
WITH ASSESSMENT OF NET BENEFITS OF RESEARCH 

Making input decisions under climate uncertainty often involves two-stage methods that use expensive 
and opaque transfer functions This article describes an alternative, single-stage approach to such 
decisions using forecasting methods The example shown is for preseason fire suppression resource 
contracting decisions faced by the United States Forest Service. Two-stage decision tools have been 
developed for these decisions, and we compare the expected gains to the agency, in terms of reduced 
personnel costs, of the single-stage model over the two-stage model, existing hiring decisions, and 
decisions that would have been made given perfect foresight about wildfire activity. Our analysis 
demonstrates the potential gains to versions of our single-stage model over existing hiring decisions, 
equivalent to a benefit-cost ratio of 22. The research also identified additional gains accruing from 
imposing biases on the single-stage model, associated with asymmetric penalties from contracting 
decisions 

Key words: climate, forecast, forest service, Poisson, returns to research, wildfire suppression. 

Public and private sector managers must reg- 
ularly make input-allocation decisions with 
consequences that depend on future states of 
nature. Because these states of nature are not 
known with certainty, the decisions, when eval- 
uated ex post, are often suboptimal. For ex- 
ample, at the beginning of a growing season, a 
farmer must decide what crops to plant, but the 
consequence of this decision depend on future 
weather and market conditions. Given better 
information about future states of nature- 
amount of rainfall, for example-the farmer 
would probably make more profitable input 
allocations. 

The value of information about future cli- 
mate conditions, and its potential to improve 
production decisions, has received particular 
attention in the literature. Studies of this type 
have typically taken a two-stage approach to 
decision making. First, they obtain conditional 
forecasts of one or more climate variables. 

Second, they process the forecast data using 
a transfer function (Johnson and Holt 1997) 
that uses the forecast variables to identify 
the best input-allocation decision. To estimate 
the value of the forecasts, they compare de- 
cisions made with and without the forecast 
information. Examples of this approach in- 
clude Costello, Adams, and Polasky (1998) 
and Chen, McCarl, and Hill (2002), who use 
forecasts of the El Niiio-Southern Oscillation 
(ENSO) to make decisions on fish harvest lev- 
els and crop mixes, respectively. 

There are a number of difficulties with such 
a two-stage approach. First, transfer functions 
are often complex and have the potential to be- 
come a black box, obscuring the value of the 
information contained in the climate forecasts 
(Johnson and Holt 1997). Second, a two-stage 
analysis may obscure the multiple sources of 
uncertainty inherent in complex natural sys- 
tems. Often, the forecast variables contain 
their own uncertainties, having been obtained 
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approach requires development of a statistical 
model. The dependent variable in this model 
is a time series of cost-minimizing ex ante de- 
cisions, given ex post information about the 
future state (i.e., decisions made with perfect 
foresight). In the example that we describe in 
this article, the regressors available ex ante are 
lagged climate variables rather than forecasts 
of future climatic conditions. In our empirical 
example, we quantify the expected net gains of 
the single-stage model over other approaches, 
including a two-stage approach. The single- 
stage approach has several advantages over a 
two-stage approach. First, there is no need to 
construct a transfer function. Second, a single- 
stage model, which directly predicts the cost- 
minimizing decision, more transparently deals 
with uncertainty. Third, the approach has mod- 
est data requirements. 

To demonstrate the application of our pro- 
posed approach, we use an example from 
wildfire management-a topic of interest to re- 
searchers, policy makers, and the general pub- 
lic. Prior to the start of a wildfire season, public 
land managers must make a number of input- 
allocation decisions including how many fire 
crews to hire. The crew-hiring decision has 
been the subject of previous research (Dono- 
van 2006). The choice of how many fire crews 
to hire is just one decision of several (includ- 
ing spending on fuel-reduction treatments, avi- 
ation contracting, new equipment purchases, 
etc.) that the U.S. Department of Agriculture 
(USDA) Forest Service (hereafter, "USFS") 
and other land management agencies must 
make under uncertainty each fire season. The 
consequences of these decisions are not triv- 
ial, as, since 2000, federal agencies have spent 
an average of nearly one billion dollars an- 
nually putting out wildfires (National Intera- 
gency Fire Center 2007). A number of factors 
have contributed to these record-high costs 
including development patterns and climate 
change (McKenzie et al. 2004; Westerling et al. 
2006). A decision model that is able to improve 
the efficiency of input allocations could gener- 
ate significant cost savings. Potential applica- 
tions of our proposed approach are not limited 
to wildfire management, however. Our parsi- 
monious approach to decision making under 
uncertainty could be readily applied to other 
sectors such as agriculture, transportation, or 
fisheries. 

The remainder of this article is organized 
as follows. We begin by describing the USFS 
crew-hiring decision. Next, we outline a theo- 
retical structure for evaluating how improved 

information can result in net economic gains. 
Following this, we detail how data sets needed 
for the single-stage model are generated. The 
results section compares the performance of 
the single-stage approach to alternative deci- 
sion frameworks. We conclude by describing 
how climate change could affect the perfor- 
mance of the single-stage approach. 

Methods 

Interest in quantifying the benefit of forecasts 
may predate the available scientific literature, 
but recent published studies can provide per- 
spective about how the present study is unique. 
Much research has focused on the value of 
forecasts of future ENS0 conditions, as de- 
termined by a transfer function. For example, 
Costello, Adams, and Polasky (1998) provide 
an example of the benefits of ENS0 forecasts 
for the salmon fishing industry of the United 
States. The authors input forecasts of future 
ENS0 conditions into a transfer function con- 
sisting of a dynamic programming model of 
fishing industry production. Chen, McCarl, 
and Hill (2002) evaluate how improved ENS0 
forecasts lead to welfare benefits in the agri- 
cultural sector by inputting the forecast into 
a transfer function specified as a multiprod- 
uct spatial equilibrium model of world agricul- 
tural markets. Considine et al. (2004) quantify 
the value, in terms of expected damages to the 
oil and gas industry, of improved accuracy of 
forty-eight-hour hurricane tracks in the Gulf 
of Mexico. The transfer function is a decision 
model for oil and gas rig storm preparation and 
evacuation. Brown and Murphy (1988) quan- 
tify the value of daily fire-weather forecasts at 
reducing the total costs and losses from wild- 
fire. Their transfer function is a decision model 
to allocate fire suppression resources across 
multiple wildfires, and the fire-weather fore- 
casts serve to reduce, compared to average 
expected weather, the sum of the expected sup- 
pression costs and wildfire damages. 

The Agency Choice 

Before the start of a fire season, USFS man- 
agers must decide how many agency fire crews 
to hire. Because agency crews are hired for an 
entire season, some crews may be idle dur- 
ing periods of low demand. During periods 
of high demand, managers must supplement 
agency crews with more expensive contract 
crews (figure 1). Although contract crews are 
more expensive, they are also more flexible 
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Figure 1. An example of crew demand and number of agency crews hired during a seven-period 
fire season, demonstrating the mismatch between number of crews hired in advance of the season 
and the observed demands for crews during the season 

and can be laid off when not needed. However, decision strategies. Second, we compare the 
the cost advantage that agency crews have over hiring recommendations of this model to our 
contract crews depends on the availability of new single-stage statistical model. Third, we 
work: if agency crews stand idle for too long, use the model as an accounting tool to calcu- 
then they lose this cost advantage (Donovan late the cost of crew-hiring recommendations. 
200511 

?l;e problem facing managers is to hire 
the cost-minimizing number of agency crews, 
given uncertainty about fire activity in an up- 
coming season. Donovan (2006) presents a 
mixed integer program that uses historical fire 
occurrence data to make a crew-hiring rec- 
ommendation. We make use of this previous 
work in three ways. First, we use the model 
to generate a time series of perfect-foresight 
hiring decisions. For a particular season, the 
perfect-foresight decision produces the abso- 
lute minimum cost the agency could incur if 
it knew in advance precisely what the coming 
fire season's crew demands were going to be. 
Imperfect knowledge about the future makes 
the perfect-foresight decision the benchmark 
against which to compare alternative hiring- 

Theoretical Development 

Johnson and Holt (1997) describe how infor- 
mation about the likelihoods of future states 
can lead to enhanced expected utility of an 
economic agent making decisions affected by 
the future states. The description begins by 
defining a set of actions, a = 1,. . . ,N, that 
the economic agent can take, and a set of fu- 
ture states, s = 1,. . . , M, over which the agent 
has no direct control but whose probabilities 
of occurrence influence the expected utility- 
maximizing choice of a. Furthermore, they de- 
fine the consequences of the choice a when 
states occurs as c(a, s). The consequence could 
be a level of profit or cost, or it could be a mul- 
tidimensional set of outcomes. Each c(a, s) has 
a level of utility associated with it, u[c(a, s)l, for 
all wossible combinations of actions and states. 

We assume that fire crews have no alternative work (fuel man- 
The agent's objective, under risk-neutrality, is 

agement or trail maintenance, for example) available on idle days maximize an 
Therefore, all of the crew's wage costs on idle days must be consid- action a0 (Johnson and H0lt 1997, p. 79): 
ered in cost calculations. Idle-day costs are, however, lower than 
wage costs on wildfire suppression days. This is because crews of- 
ten work as many as sixteen hours a day while fighting tires but are (U[C(QO~ ')]} = maax E{u[c(a, ')]} 
typically only paid for eight hours on idle days. For a more wm-  
plete discussion of crew costs see Donovan (2005). In addition, 
see Prestemon and Donovan (2008) for results using two other = max pSu[c(a,  s)] 
idle-day cost assumptions. s 
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where the dot indicates the expectation with 
respect to the subjective probability of state s, 
which we call p,. 

Assuming that an economic agent un- 
derstands completely the consequences of 
each decision given a future state, the 
utility-maximizing choice, ao, depends on the 
subjective probabilities, p,. Updated knowl- 
edge (information) of the probabilities of 
future states would be expected to enhance 
utility. Define p, = p,,o = p,(Qo) as the proba- 
bility of each future state based on a base level 
of information, 520, and p , ~  = pS(C21) as the 
probability of occurrence of state s under an 
alternative information set, Ql. In the context 
of the crew-hiringproblem,ps,o could be based 
on the average historical probability of state s 
occurring, whereas p , , ~  could be conditional 
likelihoods of each state, that is, based on a 
forecast. The utility-maximizing actions taken 
under each are defined as a0 and al, so that the 
change in the expected utility, V, provided by 
C21 compared to a O ,  is 

As defined above, the utility level, u, is depen- 
dent on the consequences, c(o), of the choice of 
a, ao. In the context of the crew-hiring problem, 
define the cost-minimizing choice of agency 
crews as a and the consequence of this choice 
as c(a). The consequence is determined by the 
probabilities of the M future states, p,,, = (pl , , ,  
p2 ,.,..., p~,.)!. If we define R as the cost of crews, 
then the cost reduction obtained by utilizing 5 2 ~  
compared to no is 

Thus, Vl,o can be considered the expected 
value of the information about the season's 
crew demands contained in the conditional 
probabilities, Ql, compared to the information 
provided by the average historical probabili- 
ties, QO. 

Given perfect foresight about total crew 
demand for each period of the approach- 
ing fire season, one state has unit proba- 
bility and all other states have zero: p, = 
(0, . . . ,0,1,0, . . . ,0)'. Given p,, it is straightfor- 

ward to identify the cost-minimizing number 
of agency crews to hire at the beginning of the 
fire season, a,, representing a season cost of 
R,. The difference between R,, and E(Ro) is 
the expected value of perfect foresight about 
the season's periodic crew demands relative to 
that contained in the average historical proba- 
bilities: 

Similarly, the difference between E(R1) and 
R, is the expected value of perfect foresight 
compared to the conditional probabilities em- 
bodied in Q1: 

If the information containedin Ql is more valu- 
able than that contained in 520, then V,J < 
v*,o. 

In research that quantifies the value of 
weather forecasts, average weather states ("cli- 
matology") are passed through a transfer 
function, resulting in an action ao, yielding 
an outcome E(Ro); these are then compared 
with the outcome, E(R1), obtained by inserting 
forecast weather states into the transfer func- 
tion and taking an action al. In the method 
that we propose here, we instead use histori- 
cal information to identify the time series of 
perfect-foresight cost-minimizing agency crew 
hires for each fire season. We then develop sta- 
tistical models to predict the perfect-foresight 
agency crews hired. Upon estimation, we ob- 
tain a statistical model that provides a time se- 
ries of predicted cost-minimizing choices, 8,. 
The statistical models, rather than using fore- 
casts of a single weather state and passing them 
through a transfer function to identify an ac- 
tion, instead predict the cost-minimizing action 
using variables that are available and known 
with certainty ex ante. Inserting the time series 
of 2, into Donovan's (2006) model allows us 
to calculate the total crew costs for the agency, 
i?,. The value of the proposed strategy in terms 
of crew costs can be compared to one based on 
historical wildfire conditions: 
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Empirical Application 

The empirical application is for T = 25 fire 
seasons (t = 1,. . . ,25), 1980-2004, in USFS Re- 
gion 6 (~acific~orthwest) .~ Crew demand data 
were obtained from a database called Chee- 
tah2 (Fire Program Solutions 2006), which con- 
tains data on all fires that burned in Region 6 
from 1980 to 2004. We input data on the num- 
ber of crews that were historically sent to Eres 
of different sizes, and the program outputs data 
oncrew demand. We assumed a fourteen-week 
fire season, which we divided into seven peri- 
ods of two weeks each (the length of a typical 
deployment to a fire). Therefore, crew demand 
consisted of seven numbers (integer values) for 
every year. The Donovan model can be used 
as a two-stage decision tool, using average his- 
torical crew demands as the forecast variable. 
However, it can also be used to generate a time 
series of perfect-foresight decisions, which we 
then use in the development of the statistical 
model for a single-stage approach. 

Identification of a statistical model to use 
to forecast the perfect-foresight hiring deci- 
sion (a,) begins by acknowledging the un- 
derlying driver of crew demand: wildfire ac- 
tivity. variables that could influence wildfire 
activity are selected from among available 
measures shown by others to be related to wild- 
fire. Regressors chosen include measures of 
drought, ocean temperatures, sea level pres- 
sures, and hurricane activity (Latif and Bar- 
nett 1994; Cayan et al. 1998; Nigam, Barlow, 
and Berbery 1999; Westerling et al. 2002,2003; 
National Oceanic and Atmospheric Adminis- 
tration 2007). Specifically, drought measures 
include quarterly lags of the Palmer Drought 
Severity Index (National Oceanic and Atmo- 
spheric Administration 2006a) (e.g., Wester- 
ling et al. 2002,2003), the average value of the 
October (previous year)-to-February (current 
year) Niiio-3 sea surface temperature anomaly 
(National Oceanic and Atmospheric Adminis- 
tration 2006b); selected monthly observations 
of previous year's values of the South- 
ern Oscillation Index4 (National Oceanic 

'See Prestemon and Donovan (2008) for results from USFS 
Region 3 (Southwest). 

Tests of direct forecasts of the March-to-September average of 
theNiiio-3 seasurface temperature anomaly (Wang 2004:National 
Oceanic and Atmospheric Administration 2006h) did not reveal 
significant relationships.once otherperhaps more relevant leading 
indicators of ENSO were included in the Poisson models. ' Months of observations on the SO1 were selected to be at least 
three months apart and identified by examining raw correlations 
between the SO1 for middle monhs of the four previous quarten 
of the fiscal year between cost-minimizing agency crew hires in the 
coming fire season. 

and Atmospheric Administration 2006c), the 
Arctic Oscillation (National Oceanic and At- 
mospheric Administration 2006d), the Pacific 
Decadal Oscillation (National Oceanic and 
Atmospheric Administration 2006e), and an 
index of Accumulated Cyclonic Energy (Land- 
sea 2006; National Oceanic and Atmospheric 
Administration 2006f) for the previous year in 
the Atlantic Basin. 

A long list of potential lags of all of these 
climate and drought measures is available, 
but observations are limited. Model selec- 
tion is done with a general-to-specific strat- 
egy of starting with just two or three lags of 
each measure, and then dropping all variables 
withp-values greater than 0.15. When making 
forecasts of crew demands using the Poisson 
model parameter estimates, the forecast value 
is generated with a cross-validation (jackknife) 
approach: estimating the final model specifi- 
cation without the forecast year included and 
then forecasting the expected value for the 
missing year. The result of cross-validation is a 
time series of cross-validated forecasts of cost- 
minimizing agency crews, a,, and their associ- 
ated costs, R,, 1980-2004. 

Alternative Approaches 

In addition to the single-stage statistical ap- 
proach, we report results from three alterna- 
tive approaches to decision making. First, we 
implement the two-stage approach to agency 
crew hires demonstrated by Donovan (2006). 
This involves using the simple average of the 
previous ten years of crew demands as the fore- 
cast of future demand conditions. For the years 
1980-89, we use crew demand from 1980-90 
with the relevant year excluded. The outcome 
of using this two-stage approach is a time series 
of total crew costs, Ro, that can be compared 
with the crew costs generated using the single- 
stage approach, a,. 

Another comparison to the single-stage 
method is actual agency-hiring decisions. We 
requested and obtained from the Forest Ser- 
vice a time series of actual agency crews hired 
in each season in 1997-2004, a,. Using that, 
we tally the cost of those hires, Rg, given the 
observed p,? 

Actual agency crew hire decisions may not be based on a cost- 
minimization criterion. They might be based on costs but be in- 
fluenced by risk aversion and hiring constraints. The difference in 
total crew costs incurred using a climatology-based cost minimiza- 
tion and those actually incurred, however, does describe the cost 
implications of current crew decision making. 
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Finally, we note that the marginal cost of 
over-hiring agency crews is greater than the 
marginal cost of under-hiring. Therefore, be- 
cause the forecast of cost-minimizing agency 
crews using the Poisson model estimate, a,, 
is designed to be unbiased, we would expect 
that a slightly (negatively) biased forecast, say 
2, = 2,(l + b) ,  where b (< 0) is the bias pro- 
portion, could generate lower overall costs 
than 2,. Using simulation methods, we iden- 
tified a level of bias, b, to apply experimentally 
to the time series of From these are ob- 
tained a time series of "forced-bias" costs, R,, 
which we compare with R,, Ro, R,, and R,. 

Results and Discussion 

Poisson model estimates of the perfect- 
foresight cost-minimizing number of agency 
crews for Region 6 are shown in table 1. A 
negative binomial version of this model was 
attempted, but the full model's cross-validated 
forecast values had poorer fit to actual obser- 
vations than cross-validated values generated 
with the Poisson version. Nonetheless, we note 
that the in-sample properties of the negative 
binomial model estimated using the same re- 
gressors has a significant (at 1 % ) curvature pa- 
rameter estimate. Likelihood ratio tests show 
that the estimated Poisson model shown in ta- 
ble 1 is statistically better fitting (at 1% signif- 
icance) than an intercept-only null model.7 

Crew-hiring recommendations from the 
Donovan model, the single-stage approach, 
the forced-bias single-stage approach (b = 
-0.2, whose value was established through 
simulation), and perfect foresight are shown 
in columns 2-5 of table 2. Column 6 contains 
an eight-year time series, 1997-2004, of ac- 

Simulations were done by estimating ordinary least squares 
(OLS) equations that approximated the dollar penalty associated 
with crew forecast errors Two equations per assumption on idle- 
day costs (Prestemon and Donovan [2008]) were estimated and 
were done using ex posf calculations of the cost-minimizing num- 
bers of agency crews each year, 1980-2004, for the Forest Service 
Region. One equation related how the size of the dollar penalty per 
unit of over-predictions of the cost-minimizing number of agency 
crews was related to the size of the over-prediction and the cost- 
minimizing number of agency crews. The other equation related 
how the size of the dollar penalty for under-prediction of the num- 
ber of cost-minimizing agency crews was related to the size of the 
under-prediction and the number of cost-minimizing crews Biases 
were applied to the size of the over-prediction and the size of the 
under-prediction, and the sum of the costs of these errors was cal- 
culated for all years, 1980-2004. This was the experimental bias, b, 
ap lied 

'T~L findings are obtained for count models estimated with 
other assumptions on idle-day costs for Region 6 and for the single 
model estimated for Region 3, reported in Prestemon and Dono- 
van (2008). 

Table 1. Poisson Model Estimates of Perfect- 
Foresight Cost-Minimizing Number of Agency 
Fire Crews (1980-2004), Under an Assump- 
tion that Agency Crews Have No Alternative 
Work on Idle Days, Forest Service Region 6e 

Parameter 
Variable Estimate 

Constant 0.95*** 
(0.25) 

Region 6 PDSI," Quarter 2, -0.15*** 
(0.05) 

Region 6 PDSI? Quarter 4,-1 0.14*** 
(0.04) 

SOIb August,-l -0.31*'* 
(0.07) 

PDOC November,-l 0.34*** 
(0.07) 

Niiio-3 SSTAd, October,-l to -0.34*** 
February, Average (0.09) 

Accumulated Cyclonic -0.011'** 
Energy, Atlantic,-1 (0.002) 

Named Storms, Atlantic,-1 0.20*** 
(0.03) 

Log-likelihood, model -75.92 
Log-likelihood, 9 = (1,O) -159.75 
Likelihood ratio statistic 167.65*** 

Note: Triple asterisk ('**) ind~cates significance at 1% or smaller. 
a"PDSI" is "Palmer Drought Severity Index" (hydrological index). 
b~~~ is "Southern Oscillation Index." 
CPDO 1s "Pacific Decadal Oscillation." 
d~i i io -3  SSTA is the Niiio-3 sea surface temperature anomaly, in degrees 
centigrade. 
eA negative binomial alternative of ths  Model had a curvature parameter 
estimate of -2.50 (standard error of 0.91). which was significant at 1%. 

tual agency hires8 Corresponding weekly crew 
costs (agency plus contract) are reported in 
table 3, all in constant (2006) dollars. Note that 
the total shown at the bottom of table 3 is the 
sum of the season's total crew costs x 14 to 
account for the number of weeks in the fire 
season. 

The results show that the new method of 
forecasting outperforms all of the alternative 
approaches considered, implying significant 
potential cost savings for the agency. Recall- 
ing that the perfect-foresight hiring decision 
is the benchmark against which to compare 
alternative hiring approaches, the model that 
yields costs that are closest to those deriving 
from perfect foresight is the one that repre- 
sents the greatest savings. Over the twenty- 
five years evaluated, total crew costs from the 
Donovan two-stage model are $13.07 million 

There is only one time series of actual agency crew hues, ap- 
plicable to all assumptions regarding idle-day costs. 
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Table 2. Agency Fire Crew Hires, Under an Assumption that Agency Crews Have No Alterna- 
tive Work on Idle Days, Made with Alternative Modeling Approaches, Perfect-Foresight Hires 
(1980-2004), and Actual Hires (1997-2004), Forest Service Region 6 

- - 

Two-Stage Single-Stage Forced-Biased Perfect- 
Approach Approach Single-Stage Foresight Actual 
Agency Agency Approach Agency Agency 
Crew Crew Agency Crew Crew Crew 
Hires Hires Hires Hires Hires 

Season (ao, (6:) (5s) ( a , )  (as) 

(1.90%) higher than those made with the 
perfect-foresight hiring recommendation, the 
single-stage model yields costs that are $7.35 
million (1.07% ) higher, and the forced-bias 
single-stage model yields costs that are $6.08 
million (0.89% ) higher (table 3). This last fig- 
ure represents cost savings of $6.99 million 
when compared to the two-stage model. 

These alternative crew-hiring approaches 
can be compared with hires actually made for 
the brief period where we have data from the 
agency, 1997-2004. Table 3 shows that actual 
agency hires resulted in costs that are $3.41 
million (1.54%) higher over the eight years 
than the costs that would have been generated 
with perfect foresight about crew demand. The 
two-stage approach is $4.22 million (1.90%) 
higher, the single-stage approach is $1.11 mil- 
lion (0.50%) higher, and the forced-bias single- 
stage approach is only $0.83 million (0.37%) 
higher than the costs obtained with perfect 

foresight. In other words, compared to actual 
hires, use of the forced-bias single-stage ap- 
proach generates savings to the agency of $2.58 
million. 

Returns to Research 

A large literature is devoted to describing the 
returns to agricultural research and develop- 
ment (Smith and Pardey 1997). Schimmelpfen- 
nig and Norton (2003) state that the main 
product of research in agricultural economics 
and social science is information, which can 
lead to utility enhancements in consumption 
or profit increases in production. The gains 
from research in production are typically rep- 
resented as technology advances, which re- 
sult in outward supply shifts (e.g., Lindner and 
Jarrett 1978). Production function approaches 
are also used, which quantify the marginal pro- 
ductivity of research; an initial effort was by 
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Table 3. Total Crew Costs, Under an Assumption that Agency Crews Have No Alternative 
Work on Idle Days,, with Alternative Modeling Approaches, Perfect-Foresight Hires (1980- 
2004), and Actual Hires (1997-2004), Forest Service Region 6 (Values in Millions of 2006 
us $) 

Season 

Forced- 
Biased 

Two- Single- Single- 
Stage Stage Stage Perfect- 

Approach Approach Approach Foresight Actual 
Agency Agency Agency Agency Agency 
Crew Crew Crew Crew Crew 
Hires Hires Hires Hires Hires 
(Ro, ) (a*) (R*)  (R* ) (Rg) 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
2000 
2001 
2002 
2003 
2004 

Total ( x l 4 ) ,  1980-2004, $lo6 
Change from perfect, 1980-2004, $lo6 
Change from perfect, 1980-2004,(%) 
Total (x14) ,  1997-2004, $lo6 
Change from perfect, 1997-2004, $lo6 
Change from perfect, 1997-2004,(%) 

Griliches (1964). Such gains often are biased 
and lead to wealth transfers (e.g., Byerlee 2000; 
Alwang and Siege1 2003; Moyo et al. 2007). 

We use a benefit-cost (B:C) ratio to quan- 
tify the returns to adopting our single-stage 
model. The benefits in the numerator of this ra- 
tio are reduced crew-hiring costs, compared to 
those observed, and the costs in the denomina- 
tor are the research and development expenses 
of our single-stage approach with an imposed 
bias. From table 3, average annual crew-hiring 

cost reductions from using the forced-biased 
single-stage model over eight years are one- 
eighth of ($3.41-0.83) million, or $0.32 million. 
We estimate that research involved in gather- 
ing data to develop the single-stage model for 
Forest Service Region 6 alone represents an 
initial cost of $65,000. This is our estimate of 
the costs of our salaries, benefits, and supplies 
involved in model development. We also esti- 
mate that the annual costs, also in terms of our 
salaries, benefits, and supplies, of maintaining 
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the single-stage model (updating information 
on crew costs and contract crew supply specifi- 
cations and re-estimation of statistical models) 
are $5,000.~ We assume that the average cost 
reduction is maintained for ten years. Using 
a 7% discount rate, the net present value of 
expected savings over these ten years is $2.27 
million. The net present value of costs of model 
development and maintenance over those ten 
years are $0.10 million. This represents a ten- 
year return to the research of $2.17 million and 
a B : C ratio of 22.4. This corresponds to an in- 
ternal rate of return (IRR) of 489%. This B:C 
ratio compares favorably with those reported 
by others. For example, Cubbage et al. (2000) 
reported B:C ratios for fusiform rust research 
in the timber sector that range from 2.2 to 20.3. 
Seldon and Newman (1987) quantified, using 
a production function approach, the marginal 
productivity of public research in the softwood 
plywood industry and found a marginal IRR 
of 236%. Griliches (1964) found B:C ratios of 
agricultural research to be on the order of 13, 
with IRRs over 300% 

No discussion of the effects of climate on 
wildfire would be complete without consid- 
ering climate change. The effects of climate 
change on fire-prone ecosystems may be pro- 
found, but they are currently poorly under- 
stood. Therefore, it would be imprudent to 
definitively say how climate change will affect 
the performance of our model. Research into 
how climate change may affect the various re- 
gressors in the predictive model is reported 
in table 2 that indicates conflicting directions 
of effects (e.g., Trenberth and Hoar 1997; 
Collins 2005; Pielke et al. 2005; Westerling 
et al. 2006) on the cost-minimizing number of 
agency crews to hire. However, a number of 
factors are suggestive. Consider that research 
has shown that climate change has already in- 
creased wildfire activity (McKenzie et al. 2004; 
Westerling et al. 2006) and that ocean-climate 
relationships point to further increases in wild- 
fire across much of the fire-prone western 
United States in coming decades (Kitzberger 
et al. 2007). Furthermore, in Region 6, total 
area burned by wildfire is positively correlated 
with total crew demand (p = 0.73) and the cost- 
minimizing number of agency crews (p = 0.40). 
This suggests that climate change may increase 
both the total demand for crews and the cost- 
minimizing number of agency crews. 

The authors were careful to estimate their research time conser- 
vatively, so that these cost estimates are more likely to overestimate 
than to underestimate the costs of research. 

To further understand the potential effects 
of climate change, we sorted the values in ta- 
ble 3 by the cost-minimizing number of crews. 
We found that the cost savings from using the 
single-stage model versus the two-stage model 
were twice as high for the twelve years with 
the highest cost-minimizing number of crews 
compared to the twelve years with the lowest. 
This suggests that, all else equal, in addition to 
increasing demands on suppression resources 
generally, including fire suppression crews, cli- 
mate change may increase the returns from 
using our single-stage model. Intuitively, this 
makes sense. Contract crew unit costs increase 
with the number supplied, so the costs of errors 
associated with over-hiring in times of high fire 
activity are magnified. 

Conclusions 

Research can be conducted by governments 
and other organizations facing decisions de- 
pendent on uncertain future states of nature 
to: (a) develop resource-allocation decision 
strategies that achieve better overall outcomes 
for a given statistical distribution of potential 
future states of nature and (b )  reduce the un- 
certainty about future states of nature. The 
first category of research involves developing 
tools that can more effectively accommodate 
uncertain future states when making ex ante 
decisions, and the second category includes 
the empirical assessment of the statistical dis- 
tribution of future states, including develop- 
ment of accurate forecasts of the future state. 
In much research that evaluates the benefits of 
weather and climate forecasting in the agricul- 
tural sector, decision tools are two-stage, re- 
quiring first a forecast of weather or climate 
and then processing in a transfer function, pro- 
ducing a decision recommendation. In this ar- 
ticle, we outline a new single-stage approach 
that bypasses the transfer function when mak- 
ing decisions. Our results show that the single- 
stage model yields benefits, in terms of reduced 
spending on fire suppression, compared to a 
two-stage alternative. Our results also show 
that in periods of higher wildfire activity, as 
might be expected as a result of global warm- 
ing, the spending reductions accruing from the 
single-stage model versus the two-stage model 
are enhanced. 

We further show that use of the new single- 
stage model could generate large returns for 
the government. The reductions in total crew 
expenditures, reductions that are many times 
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greater than the research and development 
costs of model development, represent poten- 
tial savings that would add up over many years, 
saving the agency millions of dollars annu- 
ally, if they were to be applied in other USFS 
Regions or by other fire management agen- 
cies. Similarly, if these kinds of savings are 
obtainable for expenditures on other inputs 
to wildfire suppression that involve presea- 
son contract decisions, then the Forest Service 
might make more significant progress toward 
the goal of reducing budget uncertainties, as 
highlighted by the U.S. General Accounting 
Office (2004). 

Our analysis is a first step at developing 
methods that can lower agency spending in 
wildfire suppression and quantify some of the 
potential gains to fire research. The single- 
stage statistical models of cost-minimizing 
agency crew hires reported here have no time 
trends, which may not be a valid assumption 
given current research. For example, West- 
erling et al. (2006) warn of rising costs of 
suppression due to climate change-induced 
lengthening of fire seasons and longer-burning 
individual fires, on average. These changes may 
be related to climate change and highlight the 
need to account for these effects when making 
wildfire management decisions. Existing crew- 
hiring approaches, for example, may not fully 
account for rising demands due to these kinds 
of background changes, especially if the exist- 
ing models are backward looking and do not 
recognize fully these underlying trends. Unfor- 
tunately, in this study, limited observations re- 
stricted our statistical options for identifying 
such trends. But these considerations imply an 
even higher return to investing in research in 
this area. 

Improvements in our statistical models may 
also come about through improvements in our 
understanding of climatological factors linked 
to wildfire activity and in advances in climate 
forecasting (e.g., Adams et al. 1995; Solow et al. 
1998). Adams and Peck (2002) discuss how 
western droughts may be related to climate 
change and document improvements in cli- 
mate forecasting, while Chen, McCarl and Hill 
(2002) show how improved forecasting could 
yield gains in the agricultural sector. Such ad- 
vances could help fire management agencies 
achieve additional cost reductions when mak- 
ing many kinds of wildfire management deci- 
sions under uncertainty. 

Finally, in the process of developing our 
forecasting models, we became aware of addi- 
tional potential savings that could be achieved 

with little extra effort or expense to the agency. 
Because cost penalties from maintaining an ex- 
cess supply of agency crews are higher than 
those from excess demands for crews, there are 
likely to be additional gains associated with im- 
posing biases to the crew forecasts. We demon- 
strated that, at least for Region 6, a negatively 
biased forecast performed better on historical 
data than an unbiased one. We conclude, then, 
that one way to achieve further gains from 
forecasting and recommending agency crew- 
hiring levels in advance of the season is to iden- 
tify, using simulation techniques, the level of 
imposed bias on the crew forecast that would 
be expected to minimize total crew costs. An 
alternative conclusion is that known asymmet- 
ric penalties for under- and over-predicting 
the cost-minimizing number of crews could be 
built directly into the crew-hiring recommen- 
dation, producing a model that is most likely to 
minimize costs given the asymmetric penalties. 

[Received June 2007; 
accepted January 2008.1 
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