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Abstract: Approaches for forecasting wildfire suppression costs in advance of a wildfire season are demon-
strated for two lead times: fall and spring of the current fiscal year (Oct. 1–Sept. 30). Model functional forms
are derived from aggregate expressions of a least cost plus net value change model. Empirical estimates of these
models are used to generate advance-of-season forecasts. Cost forecasts involve estimation of suppression cost
equations by geographical region based on a time series of historical data (1977–2006) of costs, a time trend, and
climate variables, forecasts of the next season’s suppression costs, by region and in total across all regions, and
generation of suppression cost forecast probability distributions by region and in aggregate. The forecasts are
also evaluated historically for their goodness of fit using cross-validation techniques. The two lead time forecast
models are compared with the 10-year moving average of suppression costs, currently used as a budget request
formula by the US Forest Service. Results show that the spring forecast of suppression costs is statistically no
better than the fall forecast for predicting the coming season’s costs. However, both the spring and fall forecasts
significantly outperform the 10-year moving average, reducing forecast errors by approximately 60%. FOR. SCI.
54(4):381–396.
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OVER THE PAST TWO DECADES, the US federal gov-
ernment has experienced significant rises in the
costs of suppressing wildfires on federally man-

aged and adjacent lands (Figure 1) [1]. This rise has resulted
from increases in acres burned (an output effect), as well as
from increases in suppression costs per acre (an input price
effect). The increase in acres burned on US Forest Service
(USFS)-managed lands has occurred even as the number of
reported fires has trended downward, in aggregate. In-
creases in acres burned have been attributed to the accumu-
lation of fuels with past fire suppression (Arno and Brown
1991) and earlier and longer fire seasons associated with
recent warming (e.g., Westerling et al. 2006). Some of the
climatic patterns associated with greater fire activity may be
associated with decadal-to-multidecadal variations in
ocean-atmosphere interactions that may or may not be re-
lated to global change (Collins et al. 2006, Kitzberger et al.
2007). Increases in suppression costs per acre have been
attributed to both an increased demand for structural pro-
tection (Snyder 1999) and rising costs of various inputs
(e.g., energy, capital, labor, and contracting costs) as well as
institutional constraints and requirements (Canton-Thomp-
son et al. 2006).

Current forecasts of suppression costs (Gebert and
Schuster 1999) are short-run, monthly models, designed for
use during the fire season. Some models of wildfire season
severity have been developed for the western part of the
United States (e.g., Westerling et al. 2002, 2003), which are
used as an early warning for fire management agencies of
the expected extent of activity for the coming fire season,
but the forecasts are unbounded. Needed are long-lead sup-

pression cost forecasts that are made in the form of forecast
probability distributions, which can provide a better picture
of expected costs and the likelihoods of unusually active
(and expensive) fire seasons both regionally and nationwide.

Hence, to be most useful, suppression cost forecasts
should be made at operationally useful spatial and temporal
scales. From a science and policy standpoint, ideally, these
should also account for trends in costs that might be linked
to demographic changes and climate shifts, account for the
inherent uncertainty associated with forecasts, and have a
model structure that is theoretically consistent.

This article describes a method to forecast suppression
costs that can be used by the USFS to monitor suppression
costs and plan for possible budgetary shortfalls. We report
suppression cost forecasts by USFS region and in aggregate
for the US federal fiscal year, October–September. These
forecasts are made for two different planning horizons: first,
in October of the current fiscal year, and, second, in April of
the current fiscal year. Forecasts in October are needed to
provide agencies and Congress with an overall budget out-
look, so that steps can be taken to allocate spending well in
advance of the fire season. Forecasts provided in April,
which use the latest climate and drought information, may
be more useful for resource prepositioning, contracting,
allocating resources across regions in advance of the fire
season, and planning for possible funding shortfalls. These
forecasts also provide the likelihood of deficits or surpluses,
given the current year’s budget allocation for suppression.
Model estimation has additional benefits, including quanti-
fication of aggregate cost trends by region after accounting
for the importance of climatic cost shifters.

Jeffrey P. Prestemon, US Forest Service, Southern Research Station, 3041 Cornwallis Road, Research Triangle Park, NC 27709—Phone: (919) 549-4033;
Fax: (919) 549-4047; jprestemon@fs.fed.us. Karen Abt, US Forest Service, Southern Research Station, 3041 Cornwallis Road, Research Triangle Park, NC
27709—kabt@fs.fed.us. Krista Gebert, US Forest Service, Rocky Mountain Research Station, 800 E. Beckwith, Missoula, MT 59801—kgebert@fs.fed.us.

Acknowledgments: We thank the following individuals for their helpful comments in the development of this research: Robert G. Haight, USFS Northern
Research Station, St. Paul, MN; and Julio Betancourt, US Geological Survey and the University of Arizona, Tucson, AZ. In addition, the research has
benefited from comments from William Breedlove and Kent Connaughton, both of Fire and Aviation Management, State and Private Forestry, USFS, in
Washington, DC.

Manuscript received June 18, 2007, accepted January 29, 2008 Copyright © 2008 by the Society of American Foresters

Forest Science 54(4) 2008 381



Methods
Theoretical Structure

Research dating back to at least Headly (1916) and
Sparhawk (1925) and then updated by, for example, Davis
(1965), Gamache (1969), Gorte and Gorte (1979), Rideout
and Omi (1990), and Donovan and Rideout (2003) ex-
presses the agency’s spending decision as a minimization of
the sum of costs plus losses, which is the costs of fire
management (usually fire suppression and other spending)
plus losses (net value changes, possibly including discount-
ing) from wildfires. This structure has received widespread
acceptance in the resource economics community, although
recent authors have sought to align the problem to account
for the trade-offs among many kinds of fire management
inputs (e.g., Rideout and Omi 1990, Donovan and Rideout
2003, Mercer et al. 2007).

For a land management agency whose budgets for indi-
vidual activities such as fire suppression, fuels management,
and output production (e.g., timber, recreation, forage, etc.)
are set separately, i.e., are separable in an economic context,
the least cost plus net value change (LCNVC) approach
could be considered a valid approach to allocating resource
inputs in the production of “protection” (see Appendix). No
allowance is made for the tradeoff between inputs used in
producing valuable outputs from the land that the agency
manages. Nonetheless, the model characterizes the decision
set of relevance for understanding the forces influencing
suppression costs. We therefore developed an empirical
model based on LCNVC to explain and predict annual
suppression costs at the agency level.

We assume that the agency seeks to minimize the ex-
pected sum of all fire program activity spending across all
planning regions and the losses of values (attributes) at
risk—people, property, and natural resources—from real-
ized wildfire activity in the current year in those same

regions [min E(LCNVC)] (details of this theoretical struc-
ture is provided in the Appendix):

minxE(LCNVCt) � R�tXt � P�tE(Wt) :

Wt � W(Zt, Xt) � �t . (1)

For each year, X represent fire program inputs (suppression,
prevention, presuppression, and fuel treatment), R represent
prices for the program inputs, W are acres burned, P are the
net values per unit of the attributes at risk, Z are exogenous
(free) inputs (such as weather, climate, and ecoregion at-
tributes), and � are random errors.

The result of solving the minimization found in Equation 1
is a cost function, expressing costs as a function of all input
prices (R), attributes at risk prices (P), and exogenous inputs
(Z) to wildfires, with expected signs of variables included:

LCNVCt � c{Rt(�), Pt(�), Zt(�)} � �t, (2)

where � is a random variable with zero expected value. As
the prices of inputs (R) into fire management in the agency
increase, total costs (LCNVC) are expected to increase; as
unit values of the attributes at risk (P) increase, total costs
are expected to increase; and as the levels of wildfire
outputs (W) increase, total costs are expected to increase. If
we assume that costs in each of the regions comprising the
agency’s total land managed are separable—i.e., there is no
regional cost shifting or resource shifting and there are no
wildfire activity spillovers—then Equation 2 could be esti-
mated statistically as a system of suppression cost equations
with a separate equation for each region. Note that we are
making no assumptions about the potential cross-regional
correlations in either the �n or the �n values. Such correla-
tions are later exploited to improve parameter estimates in
statistical modeling.

0

400

800

1,200

1,600

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

Year

F
o

re
st

 S
er

vi
ce

 T
o

ta
l E

m
er

g
en

cy
 S

u
p

p
re

ss
io

n
 

E
xp

en
d

it
u

re
s 

(2
00

4 
$ 

M
ill

io
n

)

Real Aggregate Costs

Linear Trend of Real Aggregate Costs

Figure 1. USFS suppression spending, 1977–2006, with a linear trend line, in fiscal year 2004 dollars.

382 Forest Science 54(4) 2008



Empirical Approach
Our theoretical structure makes no assumptions about the

functional forms required by our empirical models. In a
forecasting model, a suppression cost function for a region
could include trend variables replacing both input prices and
unit values at risk. Additionally, research has shown that
wildfire activity measures may not be normally distributed
(e.g., Moritz 1997, Li et al. 1999, Schoenberg et al. 2003),
and policy and scientific analysts have pointed out that large

wildfires comprise the vast majority of area burned by fires
(and therefore spending) by the USFS (Alvarado et al. 1998,
Malamud et al. 2005). For example, fire suppression expen-
ditures are concentrated on large fire events; the largest 1%
of fires apparently consumes 60% of all suppression funds
(Strategic Issues Panel on Fire Suppression Costs 2004).
Research by Strauss et al. (1989) also shows that 80–90%
of wildfire area burned in the western United States is
attributable to 1% of the fires occurring there and that the

Table 1. Variables evaluated in the model selection for the spring and fall models

Variable and Explanation Lags Used Data Source

Niño3 Oct–Feb forecast
The average monthly forecast value

(°C), October to February of the
current fiscal year, of the ENSO
measure Niño3 SSTA.

0 Obtained by special request from
Dr. Wanqui Wang, Research
Meteorologist, NOAA

Niño3 Oct–Feb
The average monthly value (°C),

October to February of the current
fiscal year, of the ENSO measure
Niño3 SSTA.

�1 NOAA 2006a

Niño3 Mar–Sept
The average monthly value (°C),

March to September of the current
fiscal year, of the ENSO measure
Niño3 SSTA.

�1 NOAA 2006a

SOI
Southern Oscillation Index value

(standardized to be unitless), the
monthly average sea level air
pressure difference between Tahiti
and Darwin.

February, November, August, and
May of the current fiscal year

NOAA 2006b

PDO
Pacific Decadal Oscillation index

value (standardized to be unitless),
the monthly average sea surface
temperature anomaly observed in
the Pacific Ocean, poleward of
20°N.

February, August, and May of the
current and previous fiscal year
and November of 2 previous
fiscal years

Mantua and Hare 2007

AO
Arctic Oscillation index value

(standardized to be unitless), the
monthly average sea level pressure
anomaly, poleward of 20°N.

February, November, August,
May of the current fiscal year;
averaged for RFS equations
into quarterly lags of the
previous fiscal year

NOAA 2007b

NAO
North Atlantic Oscillation index value

(standardized to be unitless), the
monthly average atmospheric
pressure anomaly observed in the
Atlantic Ocean, poleward of 20°N.

February, November, August,
May of the current fiscal year

NOAA 2007a

PDSI
Palmer Drought Severity Index

(hydrological), averaged across all
crop reporting districts found in
national forests in USFS Regions
1–6, weighted by each national
forest’s area.

March of the current and
previous fiscal year

NOAA 2006c

PDSI WtdZ
The Palmer Z-index of soil moisture,

standardized to index departures
from monthly long-term normal
values; for each region, it is
weighted by the area of national
forest found in each crop reporting
district of the region.

March, June, and September of
the previous fiscal year and
December of the previous and
current fiscal year; regions
evaluated are 1, 2, 3, 4, 5, 6, 8,
9, and 10

NOAA 2006c
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fires are distributed non-normally (e.g., Pareto or log nor-
mal) in size-frequency space. The cost per unit area burned
usually decreases with the size of the fire (e.g., Strategic
Issues Panel on Fire Suppression Costs 2004). Although it is
not clear that extreme value or logarithmic fire size-fre-
quency distributions naturally would lead to regional annual
suppression cost non-normality, given this possibility we
allow for the possibility that regional annual suppression
cost totals are either normally or log normally distributed
and test the estimated residuals for normality.

Forecasting Models

Theoretical and derived empirical models such as the one
described above are not always amenable to forecasting
because some variables that our theory requires to be in-
cluded are not always available to the analyst at the time of
forecasting. In their place we often insert proxies or instru-
ments for those unavailable variables. In forecasting, as
forecast lead time increases, the use of proxies or instru-
ments often increases. Our empirical approach to forecast-
ing suppression costs contends with this, as well. We con-
template two forecasts, Ct

fall and Ct
spring, where Ct

• is an N �
1 vector of the costs of N regions, as forecast using data
available in either the fall or in the spring of the current
federal fiscal year (hereafter, “fall” and “spring,” respec-
tively). The cost models in the two periods have some
common right-hand side variables. The data used in both
models require time series of cost observations for each year
(identical left-hand side variables), a time trend, and exog-
enous variable observations. If we have a time series of such
data for multiple locations, then a natural estimator would
be one that exploits potential correlations across the N
locations where suppression is being conducted and spend-
ing is occurring. Rewrite Equation 2 as

Ct
• � C(Rt

•, Pt
•, Zt

•), (3)

where the symbol (�) represents fall or spring, Ct
• � (C1,t

• ,
C2,t

• , . . . , CN,t
• ), Rt

• � (r1,t
• , r2,t

• , . . . , rN,t
• ), Pt

• � (p1,t
• , p2,t

• ,
. . . , pN,t

• ), and Zt
• � (z1,t

• , z2,t
• , . . . , zN,t

• ). In empirical
estimation, we account for any potential cross-equation
error correlations in regional costs owing to factors linked to
an error correction process, as

Ct
• � Yt

•�� � �t
• �n,t

• � en,t
• � �•�n,t�1

• . (4)

This error correction process could derive from regional
cost sharing. Detailed accounting analyses by the authors
have identified significant cost-shifting among USFS re-
gions: fire expenditures in one region may be credited to
another region. (We term this the “by region-for region”
issue.) In empirical modeling, fire activity in one region
could, therefore, be correlated with costs in other regions. A
system approach to estimation would, therefore, produce
smaller standard errors of parameter estimates because
equation errors would be more highly correlated. The ef-
fects of this accounting phenomenon on observed regional
costs could also be minimized by combining regions most
likely to share costs. In our models, we have done this by
aggregating some regions in the system cost modeling and
by including the drought measures of other regions in the

cost model of a particular region (e.g., Westerling et al.
2002, 2003). Regional aggregation carries with it new prob-
lems (aggregation bias), but this should reduce the problems
associated with regional cost sharing if many of the vari-
ables driving costs in each region are common to all in the
regional aggregate. We do not aggregate all regions into one
agencywide cost model because evidence shows that fires
and costs in each are driven by different factors. Therefore,
the by region-for region issue remaining in our models may
lead to an unknown degree of parameter estimation biases
and inconsistencies that could reduce equation goodness of
fit and out-of-sample forecast accuracy.

Equation 4 can be estimated using generalized least
squares (GLS) as a seemingly unrelated regression (SUR)
model, where Yt

• � (y1,t
• , y2,t

• , . . . , yN,t
• ) and yn,t

• � (rn,t
• , pn,t

• ,
ŵn,t

• ). Dwivedi and Srivastava (1978) showed that the more
correlated are the disturbances (�n,t

• �q,t
• , n � q), the greater

the efficiency gain of GLS compared with single-equation
ordinary least squares (OLS) and that the less correlated are
the individual yn,t

• in Yt
•, the greater the efficiency gain

compared with single-equation OLS. It is likely that
weather and climate shocks, random factors not fully cap-
tured by the variables included in Yt

• (e.g., droughts or rainy
periods not adequately explained by variables used to fore-
cast costs) have some correlations across regions in the
United States, so we would expect some gain of SUR over
single-equation OLS. Many of the variables representing
the columns of yn,t

• and yq,t
• (n � q) will differ because of

differing lagged values of the dependent variables, which
are potential elements in Equation 4.

Hypotheses and Explanatory Variables

Our empirical versions of the regional cost equations for
fall and spring are based on ocean temperatures, sea level
pressure, drought indices, past regional costs, and time
trends. Ocean temperatures have been shown to be related to
fire activity in many regions of the United States (e.g.,
Simard et al. 1985, Swetnam and Betancourt 1990, Brenner
1991, Gedalof et al. 2005, Collins et al. 2006, Kitzberger et
al. 2007). Although area burned is positively and highly
correlated with realized costs, our method does not forecast
area burned. Instead, costs are related directly to hypothe-
sized variables as shown in Table 1. These variables are
described in more detail in the Appendix. Inclusion of
variables in the full (most general) statistical models was
based on a simple inspection of the correlation matrix
between suppression costs and the possible variables, in-
cluding variables with the highest correlations (� � 0.30)
with costs. Once these correlates were identified, individual
region or regional aggregate equations were estimated with
ordinary least squares. We dropped the variables with t
values 	1.5, and then, after reestimation of the equation
with the shorter set, further dropped those with t values
	1.5 again. Then, these “final” equations were estimated
jointly in a SUR model [2].

Suppression cost data are based on USFS accounting
databases as compiled by the USFS Rocky Mountain Re-
search Station. These data were available beginning in 1977
for the nine land management regions, as well as the for the
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rest of the Forest Service (RFS), which includes the national
offices, research stations and the National Interagency Fire
Center expenditures related to USFS fires. Wildfire sup-
pression expenditures include all costs incurred by the
USFS and not reimbursed by other agencies for suppressing
wildfires including salaries, contracts, equipment, and
supplies.

We deflate costs by the annual average US gross domes-
tic product deflator for each fiscal year (October–Septem-
ber) (US Department of Commerce 2006) to make an entire
time series, t � 1, . . . , T, comparable in dollar terms. Once
the dependent variable shown in Equation 4 is deflated, real
changes in input costs (e.g., wages), in addition to technol-
ogy changes and changes in the values at risk (the quantity
and unit values of attributes at risk) are assumed to be
consistently modeled by a time index. This time index is
highly correlated with indices of producer prices for capital,
labor, and energy in the United States, which are also
correlated with each other; inclusion of both a trend and
each of those price indices would introduce multicollinearity.

In the empirical estimate of Equation 4, spatial aggre-
gates (Figure 2) are USFS Regions 1–6 (“Western Aggre-
gate”) [3], Region 8 (Southern Region), Region 9 (Eastern
Region), Region 10 (Alaska), and RFS. In the spring model,
the costs of regions 8 and 9 are combined into a single
aggregate to address problems of important non-normalities
in residual series in initial estimates of suppression cost
equations for these two regions and also to further mitigate
the by region–for region cost-sharing issue mentioned
earlier [4].

Forecasts

Once empirical estimates of Equation 4 are obtained
using SUR methods, forecasts of suppression costs by
USFS region or region aggregates are made at the two
alternative lead times, using climate data available at that
time. As Westerling (2003) showed, although season fore-
casts depend on lags of drought indices extending back to 2
years, fire season activity is related to winter precipitation of
the current fiscal year in some locations. Given this, we
expect that the spring estimator will perform better than the
fall.

Assessing Forecast Accuracy

We calculated goodness-of-fit statistics for each forecast
lead time based on the leave-one-out cross-validation ap-
proach to out-of-sample predictions of suppression costs, by
region [5]. These statistics include the mean absolute per-
cent error (MAPE), the root mean square error (RMSE), and
the percent correct direction of change prediction. For the
first two, a value of zero implies a perfect forecast. A 100%
correct prediction of direction change does not imply a
perfect forecast but may be helpful in some decisionmaking.

Results and Discussion

Variables evaluated in the process of model selection are
tallied in Table 1. This table also lists the abbreviations used
in reporting the model estimates for fall (Table 2) and spring
(Table 3) models. The models selected explained between

Figure 2. Map of USFS regions.
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60 and 94% of the variation in the 31 years of data (Table
4). The models for spring had higher individual R2 values
than the fall models, and spring and fall had a significantly
lower RMSE than the 10-year moving average (Table 5).
There was, however, no significant difference between the
RMSE of the fall and spring forecasts, implying that the
additional climate information available in the spring, al-
though useful, is not different enough from the data avail-
able in the fall to make large changes in forecast confidence.
Normality tests of individual equation residuals in each
system indicate that none of the four equation residual series
of the spring model tested as non-normal using the Jarque-
Bera normality test. In the fall model, two of the residual
series of the five equations tested as being distributed non-
normally: Region 8 (P � 0.03, due to slight leptokurtosis
and negative skew) and the RFS aggregate (P � 0.01, due
to leptokurtosis and positive skew). Considered together,
the limited number of observations leads us to conclude that
these rejections could be purely by chance. The high ex-

planatory power of the models also leads us to judge that
this degree of non-normality is not important enough to
create significant problems in the forecast of aggregate
costs—not least because of their individual small contribu-
tion to total costs and the fact that their opposite skewness
would tend to partially cancel out when an agencywide
forecast is made. Further, it bears considering that the
ultimate measure of accuracy of these models comes in
forecasting, and in-sample statistics may not be highly rel-
evant to making forward-looking predictions.

Fall Forecasts

The fall modeling system uses linear models for Regions
1–6, Region 10, and the RFS and log models for Regions 8
and 9. An average of 80% of USFS suppression expendi-
tures are in Regions 1–6; fortunately for modeling and
forecasting purposes, this model is also the best fitting, with
an R2 of 0.93. Ten climate variables and the time trend are

Table 2. Fall USFS suppression cost forecast model regression results, FY 1977–2006

Model and Variable Coefficient SE t Statistic Probability

Western aggregate (Regions 1–6)
Constant �33,962,907,371 4,814,014,106 �7.055 0.000
Niño3 Oct–Feb forecast �356,165,877 34,543,954 �10.311 0.000
Niño3 Oct–Feb (�1) �245,786,128 31,200,252 �7.878 0.000
Niño3 Mar–Sept (�1) 376,933,278 58,527,090 6.440 0.000
SOI Aug (�1) �140,373,673 21,828,706 �6.431 0.000
PDO May (�1) �209,266,230 26,625,883 �7.860 0.000
PDO Feb (�1) 343,118,240 45,444,661 7.550 0.000
PDO Nov (�2) �96,237,847 19,293,385 �4.988 0.000
AO May (�1) �89,739,968 25,715,049 �3.490 0.001
March PDSI (�1) �81,170,535 10,990,553 �7.385 0.000
NAO Feb (�1) 40,999,854 29,145,826 1.407 0.163
Year 17,120,647 2,417,770 7.081 0.000

Log(Southern Region)
Constant �1,143.647 195.891 �5.838 0.000
PDSI R3 Jun-WtdZ (�1) 0.154 0.071 2.159 0.033
PDSI R3 Mar-WtdZ (�1) �0.169 0.078 �2.182 0.031
Log(Year) 152.730 25.786 5.923 0.000

Log(Eastern Region)
Constant �151.184 24.153 �6.259 0.000
Niño3 Mar–Sept (�1) �0.519 0.166 �3.136 0.002
SOI Aug (�1) �0.343 0.078 �4.414 0.000
PDSI R9 Sep-WtdZ (�1) �0.203 0.084 �2.426 0.017
PDSI R8 Jun-WtdZ (�1) �0.254 0.070 �3.603 0.000
PDSI R1 Jun-Wtd Z (�1) �0.164 0.061 �2.665 0.009
PDSI R2 Jun-WtdZ (�1) 0.320 0.060 5.322 0.000
Year 0.084 0.012 6.888 0.000

Alaska Region
Constant 2,042,330 398,071 5.131 0.000
Niño3 Oct–Feb Forecast �2,803,838 461,053 �6.081 0.000
Niño3 Mar–Sept (�1) 2,717,087 866,049 3.137 0.002
Niño3 Oct–Feb (�1) �2,207,621 483,647 �4.565 0.000
SOI May (�1) �892,290 306,050 �2.916 0.004
AO Aug (�1) �1,750,467 713,336 �2.454 0.016

RFS
Constant �9,589,948,333 1,878,366,134 �5.105 0.000
Cost RFS (�3) �0.367 0.128 �2.865 0.005
Niño3 Mar–Sept (�1) �16,844,475 9,087,753 �1.854 0.067
AO Aug (�1) �18,017,918 11,386,841 �1.582 0.117
Year 4,852,924 944,157 5.140 0.000
PDSI R5 Sep-WtdZ (�1) 8,780,926 5,967,640 1.471 0.144
PDSI R6 Sep-WtdZ (�1) �20,679,469 6,413,411 �3.224 0.002
AO Apr-Jun (�1) �51,895,069 16,008,360 �3.242 0.002
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significant, with costs increasing by $17 million per year,
after accounting for climate variations. Initial models of the
RFS costs indicated a significant 3-year autocorrelation of
residuals; including the 3-year lagged dependent variable
eliminated this statistical correlation, and this lag was re-
tained in the final specification.

Evaluation of the climate variables is complicated by the
relationships between the climate measures. For example,
an El Niño event can be measured by the Niño3 Sea Surface
Temperature Anomaly (SSTA) as well as by the Southern
Oscillation Index (SOI). In addition, the Pacific Decadal
Oscillation (PDO) is highly correlated with El
Niño/Southern Oscillation (ENSO), but is on a 10- to
20-year cycle rather than a 2- to 7-year cycle. When an El
Niño event occurs, the Niño3 SSTA is positive, PDO is
generally positive, and SOI is negative. El Niño events are
considered “warm” phases, leading to warm, dry winters in
the Pacific Northwest and cool, wet winters in the South-
west. La Niña events are considered “cool” phases, with
generally opposite implications for season temperature and
precipitation patterns. Similarly, whereas the Palmer
Drought Severity Index PDSI measures actual drought con-
ditions, it is also related to these larger climatic distur-
bances, although it carries persistence that can capture

longer run effects on fuels and fuel moisture important to
wildfire activity.

To more fully describe the individual effects of changes
in the predictors included in our models, we used compar-
ative statics (Table 6). When doing these, we individually
varied one variable while holding others constant at their
sample means. These reference conditions of the included
variables were the average values for the warm phases
(Niño3 SSTA and PDO �0 and SOI 	0) and cool phases
(Niño3 SSTA and PDO 	0 and SOI �0), and the coeffi-
cients from the fall model. During an El Niño event, in
which both lagged and forecast values for ENSO stay in the
warm phase, suppression costs are expected to be lower by
$127 million. Conversely, when the systems are in the cool
phase, costs are expected to be higher by $62 million. The
largest variations in costs occur when there is a transition
between El Niño and La Niña. When all systems are in a
cool phase, but the Niño3 forecast is warm (El Niño), costs
are expected to increase by $599 million. When La Niña
conditions exist but the forecast is for an El Niño to emerge
in the coming months of the year, then costs would be lower
by $664 million.

For all of the fall equations, the effect of the Arctic
Oscillation (AO) is negative, as hypothesized, and the effect

Table 3. Spring USFS suppression cost forecast model regression results, FY 1977–2006

Model and Variable Coefficient SE t Statistic Probability

Western Aggregate (Regions 1–6)
Constant �31,994,525,285 4,571,188,234 �6.999 0.000
Year 16,159,159 2,295,693 7.039 0.000
SOI Nov (�1) 37,557,720 15,404,995 2.438 0.017
Niño3 Oct–Feb (�1) �218,158,157 31,411,311 �6.945 0.000
Niño3 Oct–Feb forecast �293,427,991 35,609,010 �8.240 0.000
Niño3 Mar–Sept (�1) 330,944,881 57,703,490 5.735 0.000
SOI Aug (�1) �140,865,223 20,649,115 �6.822 0.000
PDO May (�1) �188,208,664 23,327,375 �8.068 0.000
PDO Feb (�1) 289,475,542 32,750,994 8.839 0.000
PDO Nov (�2) �87,460,756 17,195,521 �5.086 0.000
March PDSI (�1) �73,394,088 10,909,789 �6.727 0.000
AO May (�1) �84,850,056 23,860,228 �3.556 0.001

Log(Southern and Eastern Regions)
Constant �987.165 141.785 �6.962 0.000
Log(year) 132.139 18.665 7.080 0.000
PDSI R2 Jun Wtd Z (�1) 0.105 0.043 2.445 0.017
SOI Aug (�1) �0.334 0.072 �4.623 0.000
SOI Nov (�1) 0.239 0.066 3.603 0.001
PDSI R8 Dec Wtd Z (�1) �0.304 0.076 �3.992 0.000

Log(Alaska Region)
Constant �1,078.694 373.482 �2.888 0.005
Dummy variable � 1999 �5.701 0.796 �7.162 0.000
Log(year) 143.777 49.160 2.925 0.005
Niño3 Oct–Feb forecast �0.776 0.152 �5.120 0.000
SOI May (�1) �0.719 0.138 �5.218 0.000
AO Aug (�1) �0.844 0.315 �2.678 0.009
AO Feb 0.236 0.108 2.178 0.032
AO Feb (�1) 0.444 0.108 4.120 0.000

RFS
Constant �7,038,941,540 1,271,874,390 �5.534 0.000
Year 3,565,146 638,712 5.582 0.000
March PDSI �11,635,956 3,147,529 �3.697 0.000
PDSI R2 Jun Wtd Z (�1) 11,712,342 3,393,950 3.451 0.001
PDO Feb �20,082,884 6,097,033 �3.294 0.001
AO May (�1) �35,591,948 8,589,048 �4.144 0.000

Forest Science 54(4) 2008 387



of the North Atlantic Oscillation (NAO) is positive, also as
hypothesized. The PDSI measures show varying effects,
depending on the model and the lag. The lagged March
PDSI shows a negative effect on suppression costs for the
western aggregate model, implying that costs are lower
when drought is less extensive over the western United
States. The effects of other PDSI measures on costs are less
clear. For example, the Region 8 model uses the Region 3
March and June lagged values, implying that if drought
conditions are steady in Region 3, then there will be little
effect on costs, whereas if drought worsens in Region 3
between March and June, Region 8 costs will be higher.
This could be because the climate in Region 3 is a leading
indicator of climate in the southern region, or, just as
possible, that some Region 8 resources are being used in
suppressing fires in Region 3. The latter possibility illus-
trates the effect of the by region-for region issue alluded to
earlier in this article. Similarly, the Region 9 model has the
PDSIs of other regions included in its model, all of which
have negative coefficients except for Region 2. Wetter
conditions in the specified months in Regions 1, 8, and 9
lead to lower costs, whereas wetter conditions in Region 2
lead to higher costs, ceteris paribus.

The RFS model also includes PDSI measures. The
lagged PDSI for Region 5 (California, the single most costly
region in the West, comprising 37% of costs, on average)
for September is positively related to costs, whereas the
lagged PDSI for Region 6 (the second most costly region)
for the same month is negative, implying that a September
drought in California reduces costs but a September drought
in the Pacific Northwest increases costs.

Spring Forecasts

The spring models are similar to the fall models, but
there are some different selections of climate variables used
to develop the “best” models. For the Region 1–6 aggre-
gate, the model is very similar, dropping one climate mea-
sure (NAO) and including another (the November lagged
SOI). The in-sample R2 is slightly higher than that in the fall
model’s Region 1–6 aggregate model. The coefficient on
year indicates that, similar to the fall model, ceteris paribus,
costs for the western aggregate are rising at an average rate
of more than $16 million per year. Over the span of most of
the equation estimates in the spring and fall models for
1982–2006, costs have increased, ceteris paribus.

The Eastern and Southern regions were combined for
spring and now include the lagged November SOI value and
lagged regional PDSIs for Regions 2 and 8, and the Region
8 December value replaces the June value. Drought indices
for Regions 1, 3, and 9 are dropped, as are lagged average
values of the Niño3 March–September SSTA. The Region
10 model is estimated using logarithmic values for the
dependent variable, necessitating inclusion of a dummy
variable for 1999, a year when costs are recorded as nega-
tive. In the Region 10 specification as well, lagged Niño3
values are dropped and two new AO measures are included
(current February and lagged February).

The RFS model appears to benefit most from nearer term
climate data, compared with the models of other regions’
models, using the current westwide March PDSI (H) and the
current February PDO value. The Region 2 lagged June
PDSI is added to this model, whereas the PDSIs for Regions
5 and 6 are dropped. Also dropped are the AO April–June
measure, the Niño3 lagged March–September measure, and
the 3-year lag of RFS costs. The coefficient on year indi-
cates that costs for the RFS are rising at the rate of nearly
$3.6 million per year.

System Results and Model Comparisons

Table 5 shows the system evaluation statistics for the two
forecast models and the 10-year moving average for the
period 1989–2006. Before the development of these mod-
els, the 10-year moving average was the best model avail-
able for use by policymakers and analysts for the USFS.
Statistics in Table 5 show that the 10-year moving average
is better at predicting the direction of change (94% correct
predictions) than either the fall (88%) or spring (82%)
models. The MAPE is higher for the 10-year moving aver-
age (49%) than either the fall (38%) or spring (35%) mod-
els. The RMSE, however, is statistically significantly higher
for the 10-year moving average ($401 million) than for the
fall ($173 million) or spring ($150 million) models. These

Table 4. Fall and spring USFS suppression cost forecast
model evaluation statistics

Fall Models
Spring
Models

Western Aggregate (Regions
1–6)

Linear Linear

Observations 25 25
R2 0.931 0.942
Adjusted R2 0.873 0.893
SE of regression 106,631,336 97,965,000
Durbin-Watson stat 2.467 2.463

Southern � Eastern Regions Log
Observations 30
R2 0.797
Adjusted R2 0.755
SE of regression 0.484
Durbin-Watson stat 1.773

Southern Region Log
Observations 30
R2 0.600
Adjusted R2 0.554
SE of regression 0.662
Durbin-Watson stat 1.832

Eastern Region Log
Observations 30
R2 0.701
Adjusted R2 0.606
SE of regression 0.668
Durbin-Watson stat 2.014

Alaska Region Linear Log
Observations 25 24
R2 0.650 0.832
Adjusted R2 0.558 0.759
SE of regression 2,086,350 0.913
Durbin-Watson stat 1.670 2.068

Rest of FS Linear Linear
Observations 27 30
R2 0.699 0.751
Adjusted R2 0.589 0.700
SE of regression 39,284,608 33,147,040
Durbin-Watson stat 2.706 2.317
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RMSEs for the fall and spring models, however, are not
statistically significantly different from each other, despite
the slightly smaller error shown for the latter. As always,
when one is using a short data series, additional years of
data could bring substantial improvements in modeling and
forecasting. The forecast values from the three models for
FY2006 and FY2007 are also shown in Table 5.

Forecast Distributions

Comparisons of forecasts to actual suppression costs
(agencywide for the fall and spring) (Figures 3 and 4,
respectively) demonstrate the out-of-sample predictive abil-
ities of the fall and spring models. For these figures, back-
transformations of forecast logarithmic costs were accom-
plished using an approach recommended by Karlberg
(2000). Forecast precision is illustrated by producing a
forecast probability distribution of costs for fiscal year
2007. To generate random forecast errors needed for such a
probability distribution, we applied methods developed by
Krinsky and Robb (1986). Details are provided in the
Appendix.

The probability distribution of fiscal year 2007 costs
made with the fall model shown in Figure 5 indicates the
forecast mean, point estimate, and 90 and 95% confidence
intervals that are consistent with a continuing overall trend
of rising real costs, although the forecast is down from the
actual amount spent in 2006. The 2007 budget allocation for
suppression expenditures was $535 million, which, by mea-
sure of the fall model, had less than a 1% likelihood of being
sufficient to cover actual expenditures. In summary, either
the fall or spring forecast model represents an improvement

over using the 10-year moving average for forecasting sup-
pression costs within the current fiscal year [6].

Cost Trend Implications

Estimated coefficients on the forecast model imply that
positive trends exist in costs across most regions, after
accounting for climate variables included. This is true for
the Region 1–6 aggregate and for other regions except for
Region 10, and it is found for both fall and spring versions
of our forecast models. Accurate assessment of the effects
of these regional cost trends on overall costs perhaps would
be best for models estimated with current (not lagged)
climate variables. However, such an exercise is informative
even for these forecast models to get a picture of the overall
effect of rising real costs of inputs, contracts, and, poten-
tially, fuels and increasing populations in the wildland-
urban interface. To provide such information, we evaluate
the net effect of the positive trends across all USFS Regions
for 1982–2006 implicit in the model estimates. For both
systems of equations, those shown in Table 2 (fall) and
Table 3 (spring), we set the value of our time trend variable
(“year”) equal to 1982 across all years of the “year” variable
and compared the in-sample predicted values (i.e., not the
forecast values) with the in-sample predicted values when
“year” rises normally. For the fall model, the effect of the
time trend is an accumulated extra suppression cost of $7.1
billion for 1983–2006. The 2006 predicted cost is $488
million with year set equal to 1982, or $594 million (55%)
lower than the in-sample predicted value ($1,082 million)
for 2006. Likewise, the 2007 forecast value was $242 mil-
lion, compared to the $847 million that we forecast in real

Table 5. System evaluation statistics and comparison, 1989–2006

% correct direction
of change MAPE

RMSE
(2004 $, million)

2006 forecast
(2004 $, million)

2007 forecast
(2004 $, million)

Fall model 88 38 173 1,046 847
Spring model 82 35 150 996 942
10-year moving average,

1989–2005
94 49 401 663 644

Table 6. Comparative statistics on the effects of El Niño-Southern Oscillation measures individual and collective effects on
suppression costs in the Western Aggregate (Regions 1–6) of USFS regions

Variables Coefficients
Warm

average
Cool

average
Warm value

effect
Cool value

effect
Change in

costs

. . . . . . . . . . . . .($million) . . . . . . . . . . . . .
Individual variable effects

Niño3 Oct–Feb forecast �356,165,877 1.07 �0.97 �381 345
Niño3 Oct–Feb (�1) �245,786,128 0.98 �0.71 �241 175
Niño3 Mar–Sept (�1) 376,933,278 0.70 �0.38 264 �143
SOI Aug (�1) �140,373,673 �1.80 1.23 253 �173
PDO May (�1) �209,266,230 1.25 �0.72 �262 151
PDO Feb (�1) 343,118,240 0.94 �1.13 323 �388
PDO Nov (�2) �96,237,847 0.86 �0.99 �83 95

Climate regimen effects
All warm �127
All cool 62
Niño3 SOI warm, PDO cool �247
Niño3 SOI cool, PDO warm 182
Forecast warm, all others cool �664
Forecast cool, all others warm 599

Forest Science 54(4) 2008 389



dollar terms for 2007. For the spring model, results are
similar and are available from the authors. These cost dif-
ferences due to the time trend are significantly different
from zero, which is what would be expected, given the high
significance of the trend variables in the statistical models
shown in Tables 3 and 4.

Conclusions

Forecasting of suppression costs within the current fiscal
year can provide information to agency administrators, as
well as to Congress, regarding potential funding shortfalls
for wildfire suppression in the upcoming fire season. The
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Figure 3. Cross-validated fall USFS forecasts (1982–2006), the 2007 forecast, and actual agencywide
suppression costs in the USFS (1982–2006), in fiscal year 2004 dollars.
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Figure 4. Cross-validated spring USFS forecasts (1982–2006), the 2007 forecast, and actual agencywide
suppression costs in the USFS (1982–2006), in fiscal year 2004 dollars.
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models also provide evidence that climate-related changes
in weather and drought can explain much of the variation in
suppression costs over the past three decades. However,
there is a systematic trend in overall costs, and this is
apparent in all regions except Alaska. Because the compo-
nents of the trend, including changing fuels, input costs,
contracts, and population are highly collinear, we cannot
isolate what is responsible for the rising trend. Further
modeling, perhaps at smaller spatial scales, could improve
our understanding of the individual influences of these
factors on the overall positive time trend in costs. Calcula-
tions show that the positive secular trends in costs account
for a cumulative extra $7.1 billion in suppression costs since
1982 and imply that costs today would be less than half as
large if the 1982–2006 secular trends were absent. In prac-
tical terms, agency budget officials should take the rising
trend into account when making out-year budget forecasts.

Additional research is needed that can tease apart the rea-
sons for the rising costs. This could be done through de-
tailed examination of the trends in individual cost compo-
nents (e.g., as listed in Table 7) across fine spatial scales and
over time, by estimating more accurate nonforecasting mod-
els (i.e., estimating models using variables corresponding in
time with the realized costs), and evaluating how costs may
align with factors hypothesized to be linked closely to
climate change (e.g., as associated with earlier spring snow-
melt and the length of the fire season).

Our forecast models were potentially hampered in
their forecast accuracy by cost sharing across regions,
which forced inclusion of other regions’ drought mea-
sures and possibly led to biased and inconsistent param-
eter estimates for included variables. Despite the fact that
we do not know by how much parameter estimates are
biased and inconsistent, improved data sets could aid in
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Figure 5. Forecast cost probability mass distribution, fiscal year 2007, made with the fall model, in
deflated (fiscal year 2004) dollars.

Table 7. Percent share of major suppression cost items charged to USFS suppression accounts

Budget category

Fiscal year

Average
1993–1994a 2000 2001 2002 2003 2004 2005

Average
2000–2005

Salary and benefits 32 29 33 29 32 37 40 33
Supplies 57b 7 5 8 5 4 3 59c

Contract aircraft 17 18 16 20 21 27
Emergency equipment rental agreements

and other contracts
32 29 36 30 21 14

Cooperative agreements 4 4 4 8 12 11
Other 11 12 10 7 5 6 5 8
a This is the average of fiscal years 1993 and 1994.
b For 1993–1994, only an aggregate of supplies, contract aircraft, emergency equipment rental agreements and other contracts, and cooperative agreements
was available
c Because of the missing expenditure details for supplies, contract aircraft, and cooperative agreements in 1993 and 1994, only an aggregate annual average
for 2000–2005 can be compared with the 1993–1994 aggregate
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improving our understanding of costs. One such improve-
ment could occur with the availability of regional time
series of for-region expenditures. Although the agency
has been tracking these region-sharing expenditures con-
sistently since the late 1990s, a useable time series of
own-region only expenditures is still probably a decade
off.

Despite these limitations in the data and our models, we
have identified cost models that are more precise and accu-
rate than the current model used to forecast USFS suppres-
sion costs. Our models reduce RMSEs by 57% for the fall
model and 63% for the spring model, compared with the
RMSE of the 10-year moving average of costs. Mean ab-
solute percent errors are also smaller using our forecasts,
reducing the average percent error by 11 or 12 percentage
points, compared with the 10-year moving average. Cur-
rently, the 10-year moving average is useful for making
budget requests because of its simplicity, limited data needs,
and availability further in advance of the target budget year
than even our reported fall model. However, our modeling
could be extended to produce a forecast with a lead time
similar to that provided by the 10-year moving average.

Although these forecast models fit the data well, when
forecasted suppression costs are high, as in 2007, the re-
maining uncertainty in the fall and spring forecasts reduces
their potential usefulness. One method that may reduce the
uncertainty would combine model forecasts into an ensem-
ble, a common approach in climate and weather forecasting.
An ensemble takes advantage of different model structures
to reduce uncertainties, allowing for tighter forecast proba-
bility distributions. Uncertainties may also be reduced by
exploring alternative model functional forms and explana-
tory variables. In addition, simulation approaches, modeling
at alternative spatial and temporal scales, and estimation of
models assuming different conditional statistical distribu-
tions of suppression costs could yield advances.

Endnotes

[1] This article addresses only the expenditures made by the USFS to
suppress wildfires, and the terms “costs” and “expenditures” are used
interchangeably.

[2] Testing revealed multicollinearity in the western aggregate equations
for fall and spring only. However, in experiments we conducted,
dropping any of these variables resulted in a substantial reduction in fit
of the estimated models. The available methods are complex and
would result in less modeling transparency. Elimination of this multi-
collinearity is worthy of additional research but is not further pursued
in this article. A table of variance inflation factors is available from the
authors upon request.

[3] Initially, we estimated individual western region (1–6) cost models
separately and then aggregated. The combined models fit worse out-
of-sample than in-sample. The by region–for region cost sharing evi-
dent in the cost data probably explains this result. We therefore opted
to combine them in forecast models.

[4] The fall model equation errors for Regions 8 and 9 did not exhibit
significant residual non-normalities.

[5] This form of cross-validation involves iteratively estimating regression
models shortened by one observation, which is dropped, and then
forecasting the missing observation using the parameter estimates
generated from the shortened regression.

[6] Observed emergency suppression costs in fiscal year 2007 ($1,154
million), tallied after this article was drafted, were contained within 90
percent probability bounds of the fall model forecast ($685 million to
$1,166 million) and subsequently issued spring model forecasts ($803
million to $1,203 million).

[7] Preliminary tests including the Atlantic Multidecadal Oscillation
(NOAA 2007c), motivated by findings by Collins et al. (2006) and
Siebold and Veblen (2006), showed that models for Regions 8 and 9
may be improved slightly by including this variable but that models for
other regions were not improved. Given limited observations, however,
we have limited ability to conduct additional tests.
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Appendix
LCNVC Problems

Two general LCNVC problems can be recognized. One
is short-run, small scale, and potentially restricted or con-
strained, with the minimization defined for a specific fire:
minimize the sum of the costs of suppressing that particular
fire plus the expected net losses of some specified list of
societal concerns (resources, structures, etc.) due to the
particular fire. The second problem minimizes a sum across
a spatial aggregate, a temporal aggregate, an institutional
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aggregate, managerial scope, and societal universe of con-
cern. This second problem is the one confronting the USFS.

In the second problem, a spatial aggregate is the sum-
mation of all fire-related suppression costs for the spatial
unit of inference. The temporal aggregate could be a fire
season or multiple fire seasons (say, a planning horizon).
The institutional aggregate defines how many organizations
are included in the minimization (e.g., in the United States,
the USFS, all federal land management agencies, or all land
management and fire management organizations).

The managerial scope of this second problem is defined
by what specific actions are allowed to vary (i.e., the state
variables). These actions can be termed the fire program
elements. The scope is defined by the number of elements
included in the decision framework. These could include (1)
fire prevention, (2) fuels management, (3) presuppression
(preseason attack resource placement costs), (4) initial at-
tack or response, (5) (postinitial attack or response) fire
suppression, and (6) postfire rehabilitation and recovery. By
progressively including elements 1 through 6, the minimi-
zation problem becomes progressively less constrained. For
example, a minimization that included elements 1 through 6
would choose spending on fire prevention, fuels manage-
ment, presuppression, initial response, and suppression,
given a fixed rate or amount of spending on postfire reha-
bilitation and recovery such that the sum of the expected net
losses from realized fire activity plus those costs included
(not postfire rehabilitation and recovery) is at a minimum.

Finally, the societal universe of concern in the second
problem refers to how expected net losses related to fires are
added up. The expected net losses could be limited to the
market value or the net change in economic welfare deriv-
ing from damaged resources and structures in the spatial-
temporal-institutional unit of inference. The problem could
be defined much more broadly, however, including the
expected net losses attributable to fire that are experienced
in all economic sectors, including nonmarket values. In an
economic context, the net losses would be described in
welfare terms.

The second problem could also be defined as a multiyear
optimization or a long-run optimization, requiring discount-
ing over time. Long run optimization and discounting may
be necessary to evaluate the effects of current decisions on
future wildfire activity. These include prescribed fire, me-
chanical fuel treatments, and fuels management activities,
which may have effects that last several years. Further,
suppressing fires can result in higher rates of future fires or
in more intense fires, requiring additional suppression costs
(Mercer et al. 2007). A multiyear optimization may be
necessary when one is modeling the costs incurred in the
suppression activities of individual fire managers, who
might not consider long-term impacts of fire suppression
actions in active firefighting resource deployments (e.g.,
Donovan and Brown 2005).

A Theoretical Structure for a Government
Agency

We assume that our government agency considers fire
management as a LCNVC problem. In addition, we assume

that the agency has some indication that historical actions
and weather will affect current (or forecast) year spending
to suppress wildfires on the lands that it manages. We also
assume that the agency’s own policy, to prioritize the pro-
tection of human lives, public and private property, and
natural resources (in that order), affects how much the
agency spends on wildfire suppression (US Department of
the Interior and Department of Agriculture 1995). Opera-
tionally, this last assumption could mean that, as human
populations and their structures increase in density in the
vicinity of the land that it is charged to protect, spending
may rise. However, greater human populations could cor-
respond with greater road density and interruptions in fuel
contiguity, which may hinder wildfire spread and enable
more efficient suppression resource allocation; the net effect
on suppression costs of a human population rise (without
controlling for a road density rise) would be unclear.

In the United States, while aggregate spending on fire
suppression has increased over time, data are insufficient to
demonstrate how various components of costs have changed
over time. The largest single component of suppression costs
has consistently been salaries and benefits for USFS employ-
ees involved in fire suppression (Table 7). When the percent-
age of expenditures from 1993–1994 are compared with those
from with 2000–2005 in three major categories, there is little
difference. What this table cannot show, however, is how
changes in overhead teams, federal salary increases, and con-
tracting regulations have affected the type of input derived
from these expenditures. For example, the “Emergency equip-
ment rental agreements and other contracts” category includes
contracts for crews, equipment, food, and showers. For the
years for which we have detailed data, some trends can be
seen, but the time span is too short to draw conclusions.

Background on Regressor Variables
The Niño3 SSTA

The Niño3 SSTA is used to define the phases of El Niño
and La Niña (Trenberth 1997). The models include 1-year
lags of the Niño3 SSTA, which is a measure of central
Pacific equatorial sea surface temperatures. Niño3 SSTA
has been shown to be related to precipitation and tempera-
ture in many parts of the United States, where higher
positive anomalies (“warm” phase) are correlated with
higher precipitation across the southern United States and
lower precipitation in the northern tier of states (Swetnam
and Betancourt 1990, Brenner 1991, Barnett and Brenner
1992, Prestemon et al. 2002, McKenzie et al. 2004, Mercer
and Prestemon 2005, Schoennagel et al. 2005, Kitzberger et
al. 2007). Thus, the Niño3 SSTA effects on suppression
costs are indeterminate.

SOI

The SOI is a function of the sea level air pressures in
Tahiti and Darwin (Australia). The SOI is related to the
same central Pacific sea surface (ocean water) temperatures
that define El Niño and La Niña. Our hypothesis is that SOI
may contain additional information not included in the
Niño3 SSTA. Research has linked SOI and wildfire (e.g.,
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Simard et al. 1985; Swetnam and Betancourt 1990, 1998),
and SOI has been tied to long-term drought and precipita-
tion variations in the western United States (Cayan et al.
1998). But similar to the above, the effect of SOI on
suppression costs could be positive or negative, depending
on the strength and duration of the anomaly. Some research-
ers have used SOI directly in studies of climate and wildfire,
but they are using SOI as an indication of ENSO (e.g.,
Collins et al. 2006).

NAO

The NAO measures the difference between polar low
and subtropical high pressure in the northern Atlantic
Ocean. Research shows that the NAO is correlated with
wintertime precipitation and temperatures in the eastern
United States and with other weather anomalies in Alaska.
In its positive phase, the eastern United States has milder
and wetter winters, whereas in its negative phase, the east-
ern United States has colder and snowier winters. Again, no
previous studies have evaluated NAO and wildfire, al-
though NAO is related to temperature and precipitation
patterns in parts of North America (Hurrell et al. 2003), and
other correlations have been identified with other Atlantic
anomalies (Collins et al. 2006, Kitzberger et al. 2007). We
hypothesize that suppression costs for the eastern regions
will be positively influenced by NAO.

PDO

The PDO is defined as the first principal component of
monthly sea surface variations north of 20° north latitude in the
Pacific Ocean. Other research has indicated that the PDO
demonstrates patterns similar to the El Niño-Southern Oscil-
lation but that the former exhibits much longer persistence.
Several studies have found that the phase of the PDO accen-
tuates the influence of ENSO for wildfire and, thus, we con-
clude, on costs (McKenzie et al. 2004, Schoennagel et al. 2005,
Collins et al. 2006, Kitzberger et al. 2007). It is noteworthy that
the PDO has exhibited mainly a positive phase since the 1970s,
correlating positively with fire activity in the western United
States. But PDO effects on suppression costs are an empirical
matter because of its differential expected effects in the north-
ern and southern tiers of states.

AO

The AO measures shifting high- and low-pressure pat-
terns in high northern latitudes of the earth. In its positive
phase, it brings drier and warmer than normal weather to the
western United States. Previous studies have not attempted
to identify the AO as a influence contributing to wildfire.
We hypothesize that AO would be related to less moisture
in parts of the US west and thus would correlate with
suppression costs. The AO has been mainly in its positive
phase since the 1970s, perhaps coincidentally correspond-
ing with higher fire activity in the western United States.

PDSI by USFS Region

There are several Palmer indices, corresponding to the
average, meteorological, hydrologic, and short-term mea-

sures of drought, obtained from the National Oceanic and
Atmospheric administration (National Oceanic and Atmo-
spheric Administration (NOAA) 2006c). We tested all of
these and used only the western region hydrologic (H) and
individual region short-term (Z) measures. A weighted in-
dex for each region was developed by weighting the PDSI
from each climate reporting district by the USFS acres in
that district. PDSI values range from �7 to � 7, with
positive values representing below average drought. We
hypothesize a negative relationship between PDSI (both the
Z and H measures) and fire activity and thus suppression
costs (Westerling 2002, 2003, Crimmins and Comrie 2004,
Gedalof et al. 2005, Collins et al. 2006).

Systematic Trends in Costs over Time

Real (dollar-deflated) changes in labor, capital, contract-
ing, and fuel costs have probably influenced spending on
fire suppression over the long sweep of time. Further, wild-
fire fuel buildups related to historical fire suppression and
longer term climate changes not captured in other included
measures may lead to steady changes in costs over time. In
addition, the population in the wildland-urban interface has
grown in most parts of the country (e.g., Radeloff et al.
2005). Finally, climate-related changes in length of burn
and season lengths (Westerling et al. 2006) could also be
systematically evolving over time in a manner that could be
captured with a simple trend variable. Because many of
these secular changes are highly correlated and those cov-
ering the model estimation area sometimes not consistently
available, we include region-level time trends to consolidate
their joint impacts. It bears mentioning that if all relevant
climate-related cost drivers are included in items 1–6,
above, then a coefficient on a time trend that is statistically
different from zero could capture the aggregate, long-run
effect of all other cost drivers, including those associated
with an expanded wildland-urban interface, changing pri-
vate sector aviation and crew contracting costs, and more
complicated rule structures faced by wildland firefighters [7].

Error Band Generation

Once point estimates of suppression costs for both forecast
lead times are made by applying the estimated suppression cost
equations for each of these regions under each forecast lead
time, we use a Monte Carlo bootstrapping approach to generate
forecast probability distributions for fiscal year 2007. They are
made by randomly varying model parameter estimates and
randomly adding equation errors to the models before a fore-
cast is made. Following methods described by Krinsky and
Robb (1986), these random errors account for cross-equation
error and cross-parameter correlations.

Random equation errors are generated by exploiting the
estimated correlation matrix of equation errors, 
̂•, from the
estimates of Equation 5. Let Cov(s) be the N � N symmetric
cross-equation regression error covariance matrix,
Cholesky[Cov(s)] be the N � N Cholesky decomposition of
this covariance matrix, and Qt

N be an N � 1 standard normal
variate. A random vector of equation errors, ŝt, which cap-
tures the covariances described in Cov(s) is therefore ŝt �
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Qt
N � Cholesky[Cov(s)]. A matrix of randomly generated

parameters that embody the cross-parameter (and cross
equation-cross parameter) estimation correlations are simi-
larly generated. Let B̂ be a 1 � 
enMn stacked vector of the
Mn parameter estimates from each of the regions. The

enMn � 
enMn covariance matrix of these parameter esti-
mates is Cov(B̂). Given a 1 � 
enMn standard normal
variate, QB, a simulated set of parameter estimates for each
iteration of the Monte Carlo is calculated as B � QB �
Cholesky[Cov(B̂)] � B̂, where Cov(B̂)] is the Cholesky
decomposition of the covariance matrix of parameter esti-

mates. This error perturbed cost forecast process is repeated
50,000 times for all regions simultaneously. Confidence
intervals and empirical forecast probability density func-
tions can be described for each region and for an aggregate
total (agencywide). To do this, all Monte Carlo-generated
forecast values for each region are saved and then ranked
from lowest to highest. For example, the 2,250th and
47,750th values in that ranking correspond to the lower and
upper bounds, respectively, of a 90% confidence band
around the total forecast suppression cost in real dollars for
each region and for the agency.
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