 0.0036  0.893 0943 0.024 0.107 4.30 1.37
0.06 0.50 0.50 0.0036 0.005 0.890 0944 0.013 0.069 3.32 —4.39
0.06 0.50 0.50 0.0036 0.01 0.898 0945 0.016 0.058 2.68 3.09
0.06 0.50 0.50 0.0036 0.05 0902 0957 0.011 0.043 5.25 28.52
0.06 0.50 0.50 0.0036 0.1 0901 0949 0.010 0.028 2.52 16.75
0.06 0.50 0.50 0.0036 0.2 0.897 0.949 0.009 0.036 2.61 25.71
0.06 0.50 0.50 0.0036 0.3 0.884 0947 0.014 0.047 6.37 53.46
0.06 0.50 0.50 0.0005 0.0036  0.999 1 0.055 0.16 4.89 0.89
0.06 0.50 0.50 0.001 0.0036  0.998 0.999 0.045 0.128 3.47 7.53
0.06 0.50 0.50 0.002 0.0036 0969 0991 0.036 0.103 2.78 —7.92
0.06 0.50 0.50 0.003 0.0036 0947 0975 0.023 0.085 5.80 —0.52
0.06 0.50 0.50 0.0036 0.0036 0909 0.955 0.029 0.095 2.67 —2.51
0.06 0.50 0.50 0.005 0.0036  0.82 0902 0.022 0.085 1.64 0.26
0.06 0.50 0.50 0.01 0.0036  0.608 0.738 0.015 0.07 2.00 3.01
0.06 0.50 0.50 0.05 0.0036  0.315 0.448 0.014 0.044 0.08 18.54
0.06 0.50 0.50 0.1 0.0036  0.238 0.329 0.007 0.034 10.08 7.06
0.06 0.50 0.50 0.2 0.0036 0201 0.3 0.005 0.025 —4.08 —0.32
0.06 0.50 0.50 0.3 0.0036  0.197 0.285 0.007 0.039 —6.55 —57.81
0.06 0.00 0.50 0.0036 0.0036 1 1 0.026  0.089 0.50 3.14
0.06 0.10 0.50 0.0036 0.0036 1 1 0.022  0.088 1.65 11.11
0.06 0.25 0.50 0.0036 0.0036 0999 0.999 0.027 0.09 3.52 —0.09
0.06 0.40 0.50 0.0036 0.0036 0982 0.99 0.022  0.089 2.97 1.97
0.06 0.50 0.50 0.0036 0.0036  0.906 0951 0.023 0.082 3.60 —5.42
0.06 0.60 0.50 0.0036 0.0036  0.594 0.798 0.025 0.087 5.09 2.38
0.06 0.70 0.50 0.0036 0.0036  0.148 0409 0.021 0.088 6.14 —3.11
0.06 0.80 0.50 0.0036 0.0036  0.003 0.048 0.023 0.09 14.68 —3.74
0.06 0.90 0.50 0.0036 0.0036 0 0.001  0.027 0.102 35.56 5.02
0.06 0.95 0.50 0.0036 0.0036 0 0 0.036 0.096 —1212.8 —10.37
0.06 0.50 0.00 0.0036 0.0036  0.892 0947 0.023 0.113 532 2.11
0.06 0.50 0.10 0.0036 0.0036  0.895 0.947 0.028 0.096 3.53 —2.35
0.06 0.50 0.25 0.0036 0.0036  0.888 0949 0.031 0.101 2.85 —1.44
0.06 0.50 0.40 0.0036 0.0036  0.904 0.953 0.02 0.071 4.52 10.54
0.06 0.50 0.50 0.0036 0.0036  0.899 0949 0.021 0.092 3.89 —1.50
0.06 0.50 0.60 0.0036 0.0036  0.886 0941 0.019 0.073 3.29 291
0.06 0.50 0.70 0.0036 0.0036  0.892 0951 0.024 0.089 5.15 8.13
0.06 0.50 0.80 0.0036 0.0036  0.888 0.938 0.016 0.084 4.86 2.26
0.06 0.50 0.90 0.0036 0.0036  0.89 0.938 0.022 0.072 222 9.11
0.06 0.50 0.95 0.0036 0.0036  0.881 0.934 0.019 0.087 3.39 1.07

Agency 2007). As of January 1, 2004, and according to the
voluntary agreement, manufacturers may sell existing
(pre-2004 manufactured) inventories for nonresidential
uses. Exports of CCA-treated product may continue, al-
though I could identify no data quantifying these exports.
The replacement of CCA with ACQ has not been met
with complete satisfaction by the users of treated southern
pine. Research shows that ACQ can lead to more rapid
corrosion of metal fasteners and connectors compared with
CCA, compelling the use of more expensive varieties of
hot-dipped galvanized metals and stainless steel alternatives
in construction (Simpson Strong-Tie 2008, Zelinka and
Rammer 2006). Also there is the issue that I address in this
article: consumers have complained of the higher prices of

ACQ-treated products compared with the old CCA-treated
ones. One complication in identifying the size of any price
shift is that prices of treated lumber vary widely over time.
Thus, with these kinds of price series multivariate interven-
tion modeling approaches may be most suitable.

Structure of the Intervention Process

Comparison of similar treated and untreated southern
pine lumber products indicates that these products have
followed similar time series paths over the past two decades
(Figures 1 and 2). Common trends in prices of these prod-
ucts are likely to arise from demand shifts in the residential
construction sector and from variations in the prices of
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Table 2. Monte Carlo simulations of statistical power and bias of bivariate cointegration and univariate regime shifts (shocks) to
one time series, effect size twice series SD

Power of Power of
bivariate by univariate by
nominal nominal
. . significance significance
Autoregressive  Autoregressive ) ) level level Bias in effect estimate
Effect parameter of parameter Variance of  Variance

size cointegration of series cointegration  of series 1 5 1 5 Bivariate  Univariate

.................... () oo
0.12 0.50 0.50 0.0036 0.0005 0.997 0999 0.177 0.384 5.33 —3.04
0.12 0.50 0.50 0.0036 0.001 1 1 0.137  0.307 3.04 0.14
0.12 0.50 0.50 0.0036 0.002 0999 1 0.098 0.254 4.24 —2.79
0.12 0.50 0.50 0.0036 0.003 0999 1 0.086 0.245 4.30 —1.68
0.12 0.50 0.50 0.0036 0.0036  0.998 1 0.08 0.225 3.33 0.79
0.12 0.50 0.50 0.0036 0.005 0.997 0997 0.07 0.191 3.87 0.63
0.12 0.50 0.50 0.0036 0.01 0999 1 0.045 0.144 3.74 1.40
0.12 0.50 0.50 0.0036 0.05 0.998 0999 0.015 0.081 4.08 —2.99
0.12 0.50 0.50 0.0036 0.1 0.997 0.998 0.011 0.048 4.17 —10.94
0.12 0.50 0.50 0.0036 0.2 0.998 0.998 0.009 0.04 3.98 —2.15
0.12 0.50 0.50 0.0036 0.3 1 1 0.008  0.044 3.49 —0.61
0.12 0.50 0.50 0.0005 0.0036 0.894 0999 0212 0416 4.50 —1.57
0.12 0.50 0.50 0.001 0.0036 0.99 1 0.188  0.379 3.11 —3.56
0.12 0.50 0.50 0.002 0.0036 1 1 0.125 0.287 3.35 —-1.17
0.12 0.50 0.50 0.003 0.0036 0999 1 0.081 0.229 5.31 —4.34
0.12 0.50 0.50 0.0036 0.0036 0997 0.999 0.077 0.229 3.43 —1.87
0.12 0.50 0.50 0.005 0.0036 0.996 0.999 0.057 0.184 3.26 —3.42
0.12 0.50 0.50 0.01 0.0036 0947 0979 0.039 0.138 4.19 —0.96
0.12 0.50 0.50 0.05 0.0036 0.56 0.688 0.014  0.066 4.81 —3.87
0.12 0.50 0.50 0.1 0.0036 0.407 0.531 0.01 0.053 241 —4.68
0.12 0.50 0.50 0.2 0.0036 0301 0451 0.012 0.037 5.75 22.05
0.12 0.50 0.50 0.3 0.0036 0.279 0.392  0.007 0.041 2.70 27.42
0.12 0.00 0.50 0.0036 0.0036 1 1 0.08 0214 2.14 —1.40
0.12 0.10 0.50 0.0036 0.0036 1 1 0.068  0.207 1.60 —1.68
0.12 0.25 0.50 0.0036 0.0036 1 1 0.076  0.204 3.38 4.70
0.12 0.40 0.50 0.0036 0.0036 1 1 0.079 0.23 3.05 1.21
0.12 0.50 0.50 0.0036 0.0036 0.999 0.999 0.09 0.246 4.02 1.04
0.12 0.60 0.50 0.0036 0.0036 0918 0.992 0.093 0.227 4.62 —1.84
0.12 0.70 0.50 0.0036 0.0036 0.31 0.726  0.122  0.265 6.91 —1.00
0.12 0.80 0.50 0.0036 0.0036 0.007 0.087 0.104 0.259 15.47 0.75
0.12 0.90 0.50 0.0036 0.0036 0 0.001  0.106 0.284 8.76 1.33
0.12 0.95 0.50 0.0036 0.0036 0 0 0.113 0276  —42.78 4.92
0.12 0.50 0.00 0.0036 0.0036 1 1 0.092 0.252 5.27 1.40
0.12 0.50 0.10 0.0036 0.0036 0998 1 0.098 0.251 4.60 —3.18
0.12 0.50 0.25 0.0036 0.0036 1 1 0.099 0.255 5.02 —2.65
0.12 0.50 0.40 0.0036 0.0036 0.999 0.999 0.092 0.243 3.86 1.58
0.12 0.50 0.50 0.0036 0.0036 1 1 0.084 0.213 4.50 —2.03
0.12 0.50 0.60 0.0036 0.0036 0999 1 0.09 0.225 5.46 —3.88
0.12 0.50 0.70 0.0036 0.0036 1 1 0.095 0.24 3.77 2.50
0.12 0.50 0.80 0.0036 0.0036 0999 1 0.08 0.21 5.33 0.00
0.12 0.50 0.90 0.0036 0.0036 0.998 0.999 0.064 0.197 3.02 0.76
0.12 0.50 0.95 0.0036 0.0036 0996 0.997 0.056 0.188 3.02 231

inputs in their manufacture (wages, energy, and southern
pine roundwood prices) that affect both products similarly.
It is notable that Nagubadi et al. (2004) found that green
CCA-treated southern pine and untreated kiln-dried lumber
were neither complements nor substitutes in derived de-
mand in US markets.

Intervention modeling of the effects of the CCA volun-
tary phase-out and replacement is slightly more complicated
than the series modeled in our Monte Carlo simulations
because of hypothesized market price dynamics that ac-
count for the phase-out as well as the permanent replace-
ment. I hypothesize that prices for treated southern pine
lumber went through at least two and possibly three epochs.
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The first epoch was before February 12, 2002, when the
voluntary phase-out was announced. The second epoch be-
gan at that time and lasted until December 31, 2003. The
third epoch began on January 1, 2004, and continues to this
day. With monthly time series, for example, I can identify
the March 2002 price observation as the start of epoch 2 and
the January 2004 price observation as the start of epoch 3.
It is important to note that our time series of pressure-treated
lumber are for treatment with CCA before January 1, 2004,
and for treatment with “waterborne copper-based preserva-
tives” (primarily ACQ) (Random Lengths, Inc. 2003,
Lebow 2004) from that date forward.

During the epoch 2 voluntary phase-out, prices could



Table 3. Monte Carlo simulations of statistical power and bias of bivariate cointegration and univariate regime shifts (shocks) to

one time series, effect size half of series SD

Power of Power of
bivariate by univariate by
nominal nominal
. . significance significance
Autoregressive  Autoregressive ) ) level level Bias in effect estimate
Effect parameter of parameter Variance of Variance

size cointegration of series cointegration of series 1 5 1 5 Bivariate  Univariate

.................... (D). oo
0.03 0.50 0.50 0.0036 0.0005 0.503 0.635 0.017 0.06 —1.08 4.18
0.03 0.50 0.50 0.0036 049  0.632 0.016 0.076 4.24 —5.60
0.03 0.50 0.50 0.0036 0.507 0.656 0.014 0.052 11.61 —2.41
0.03 0.50 0.50 0.0036 0.517 0.636 0.005 0.045 6.00 7.40
0.03 0.50 0.50 0.0036 0.0036 0.509 0.657 0.011 0.052 0.15 —8.99
0.03 0.50 0.50 0.0036 0.526 0.666 0.009 0.063 5.92 —13.41
0.03 0.50 0.50 0.0036 0.502 0.626 0.008 0.036 7.60 16.81
0.03 0.50 0.50 0.0036 0.507 0.647 0.008 0.035 5.03 11.65
0.03 0.50 0.50 0.0036 0.545 0.661 0.006 0.036 5.19 —19.98
0.03 0.50 0.50 0.0036 0.487 0.626 0.009 0.033 9.47 —1.21
0.03 0.50 0.50 0.0036 0.516 0.655 0.01 0.033 2.99 48.68
0.03 0.50 0.50 0.0005 0.0036 0.983 0995 0.008 0.046 3.31 7.11
0.03 0.50 0.50 0.001 0.0036 0.858 0.929 0.008 0.051 2.36 —3.76
0.03 0.50 0.50 0.002 0.0036 0.686 0.811 0.014 0.057 4.24 —6.66
0.03 0.50 0.50 0.003 0.0036 0.58  0.688 0.007 0.048 431 —17.08
0.03 0.50 0.50 0.0036 0.0036 0.502 0.629 0.009 0.055 7.06 —1.16
0.03 0.50 0.50 0.005 0.0036 0.438 0.579 0.012 0.042 0.24 4.44
0.03 0.50 0.50 0.01 0.0036 0.324 0439 0.018 0.057 4.52 9.20
0.03 0.50 0.50 0.05 0.0036 0.195 0.285 0.006 0.023 —8.52 47.23
0.03 0.50 0.50 0.1 0.0036 0.162 0256 0.008 0.035 —7.60 —46.82
0.03 0.50 0.50 0.2 0.0036 0.183 0.268 0.003 0.024 3.46 14.95
0.03 0.50 0.50 0.3 0.0036 0.136 022  0.006 0.029 32.13 77.99
0.03 0.00 0.50 0.0036 0.0036 0.993 0994 0.012 0.06 291 6.49
0.03 0.10 0.50 0.0036 0.0036 0979 0984 0.006 0.035 0.79 2.63
0.03 0.25 0.50 0.0036 0.0036 0913 0936 0.013 0.046 1.63 —4.08
0.03 0.40 0.50 0.0036 0.0036 0.739 0.815 0.007 0.047 2.87 10.33
0.03 0.50 0.50 0.0036 0.0036 0.507 0.647 0.008 0.039 6.86 4.04
0.03 0.60 0.50 0.0036 0.0036 0.245 0.426 0.01 0.047 —0.91 18.87
0.03 0.70 0.50 0.0036 0.0036 0.065 0.185 0.013 0.06 2.38 —5.53
0.03 0.80 0.50 0.0036 0.0036 0.003 0.026 0.01 0.041 4.86 0.97
0.03 0.90 0.50 0.0036 0.0036 0 0 0.022  0.062 58.76 —14.43
0.03 0.95 0.50 0.0036 0.0036 0 0 0.01 0.049 —494.72 2.13
0.03 0.50 0.00 0.0036 0.0036 0.546 0.677 0.01 0.039 5.54 1.53
0.03 0.50 0.10 0.0036 0.0036 0.535 0.663 0.013 0.057 3.79 3.72
0.03 0.50 0.25 0.0036 0.0036 0.485 0.641 0.01 0.043 8.42 12.83
0.03 0.50 0.40 0.0036 0.0036 0512 0.658 0.008 0.046 445 11.57
0.03 0.50 0.50 0.0036 0.0036 052  0.659 0.022 0.062 —2.72 —6.36
0.03 0.50 0.60 0.0036 0.0036 0517 0.645 0.006 0.033 5.57 —6.04
0.03 0.50 0.70 0.0036 0.0036 0.529 0.661 0.009 0.041 3.42 16.21
0.03 0.50 0.80 0.0036 0.0036 0505 0.64 0.011 0.046 5.00 —6.09
0.03 0.50 0.90 0.0036 0.0036 0.511 0.642 0.009 0.051 4.25 1.97
0.03 0.50 0.95 0.0036 0.0036 053 0.662 0.01 0.038 3.31 11.94

have declined as consumers of southern pine reduced their
purchases of treated southern yellow pine (SYP) lumber, in
recognition of the publicly acknowledged health and envi-
ronmental risks associated with the product. Alternatively,
prices could have increased, as consumers purchased more
CCA-treated southern pine to expand their inventories or
use of a perceived superior product before its disappearance.
I hypothesize that upward or downward changes in the price
of CCA-treated southern pine were either gradual, reflecting
a trend in prices from March 2002 to December 2003 or
precipitous, found in the final months of 2003. Any trend or
precipitous changes observed in prices would quantify the
net effects of opposing demand shifts. I model the epoch 2

prices, then, with two kinds of variables. Aside from a
simple intercept shifting variable that allows for a simple
one-off shift, I model epoch 2 with a time trend, beginning
in March 2002 and ending in December 2003 and with a set
of dummy variables for individual months in late 2003.
Casual observation indicates that the price of CCA-treated
lumber began a relatively steep price decline during the
period from August to December 2003, consistent with
inventory disposal and shifting demand, and those months
are the ones modeled with individual dummy variables.
During epoch 3, when consumers of pressure-treated
southern pine lumber were presented with lumber products
treated with a new wood preservative, prices appear to have
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Figure 1. Real prices of treated and untreated (kiln-dried)
southern pine lumber, 1988:1 to 2007:12. (Sources: Random
Lengths, Inc., 1999, 2007a, 2007b.)

Nominal Price Difference ($/cubic m)

Year:Month

Figure 2. The nominal price of treated southern pine lumber
minus the nominal price of untreated (kiln-dried) southern
pine lumber, representative price series, 1989:01 to 2007:12.
(Sources: Random Lengths, Inc., 1999, 2007a, 2007b.)

permanently shifted upward (from Figure 1). This shift
would be consistent with a backward supply shift, reflecting
the higher cost of the new chemical treatment. [3] The price
shift could have been proportional, raising the price of the
product a given percentage (relative to the CCA-treated
lumber product or relative to another product), or it could
have been additive (augmenting the market price by a fixed
dollar amount). I have no a priori knowledge about whether
the shift was additive or proportional, so I model the entire
series with both with logarithmically transformed series (the
proportional shift) and with the untransformed series (the
additive shift). The price shift in epoch 3 is captured by a
single dummy variable, equal to unity from January 2004 to
the end of the time series and zero for all months prior.

Specifically, I model the first of three phases of prices of
pressure-treated products, running from r = 1 to 7, where
T, is defined as February, 2002, as

Pre = Qo + @ipy, + u,. (8)

The voluntary phase-out epoch, running from 7, + 1
(March 2003) to 7, (December 2003), is modeled with a
trend variable (7) (which I later refer to as the “Trend”), an
epoch 2 intercept shifting dummy (E,), and dummy vari-
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ables measuring monthly shocks in late 2003. Dummy vari-
ables for late 2003 months are labeled as D.; for example,
the 1-month dummy variable for August 2003, is labeled

D1g03.08"
Pre = Qo T aipy, + VB> 9)

2003:12
+Bt+ > D, +u,.
1=2003:08

Finally, the third phase, the prohibition epoch, beginning in
T, + 1 (January 2004) and continuing to the end of our time
series of observations, month 7, is modeled with an epoch 3
intercept shifting dummy, labeled Ej:

Pri = O + a{pUt + 7E3 + U. (10)

Price data for these tests were obtained from Random
Lengths, Inc. (1999, 2007a, 2007b) and consisted of the
series shown in Table 4. Prices of both treated SYP lumber
and kiln-dried, untreated SYP lumber display similar vari-
ances and slightly different historical average levels, al-
though the price data for western redcedar decking is clearly
less variable. In real 2007 (GDP-deflated) dollar terms (US
Bureau of Economic Analysis 2007), the average monthly
price from January 1988 to December 2007 of treated No. 2
SYP lumber (5 cm X 10 cm X 3.66 m) was $172.68/m>,
with a SD of $30.21; the kiln-dried version of this product
had an average price of $143.57/m> with a SD of $30.18
over the same time period. In natural logarithms, these were
5.14 and 0.17 and 4.95 and 0.21 for the mean and SD of the
treated and untreated product, respectively. Examinations of
partial autocorrelations of most of the products indicate that
both the treated and the untreated products have significant
first- and higher-order autocorrelation, with demonstrated
significant autocorrelation at lags 1-3 and 11 and 12. The
shorter term autoregressivity could also partly stem from a
temporal averaging process (e.g., Tiao 1972, Brewer 1973)
and the longer autoregressivity from a seasonal process. In
empirical modeling, seasonality is explicitly accommodated
using lagged difference terms or lagged pseudoresiduals (as
calculated using Equation 5).

In using the univariate approach, models are estimated
with own first differences. In that case, the trend variable is
modeled as a dummy variable that is unity for March 2002
to December 2003 and zero otherwise. Epoch 2 is modeled
as a simple month dummy variable, equal to 1 for March
2002 and zero otherwise. Likewise, epoch 3 is modeled as
a simple month dummy variable corresponding to January
2004. Other variables are included as described for the
univariate and bivariate approaches. Finally, models esti-
mated using untransformed variables are done with prices
expressed in constant 2007 dollars per thousand board-feet
(mbf), so coefficients on dummy variables in the reported
results for those untransformed price models are likewise in
$/mbf. The conversion factor used throughout this research
and in this article is 2.36 m’/mbf.



Table 4. Time series characteristics of prices, data from January 1988 to December 2007

Table ADF in Lags in SD of first
name levels ADF Significance  Observations  Average differences
Log-transformed GDP-deflated series
SP treated 5 cm X 10 cm X 3.66 m T1 —2.21 0 0.20 240 5.995 0.058
SP treated 5 cm X 15 cm X 3.66 m T2 —1.66 4 0.45 240 5.989 0.065
SP KD 5 ¢cm X 10 cm X 3.66 m East K1 —2.35 0 0.16 240 5.804 0.071
SPKD 5 cm X 15 cm X 4.27 m West K2 —2.73 1 0.07 240 5.796 0.074
SP KD 5 cm X 15 ¢cm X 3.66 m East K3 —2.82 0 0.06 240 5.793 0.080
SP KD 5 ¢cm X 10 ¢cm, random, East K4 —2.20 0 0.21 240 5.867 0.068
SP KD 5 cm X 10 cm, random, West K5 —2.40 1 0.14 240 5.841 0.065
SP KD 5 ¢cm X 15 c¢m, random, East K6 —2.53 0 0.11 240 5.824 0.076
SP treated 2 cm X 15 cm radius edge T3 —2.27 4 0.18 240 6.361 0.073
decking
Western redcedar KD 2 cm X 15 cm radius K7 —3.36 1 0.01 190 6.844 0.028
edge decking
Untransformed GDP-deflated series
SP treated 5 cm X 10 cm X 3.66 m T1 —2.72 1 0.07 240 408 24
SP treated 5 cm X 15 ¢cm X 3.66 m T2 —1.74 4 0.41 240 405 27
SP KD 5 cm X 10 cm X 3.66 m East K1 —2.35 0 0.16 240 339 25
SPKD 5cm X 15 cm X 4.27 m West K2 —2.78 1 0.06 240 338 26
SP KD 5 cm X 15 cm X 3.66 m East K3 —2.85 0 0.05 240 335 27
SP KD 5 cm X 10 c¢cm, random, East K4 —2.24 0 0.19 240 361 25
SP KD 5 cm X 10 c¢cm, random, West K5 —2.47 1 0.13 240 353 24
SP KD 5 ¢cm X 15 ¢m, random, East K6 —2.55 0 0.11 240 346 27
SP treated 2 cm X 15 cm radius edge T3 —2.73 2 0.07 240 589 46
decking
Western redcedar KD 2 cm X 15 cm radius K7 —3.34 1 0.02 190 946 27

edge decking

ADF, augmented Dickey-Fuller test statistic; SP, southern pine, KD, kiln-dried.

Empirical Results

A prerequisite to applying nonstationary methods to time
series is that the modeled series contain unit roots. Aug-
mented Dickey-Fuller (ADF) tests (Dickey and Fuller 1979,
Said and Dickey 1984) were done on the price data from
January 1988 to February 2002 (i.e., in epoch 1), with lag
orders selected using a general-to-specific strategy with an
initial lag length specification of 13 difference terms and
with the final lag length specification determined by the
minimum of the Schwarz information criterion (Hall 1994).
On the basis of the ADF critical values (MacKinnon 1991),
a unit root cannot be rejected for any of the three time series
of the prices of the treated products at stronger than 7% nor
can it be rejected for any southern pine time series at
stronger than 5%. [4] It was rejected for western redcedar,
however.

A precondition for applying our multivariate approach is
that comparison series share stable long-run relationships—
that they are cointegrated. For brevity, Tables 5—14 desig-
nate the lumber series as coded in the second column of
Table 4. Our analyses using bivariate relations (Tables 5—8)
involved four different pairs of prices for modeling the
effect of CCA phase-out and replacement in the prices of
T1, three groups for T2, and one pair for T3. Tests for
cointegration using the Johansen (1991) trace test reject null
values of no cointegration for most bivariate and trivariate
comparisons of T1 and T2 with untreated series using data
for epoch 1, typically at stronger than 5% in most bivariate
and trivariate cases (Tables 5-12). Not shown in these tables
is a finding that in no case is the same number of cointe-
grating relations found as the number of variables involved

in the test, a finding that is also consistent with cointegration
in the trace test. The biggest exception to the findings is for
radius edge decking (T3), for which the cointegration find-
ing is statistically weak. A second test for cointegration, the
E-G method, which relies on stationarity tests of residuals of
a hypothesized cointegrating relation, also rejects the null
that cointegration is not present at smaller than 1% signif-
icance in all tested cases except for radius edge decking
(T3). Bivariate and trivariate tests conducted by rotating the
order of bivariate or trivariate sets of variables using the
E-G approach (not reported in the tables), also using the
AIC-based model selection strategy, similarly find in favor
of cointegration of compared series.

The bivariate, trivariate, and univariate models esti-
mated, as shown in the first 14 lines of results in Tables
5-14, have no remaining significant residual autocorrela-
tion, as measured by the Durbin-Watson statistic. Statistical
fits of the logarithmic bivariate price models, as measured
by the R, are all 0.66 or higher. The best-fitting models for
T1 and T2 compare eastside kiln-dried price series of the
specified length kiln-dried product with the treated product
of the same length. The treated 5 cm X 10 cm X 3.66 m
southern pine treated series (T1) has a best-fitting model
with R* of 0.85. For other comparisons, the fit is 0.76 or
higher. For the 5 cm X 15 cm X 3.66 m treated product, the
best-fitting model, with the eastside kiln-dried dimension
product of the same dimensions, has an R? of 0.84, with fits
of 0.66 and 0.79 for the two other bivariate models of this
product. Comparisons with the random lengths price series
generally fit worse for both the 5 cm X 10 cm X 3.66 m and
the 5 cm X 15 cm X 3.66 m treated series. For T3, 2 cm X
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Table 5. Results of bivariate intervention models of pseudo-series, log-transformed prices, product T1

Treated product Tl Tl Tl Tl
Untreated product K1 K4 K2 K5
Parameter Parameter Parameter Parameter

estimate SE estimate SE estimate SE estimate SE
Intercept 0.001 0.002 0.000 0.002 0.000 0.002 —0.001 0.002
D5o03:08 —0.060 0.022 —0.061 0.026 —0.044 0.030 —0.060 0.029
D5003.00 -0.017 0.022 —0.023 0.026 —0.010 0.030 0.002 0.030
D5o0s:10 0.005 0.015 —0.030 0.019 —0.022 0.021 —-0.027 0.021
Ds5oos11 —-0.017 0.023 —0.113 0.027 —0.034 0.031 —0.107 0.031
D5o03:12 0.049 0.023 —0.008 0.029 0.021 0.032 —0.065 0.033
Trend 0.00037  0.00091 0.00031  0.0010 0.00019  0.0013 0.00086  0.0012
E, —0.006 0.010 —0.009 0.012 0.017 0.013 —0.013 0.013
E; 0.062 0.009 0.035 0.005 0.055 0.010 0.045 0.007
Piq 0.255 0.068 0.659 0.066 0.546 0.067 0.593 0.065
Di—s 0.096 0.068 0.134 0.077 —0.042 0.074 0.031 0.075
Di—s 0.073 0.064 —0.125 0.061 0.071 0.064 —0.045 0.061
Pr—11 0.082 0.057 0.116 0.063 0.142 0.063 0.113 0.062
Di—12 —0.086 0.055 -0.219 0.061 —0.147 0.063 —0.197 0.060
Long-run effect 0.106 0.006 0.080 0.010 0.127 0.011 0.090 0.009
Johansen trace of 0 cointegrating 0.02 0.05 0.00 0.01

equations, probability
(pre-2002:03)*

ADF (pre-2002:03) —11.38 —11.54 —12.91 —12.94
ADF lags 0 0 0 0

ADF significance 0.00 0.00 0.00 0.00
Durbin-Watson 1.98 1.98 1.97 1.96
R? 0.85 0.81 0.81 0.76

*Two lagged difference terms and an intercept in the vector autoregression, intercept, and a trend included in the cointegrating relation.
ADF, augmented Dickey-Fuller test statistic.

Table 6. Results of bivariate intervention models of pseudo-series, log-transformed prices, products T2 and T3

Treated product T2 T2 T2 T3
Untreated product K3 K2 K6 K7
Parameter Parameter Parameter Parameter

estimate SE estimate SE estimate SE estimate SE
Intercept —0.001 0.002 —0.002 0.003 —-0.001 0.002 —0.001 0.007
D5003.08 —0.044 0.024 —0.026 0.042 —0.015 0.031 0.021 0.081
D5003:.00 0.001 0.024 0.077 0.043 0.039 0.032 0.127 0.081
D5003:10 0.021 0.017 —-0.023 0.030 0.004 0.023 —0.090 0.055
D5oo3.11 —0.057 0.025 —0.043 0.045 —0.051 0.033 0.097 0.084
D5o05.12 0.039 0.025 0.109 0.046 0.081 0.034 —0.003 0.086
Trend —0.00011  0.00099 —0.00210  0.0018 —-0.0014  0.0014  —0.00004  0.0034
E, 0.000 0.011 0.006 0.019 0.007 0.015 —0.039 0.037
E, 0.081 0.010 0.019 0.007 0.039 0.008 —0.024 0.017
Di 0.200 0.068 0.795 0.067 0.601 0.067 1.264 0.074
Di—» 0.092 0.064 0.021 0.085 0.172 0.075 —0.636 0.112
Pi_s -0.019 0.063 —0.169 0.065 —0.097 0.064 0.289 0.076
Pi—11 0.126 0.059 0.138 0.068 0.108 0.067 0.171 0.076
Di—1> —-0.128 0.056 -0.139 0.065 —0.169 0.063 —-0.173 0.076
Long-run effect 0.111 0.005 0.055 0.018 0.102 0.013 —0.275 0.145
Johansen trace of 0 cointegrating 0.06 0.01 0.10 0.26

equations, probability
(pre-2002:03)*

ADF (pre-2002:03) —10.96 —11.77 —11.71 -9.93
ADF lags 0 0 0 0

ADF significance 0.00 0.00 0.00 0.00
Durbin-Watson 1.98 2.03 2.02 1.94
R? 0.84 0.66 0.79 0.91

# Two lagged difference terms and an intercept in the vector autoregression, intercept, and a trend included in the cointegrating relation.
ADF, augmented Dickey-Fuller test statistic.

15 cm radius edge decking of random lengths, the bivariate Broadly, bivariate and trivariate models indicate a posi-
cointegration model with western redcedar fits the pseu- tive long-run price shock (Tables 5-12) that is highly statisti-
doresidual series well, with an R? of 0.91. cally significantly different from zero, whereas univariate
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Table 7. Results of bivariate intervention models, untransformed prices, product T1

Treated product Tl Tl Tl Tl
Untreated product K1 K4 K2 K5

Parameter Parameter Parameter Parameter

estimate SE estimate SE estimate SE estimate SE
Intercept 0.36 0.63 —0.18 0.78 —0.08 0.88 —0.29 0.90
D5003-08 —19.67 8.75 —19.60 10.87 —13.75 12.25 —19.29 12.51
D5003.00 —6.74 8.93 —11.40 11.10 —0.25 12.50 1.88 12.79
D5o05:10 4.17 6.13 —11.08 7.85 —5.28 8.61 —7.96 8.91
D5o03:-11 —4.90 9.27 —48.31 11.48 —9.96 12.88 —42.00 13.24
D5o03.12 17.09 9.35 —0.05 12.12 8.96 13.15 —19.06 13.77
Trend 0.12 0.37 0.09 0.46 0.01 0.52 0.20 0.53
E, —2.60 393 —3.19 4.98 4.93 5.56 —3.22 5.68
E; 23.88 3.50 14.24 2.29 16.29 3.82 15.86 2.81
Py 0.222  0.068 0.630 0.065 0.561 0.067 0.629 0.066
Di—n 0.135  0.067 0.182 0.075 0.036 0.075 0.054 0.078
Di—s 0.077  0.065 —0.182 0.060 0.056 0.065 —0.066 0.062
Di—11 0.051  0.057 0.095 0.062 0.156 0.065 0.136 0.063
Di—1n —0.129  0.055 —0.212 0.060 —0.163 0.064 —0.205 0.062
Long-run effect 37.06 2.08 29.25 3.53 45.93 5.23 35.08 4.28
Johansen trace of 0 cointegrating equations, 0.04 0.02 0.00 0.01

probability (pre-2002:03)*

ADF (pre-2002:03) —11.15 —11.59 —13.00 —12.97
ADF lags 0 0 0 0
ADF significance 0.00 0.00 0.00 0.00
Durbin-Watson 1.99 2.03 2.00 1.98
R? 0.82 0.78 0.78 0.74

*Two lagged difference terms and an intercept in the vector autoregression, intercept, and a trend included in the cointegrating relation.

ADF, augmented Dickey-Fuller test statistic.

Table 8. Results of bivariate intervention models, untransformed prices, products T2 and T3

Treated product T2 T2 T2 T3
Untreated product K3 K2 K6 K7
Parameter Parameter Parameter Parameter
estimate SE estimate SE estimate SE estimate SE
Intercept —-0.22 0.68 —0.85 1.25 —0.41 0.93 —0.32 4.36
D500 —12.66 9.49 —7.94 17.40 —4.13 13.00 23.30  50.85
D5003.00 3.42 9.67 27.48 17.77 14.09 13.23 61.16  50.84
D5o03:10 8.74 6.73 —11.36 12.31 0.20 9.40 —39.57 3471
D5oos:11 —17.55 10.03 —17.65 18.47 —18.71 13.83 42.02 5290
D5o03.12 14.89 10.19 36.51 18.82 27.41 14.17 —2.64 5393
Trend —0.11 0.40 —0.67 0.74 —0.48 0.56 0.33 2.11
E, —0.40 4.28 1.20 7.92 231 6.07 —28.01 2341
E; 31.12 3.71 7.18 2.82 14.07 2.93 —15.88  10.35
Py 0.172 0.067 0.801 0.067 0.576 0.067 1.241  0.074
Di—s 0.098 0.064 0.007 0.085 0.190 0.074 —-0.610 0.111
Di—s —0.010 0.062 —0.136 0.066 —0.088 0.065 0.279  0.076
Pr—11 0.086 0.059 0.113 0.067 0.094 0.066 0.189  0.075
Di—12 —0.176 0.056 —0.147 0.065 —0.178 0.063 —0.195  0.075
Long-run effect 37.52 1.78 19.85 7.22 34.69 490  —166.57  82.80
Johansen trace of 0 cointegrating equations, 0.14 0.01 0.13 0.19
probability (pre-2002:03)*
ADF (pre-2002:03) —10.99 —12.06 —11.70 —10.09
ADF lags 0 0 0 0
ADF significance 0.00 0.00 0.00 0.00
Durbin-Watson 2.01 2.04 2.03 1.94
R? 0.79 0.65 0.75 0.90

*Two lagged difference terms and an intercept in the vector autoregression, intercept, and a trend included in the cointegrating relation.

ADF, augmented Dickey-Fuller test statistic.

models generally fail to identify significant shocks (Tables
13 and 14). In terms of the size of price shocks in epoch 3,
a highly significant (¢ value of 17.53) price shock for T1 of
+10.6% for the best-fitting model (T1 and K4) is found
(Table 5). In fixed price terms, the shock is also highly

significant (¢ value of 17.79) and is measured as a fixed
price rise in 2007 real dollars of $37.06/mbf ($15.70/m?)
(Table 7). For T2, the best-fitting model of log-transformed
prices (T2 and K3) indicates a highly significant (¢ value of
20.85) epoch 3 price rise of 11.1% (Table 6). In fixed 2007
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dollar terms, T2 has a highly significant (¢ value of 21.08)
epoch 3 price rise of $37.52/mbf ($15.90/m?) (Table 8).
Coefficients on lagged pseudoresiduals, which accommo-
date residual autocorrelation in the modeled series, are
indicated in rows labeled by p,_,, p,_», P,—3, P,—11» and
P,—1»- These usually show that any shock to a time series
takes many months to be fully manifested in a time series.

Trivariate model results (Tables 9—12) indicate long-run
price rises comparable to those found with the bivariate
models. T1 has four alternative trivariate models and T2 has
two. Because I could not identify two cointegrated compar-
ison series for radius edge decking (T3), no trivariate model
results are produced. [5] As in the bivariate models, the
best-fitting models in both log-transformed and untrans-
formed prices are those in which treated products are com-
pared with kiln-dried products of identical dimensions. For
T1, this meant comparing western and eastern kiln-dried
products of 3.66-m lengths (K1 and K2). The best-fitting T1
trivariate logarithmic price model (Table 9) demonstrates a
long-run price increase of 11.2% (¢ value 19.87); in untrans-
formed prices (Table 11), the same model shows a signifi-
cant epoch 3 shock of $39.02/mbf ($16.53/m®) (¢ value
18.39). For T2, the best-fitting logarithmic model (trivariate
relation with K2 and K6) (Table 10) measured a long-run
epoch 3 proportional price shock of 11.2% (¢ value 20.53)
and long-run epoch 3 fixed-price shock of $37.83/mbf
($16.03/m>) (r value of 21.24) (Table 12).

The univariate models (Tables 13 and 14) identified a
statistically significant long-run epoch 3 price increase of
14.3% for T3 (radius edge decking) only and that only for
the log-transformed series. The confidence of this effect in
log-transformed prices, however, is low, at 12% signifi-

cance (Table 13). In untransformed prices, the effect is not
statistically significantly different from zero at stronger than
20% (Table 14).

Evidence regarding the price changes associated with the
22 months during the voluntary phase-out is mixed. Most of
the models estimated and shown in Tables 5-14 detect no
epoch 2 time trend (measured by the “Trend” variable in
these tables) or epoch 2 permanent price shift (measured by
E,) that is statistically significant. However, there is evi-
dence that prices shifted significantly at the end of 2003.
The single case for which a permanent epoch 2 price shift
was found is in the univariate model of T2, and this was for
both log-transformed (Table 13) and untransformed prices
(Table 14). There, a significant price increase is detected for
the span of epoch 2 for T2 only, in the amount of approx-
imately 13% and approximately $50/mbf ($21/m?) in the
short-run.

Monthly price shocks during the phase-out period (mea-
sured by the D. variables in Tables 5-14) vary in magni-
tude by product and modeling method. Only for the univar-
iate case are significant September 2003 shocks found, and
these are positive (Tables 13 and 14). The best-fitting biva-
riate model of T1 indicates a significant price drop of 6.0%
in August 2003 and a significant price rise of 4.9% in
December (Table 5). For T2, price drops by a statistically
significant 4.4% in August and by 5.7% in November
(Table 6). In the trivariate models with log-transformed
prices (Tables 9 and 10), August and November have sig-
nificant and similar directions of price changes as found for
both T1 and T2 using bivariate models. The best-fitting
logarithmic price model for T1 registers an August 2003
shock of —5.7% and in December 2003 a weakly significant

Table 9. Results of trivariate intervention models, log-transformed prices, product T1

Treated product T1 T1 T1 T1
Untreated product 1 K1 K4 K1 K2
Untreated product 2 K2 K5 K4 K5
Parameter Parameter Parameter Parameter
estimate SE estimate SE estimate SE estimate SE
Intercept 0.001 0.001 0.000  0.002 0.000  0.002 —0.001 0.002
D5o05.08 —0.057  0.021 —0.061  0.025 —0.060  0.022 —0.055  0.028
D5003:00 —0.021  0.021 —0.016  0.026 —0.025  0.022 —0.009  0.029
D5o05:10 —0.005  0.015 —0.029  0.018 —0.013  0.015 —0.029  0.020
5003:11 —0.025  0.022 —0.113  0.026 —0.059  0.023 —0.083  0.029
H5003:12 0.038  0.022 —0.027  0.028 0.010  0.023 —0.041  0.031
Trend 0.00049 0.00087 0.00053 0.00105 0.00059 0.00090 0.00085 0.00118
E, 0.001  0.009 —0.011  0.011 —0.009  0.010 —0.002  0.013
E; 0.066  0.009 0.039  0.006 0.059  0.008 0.057  0.008
Piy 0.273  0.068 0.633  0.065 0.306  0.067 0.517  0.066
Pin 0.104  0.067 0.128  0.076 0.124  0.067 0.004  0.073
Di—3 0.063  0.063 —0.128  0.060 0.055  0.061 0.011  0.061
P11 0.079  0.058 0.119  0.062 0.056  0.059 0.108  0.062
Pi_12 —0.112  0.056 —0.229  0.060 —0.151  0.056 —0.189  0.061
Long-run effect 0.112  0.006 0.082  0.008 0.097  0.006 0.104  0.008
Johansen trace of 0 cointegrating equations, 0.00 0.00 0.02 0.00
probability (pre-2002:03)*
ADF (pre-2002:03) —12.91 —12.94 —11.38 —12.91
ADF lags 0 0 0 0
ADF significance 0.00 0.00 0.00 0.00
Durbin-Watson 1.97 1.98 1.96 1.95
R? 0.87 0.82 0.84 0.79

# Two lagged difference terms and an intercept in the vector autoregression, intercept, and a trend included in the cointegrating relation.

ADF, augmented Dickey-Fuller test statistic.
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Table 10. Results of trivariate intervention models, log-transformed prices, product T2

Treated product T2 T2
Untreated product 1 K2 K3
Untreated product 2 K6 K6
Parameter estimate SE Parameter estimate SE
Intercept 0.000 0.002 —0.001 0.002
D5o03:08 —0.045 0.024 —0.042 0.024
D503:00 0.000 0.024 0.003 0.024
D5o05:10 0.022 0.017 0.022 0.017
D5oos11 —0.057 0.025 —0.056 0.025
D5oo3:12 0.039 0.026 0.040 0.025
Trend —0.00004 0.00099 —0.00021 0.00098
E, —0.001 0.011 0.001 0.011
E; 0.080 0.010 0.081 0.010
P 0.207 0.068 0.199 0.068
Di—s 0.092 0.065 0.093 0.064
Di_s —0.018 0.063 —0.017 0.062
Pr—11 0.129 0.059 0.125 0.059
Di—12 —0.126 0.057 —0.132 0.056
Long-run effect 0.112 0.005 0.111 0.005
Johansen trace of 0 cointegrating equations, 0.00 0.07
probability (pre-2002:03)*
ADF (pre-2002:03) —11.77 —10.96
ADF lags 0 0
ADF significance 0.00 0.00
Durbin-Watson 1.98 1.98
R? 0.84 0.84
*Two lagged difference terms and an intercept in the vector autoregression, intercept, and a trend included in the cointegrating relation.
ADF, augmented Dickey-Fuller test statistic.
Table 11. Results of trivariate intervention models, untransformed prices, product T1
Treated product Tl T1 T1 Tl
Untreated product 1 K1 K4 K1 K2
Untreated product 2 K2 K5 K4 K5
Parameter Parameter Parameter Parameter
estimate SE estimate SE estimate SE estimate SE
Intercept 0.23 0.61 —0.21 0.77 0.16 0.63 —0.23 0.85
D503:08 —18.69 8.50 —19.91 10.65 —19.37 8.74 —17.63 11.89
5003:00 —-7.32 8.69 —-7.97 10.91 —11.23 8.93 —-0.49 12.15
500310 0.73 5.98 —10.23 7.69 —3.80 6.23 —7.51 8.45
D5oos:11 —17.05 8.99 —47.32 11.28 —25.54 9.19 —31.29 12.55
D,oo3:12 13.97 9.10 —5.80 11.89 1.78 9.44 —11.11 12.97
Trend 0.16 0.36 0.14 0.45 0.19 0.36 0.18 0.50
E, —0.66 3.83 —3.35 4.87 —3.99 3.96 —0.08 5.39
E, 23.97 3.56 15.22 2.34 26.36 3.12 18.36 3.23
Di—1 0.243  0.067 0.625 0.065 0.260  0.066 0.563 0.066
Di> 0.158  0.066 0.174 0.075 0.141  0.065 0.050 0.075
Dis 0.079  0.064 —0.178 0.060 —0.007  0.060 —0.020 0.063
Di—11 0.055 0.058 0.110 0.062 0.023  0.058 0.141 0.064
Pie12 —0.149  0.055 —0.224 0.060 —0.192  0.055 —0.199 0.062
Long-run effect 39.02 2.12 30.82 3.39 34.03 1.76 39.45 3.93
Johansen trace of 0 cointegrating equations, 0.00 0.01 0.01 0.00
probability (pre-2002:03)*
ADF (pre-2002:03) —13.00 —12.97 —11.15 —13.00
ADF lags 0 0 0 0
ADF significance 0.00 0.00 0.00 0.00
Durbin-Watson 1.99 2.03 1.99 1.97
R? 0.83 0.79 0.81 0.75

*Two lagged difference terms and an intercept in the vector autoregression, intercept, and a trend included in the cointegrating relation.

ADF, augmented Dickey-Fuller test statistic.

(10% significance) price shock of +3.8% (Table 9). The
best-fitting trivariate logarithmic price model for T2 detects
an August 2003 price shock of —4.5% and a November
2003 price shock of —5.7% (Table 10).

Monthly changes indicated by the magnitude of the co-
efficients on dummy variables for individual months or
epochs shown in Tables 5-14 are the short-run effects.
Long-run effects for all of these are slightly larger, given the
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Table 12.

Results of trivariate intervention models, untransformed prices, product T2

Treated product T2 T2
Untreated product 1 K2 K3
Untreated product 2 K6 K6
Parameter estimate SE Parameter estimate SE
Intercept —0.16 0.68 —0.22 0.68
D5o03:08 —13.23 9.48 —12.40 9.49
D503:00 2.83 9.66 3.63 9.66
D5o05:10 9.19 6.71 8.77 6.73
D5oos11 —17.20 10.02 —17.46 10.02
D5oo3:12 14.89 10.17 15.04 10.19
Trend —0.08 0.40 —0.12 0.40
E, —0.55 4.27 —0.26 4.28
E; 31.32 3.75 31.23 3.71
Pr—1 0.171 0.067 0.171 0.067
Di—s 0.096 0.064 0.098 0.064
Di_s —0.009 0.062 —0.010 0.062
Pr—11 0.089 0.059 0.085 0.059
Di—12 —0.175 0.056 —0.177 0.056
Long-run effect 37.83 1.78 37.51 1.77
Johansen trace of 0 cointegrating equations, 0.01 0.13
probability (pre-2002:03)*
ADF (pre-2002:03) —12.06 —10.99
ADF lags 0 0
ADF significance 0.00 0.00
Durbin-Watson 2.00 2.01
R? 0.80 0.79
*Two lagged difference terms and an intercept in the vector autoregression, intercept, and a trend included in the cointegrating relation.
ADF, augmented Dickey-Fuller test statistic.
Table 13. Results of univariate intervention models, log-transformed prices, all products
Treated product T1 T2 T3
Parameter estimate SE Parameter estimate SE Parameter estimate SE
Intercept —0.001 0.004 —0.001 0.004 —0.001 0.005
D503:08 0.018 0.058 0.019 0.064 —0.006 0.071
D5o03.00 0.178 0.057 0.167 0.064 0.128 0.071
D5oo3:10 —0.027 0.040 —0.081 0.045 —0.107 0.049
D5oo3:11 0.002 0.059 0.088 0.065 0.104 0.070
Doos:12 —0.057 0.058 0.061 0.065 —0.012 0.070
Trend —0.004 0.014 —0.013 0.016 -0.014 0.017
E, 0.070 0.057 0.133 0.064 0.066 0.069
E; 0.057 0.056 0.071 0.063 0.113 0.068
Di—1 0.118 0.067 0.150 0.067 0.365 0.069
Dis —0.070 0.067 —0.098 0.067 —0.370 0.068
Pi s 0.044 0.066 —0.122 0.066 0.034 0.067
Di—11 0.248 0.064 0.261 0.064 0.174 0.065
Pie1 —0.012 0.067 —0.045 0.067 0.008 0.067
Long-run effect 0.084 0.085 0.083 0.075 0.143 0.090
ADF —2.211 —1.661 —2.273
ADF lags 0 4 4
ADF significance 0.203 0.449 0.182
Durbin-Watson 1.97 2.04 1.97
R? 0.14 0.18 0.24

ADF, augmented Dickey-Fuller test statistic.

residual autocorrelation measured by coefficients on lagged
pseudo series (dividing the parameter estimate for D. by 1
minus the sum of the parameter estimates for the lagged
pseudoresiduals p,_, p,_», P,—3, P;—11» and p,_;,). For
example, for T1 using the bivariate model of logarithmic
prices (Table 5), the long-run effect of the August 2003
price shock is —9.6%, whereas the long-run effect of the
measured December 2003 price shock is +6.4% (i.e., a net
decline of 3.2%, August to December). For T2, the long-run
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price drops measured with the trivariate logarithmic model
discussed above (Table 10) are 6.3 and 7.9% in August and
November, respectively (i.e., a net decline of 14.2%, August
to November).

Figure 3 illustrates the paths of the effects of phase-out
and replacement on prices, using the best-fitting trivariate
logarithmic price models for the 5 cm X 10 cm X 3.66 m
(Table 9) and 5 cm X 15 cm X 3.66 m (Table 10) products
(graphs of the bivariate models, not reported here, are very



Table 14. Results of univariate intervention models, untransformed prices, all products

T1 T2 T3
Product Parameter estimate SE Parameter estimate SE Parameter estimate SE

Intercept —0.26 1.63 —0.37 1.77 —0.23 2.96
D503:08 6.35 24.08 7.90 26.11 497 44.64

5003:00 66.46 23.97 60.23 26.16 61.22 44.62

500310 —11.03 16.86 —27.94 18.54 —49.16 30.66
D5oos:11 —0.37 24.44 32.30 26.57 46.50 43.90
D5o05.12 —21.65 24.37 20.53 26.55 —4.14 43.86
Trend —1.63 5.95 —-4.97 6.46 —7.55 10.81
E, 24.47 24.07 49.76 26.13 36.80 43.71
E, 22.76 23.51 29.79 25.68 55.08 42.59
Di—1 0.126 0.068 0.144 0.067 0.345 0.069
Dis —0.050 0.067 —0.116 0.067 —0.365 0.067
Pis 0.045 0.066 —0.120 0.066 0.047 0.067
Di—11 0.251 0.065 0.265 0.064 0.187 0.065
Di—12 —0.001 0.067 —0.024 0.067 0.002 0.067
Long-run effect 36.18 38.18 35.01 30.68 70.26 56.14
ADF —2.72 —1.74 —2.73
ADF lags 1 4 2
ADF significance 0.07 0.41 0.07
Durbin-Watson 1.98 2.06 1.97
R? 0.14 0.17 0.22

ADF, augmented Dickey-Fuller test statistic.
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Figure 3. Effect of the phase-out and replacement of CCA on
southern pine treated lumber of three types: 5 cm X 10 cm X
3.66 m, 5 cm X 15 ¢cm X 3.66 m, and 2 cm X 15 cm radius edge
decking, based on the best-fitting intervention models.

similar and essentially overlap the trivariate model results),
and the logarithmic price univariate model of 2 cm X 15 cm
radius edge decking (Table 13). The figure illustrates that
the three products probably followed similar time series
patterns resulting from the CCA voluntary phase-out and
replacement. The steep apparent drop in the price of radius
edge decking is not statistically significant (Tables 13 and
14), but the path shown in the figure displays this insignif-
icant time trend.

Discussion and Conclusions

Statistical approaches used to quantify subtle shifts in
time series should be chosen according to their power and
expected bias in empirical applications. Monte Carlo simu-
lations showed that the statistical power to identify a per-
manent shift in a nonstationary time series is higher with
bivariate intervention methods compared with univariate

methods. Biases are small for bivariate methods and zero for
univariate methods. Power results validate approaches used
by some analysts and could help to explain why the univar-
iate methods used by others may not be able to detect
permanent price shifts. The slight positive bias of the biva-
riate approach may be a small price to pay for the substan-
tially higher statistical power offered by the bivariate
method tested here.

In the empirical application in the case of the voluntary
phase-out and replacement of CCA pressure treatment of
southern pine lumber, I detected a significant long-run price
rise. Rising exports of pressure-treated lumber (US Foreign
Agricultural Service 2008) and high copper prices (Koenig
2006) might be placing upward price pressure on treated
lumber. Whatever the proximate cause of price changes,
this study provides a scientific assessment of the effects
of the voluntary phase-out of CCA. My assessment is pre-
cise, with a 95% confidence band of less than 3% centered
on an 11% price increase. These results can be used by the
Environmental Protection Agency for managing the phase-
out agreement with treated lumber manufacturers and
consumers.

The higher prices in effect domestically since 2004 have
at least one major implication: the voluntary phase-out
could be leading to significant changes in the building
products sector and associated communities. In consider-
ation of studies by Eastin et al. (2001) and Shook and Eastin
(2001), higher prices could be leading consumers of resi-
dential building products to accelerate the ongoing process
of substituting other building products for treated southern
pine. The effect of the price rise on domestic consumption
can be calculated: Nagubadi et al. (2004) found a long-run
elasticity of demand of —1.79 for 5 cm X 10 cm X 3.66 m
pressure-treated southern pine. If we assume no domestic
demand shift for treated southern pine lumber, the approx-
imate 11% price increase that was found for this product
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under alternative price transformations and intervention
modeling approaches means that consumption is now ap-
proximately 20% lower than it would have been without
CCA replacement. If production levels have declined by a
similar amount, then the voluntary agreement may be neg-
atively affecting communities reliant on the pressure-treated
lumber industry for employment and income and positively
affecting industries producing substitutes for pressure-
treated southern pine.

Somewhat in contrast, our study quantified the dynamics
of prices for treated SYP lumber as it went through the CCA
phase-out and replacement. Specifically, in the 5 months
just before the elimination of CCA, prices shifted signifi-
cantly, generally measuring a price decline, consistent with
an inventory liquidation or demand substitution process.
These temporarily lower prices could have yielded some
short-run increases in consumption that briefly offset antic-
ipated future consumption drops.

Finally, the methods applied in this study assumed linear
cointegration and linear relationships between current pe-
riod and lagged period realizations of errors, changes, and
levels of series. Statistical methods exist to evaluate biva-
riate and multivariate relationships and time series pro-
cesses using nonlinear methods (e.g., Terdsvirta 1994). A
useful exploration would be to evaluate the price dynamics
using these nonlinear methods, which could identify thresh-
olds of adjustment that do a better job of explaining inter-
temporal price variation.

Endnotes

[1] This is identical to the SD of the first differences of the logarithm of
No. 2 treated SYP lumber (5 X 10 cm X 3.66 m) from January 2002
to December 2003.

[2] Also available from the author upon request is a parallel set of
simulations of the power of the bivariate and univariate intervention
modeling approaches when the series are simpler AR(2) processes,
where the first-order autocorrelation coefficient is assumed to be high
(0.93) and may be observationally equivalent to a ARI(1, 1) process.
Results show, in that case, that the univariate method is often more
powerful than the bivariate approach but that the bivariate approach
is stronger in the cases when the second-order autocorrelation coef-
ficient is small (<0.3).

[3] Tt is also consistent with an inward demand shift or a combination of
supply and demand shifts that achieve a higher price. There is some
evidence that the cost of treatment with water-borne copper-based
chemicals is likely to be higher, consistent with an upward supply
shift (Morrison 2003).

[4] T believe that rejections of these null values should be taken with
caution, as the empirical sizes of tests applied to temporally averaged
data, which the monthly data are, may be larger than their nominal
significance levels based on a pure time series, such as those reported
by Said and Dickey (1984) or MacKinnon (1991) (see Caner and
Killian 2001). Results of cointegration tests for all pairs or groups of
three series used in the analysis are available from the author.

[S] This highlights one weakness of a multivariate intervention model:
the need to identify more than one comparison series that shares a
long-run stable relationship with the series under analysis. The po-
tential benefit of a trivariate model is that estimates of the size of the
modeled effect could be more precise and potentially less biased,
although I did not evaluate these potential gains in this article.
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