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ABSTRACT. Different harvest timing models make differ-
ent assumptions about timber price behavior. Those seeking
to optimize harvest timing are thus first faced with a deci-
sion regarding which assumption of price behavior is appro-
priate for their market, particularly regarding the presence of
a unit root in the timber price time series. Unfortunately for
landowners and investors, the literature provides conflicting
guidance on this subject. One source for the ambiguous re-
sults of unit root tests of timber prices may involve data prob-
lems. We used Monte Carlo simulations to show that aggre-
gating observations below their observed rate resulted in simi-
lar power reductions and empirical size distortions across three
classes of unit root tests. Moving-average error structures can
also affect power and sizes of tests on period-averaged data.
Such error structures can also be created by the kind of tem-
poral averaging common in reported timber prices. If we take
timber prices at their face value and therefore ignore these
sampling error and temporal aggregation complications, we
find that unit root tests on southern timber prices support
a unit root in 158 out of 208 product-deflation combinations
tested, random walks in 38 of the series found to be nonsta-
tionary, and stationarity in none. However, if we recognize
temporal aggregation errors, unit root tests more commonly
favor stationarity, especially for pulpwood stumpage. Because
price trends for sawtimber and pulpwood products may be-
have differently even in the same region, stochastic harvest
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timing models must be developed that allow their multiple
products to follow different price paths.

KEY WORDS: Nonstationarity, stationarity, unit root,
stumpage, temporal aggregation.

Introduction. Optimal timber harvest timing has received much
attention in the literature in the past quarter century, e.g., Norstrgm
[1975], Lohmander [1988], Brazee and Mendelsohn [1988], Clarke and
Reed [1989], Haight and Holmes [1991], Haight and Smith [1991],
Thomson [1992], Yin and Newman [1995a, 1995b, 1996, 1997], For-
boseh et al. [1996], Abildtrup et al. [1997], Plantinga [1998], Gong [1998,
1999], Brazee and Bulte [2000], Reeves and Haight [2000], Saphores et
al. [2002], Yoshimoto and Shoji [2002], and rightly so. Maximization of
returns to timber management by carefully timing timber harvests and
intermediate treatments depends in part on how prices are expected
to evolve over time. Such expectations, however, depend on timber
owner price perceptions (Burton and Love [1996], Gomez et al. [1999])
as well as actual price behavior. In choosing the “best” harvest tim-
ing model available, actual price behavior, especially the presence of a
unit root in the timber price time series, is pivotal. If owners err in
their perceptions, e.g., thinking that prices are stationary when, in fact,
they are nonstationary, significant negative economic consequences may
follow, including sub-optimal returns to timber production and under-
investment in timber as a land use (Brazee and Mendelsohn [1988],
Haight and Holmes [1991], Yoshimoto and Shoji [2002]). The results
of such research may not be useful for all timber producers. For exam-
ple, industrial owners whose production is linked to a particular mill
may not find these decisions critical. For many large landowners, how-
ever, more realistic perception of price behaviors could yield economic
benefits both to themselves and to society in general.

Given its central importance for timber management decision-making,
it is surprising that published studies on the time series behavior of tim-
ber prices, e.g., Washburn and Binkley [1990], Hultkrantz [1993], show
such a confusing array of approaches. For example, Washburn and
Binkley [1990] use turning point tests and examination of residuals of
regressions (effective deflation by stock returns and by a commodity
price index), while Hultkrantz [1993] uses Dickey-Fuller tests. Haight
and Holmes [1991] use the augmented Dickey-Fuller test on one con-
sumer price index-deflated timber price series, while Prestemon [2003]
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uses a lag order selection technique with the ADF as well as long run
return regressions on similarly-deflated time series and applies them
Southwide. Prestemon and Holmes [2000] use a lag order selection tech-
nique on nominal series. Most of these studies, and others not cited,
also have different lengths of time series and evaluate price behavior
with series reported at different frequencies (months or quarters). It
may therefore be worthwhile to evaluate the individual effects of some
of these assumptions, data structures, and tests on conclusions about
price behavior.

These conflicts in testing across studies may have arisen from at least
three data complications, in addition to assumption and test differ-
ences. These complications arise in the chain between the data gath-
ering process used to develop a price series and the empirical result of
a statistical test on the series. The complications affect the empirical
size and the statistical power of unit root tests. One kind of com-
plication arises from incomplete observation of the entire population,
which most analysts cannot directly control. The resulting sampling er-
ror introduces a positive moving average term into the observed process
(Brewer [1973], Harvey [1981, p. 43]), lowering the power and distorting
the size of unit root-null unit root tests, e.g., Schwert [1987, 1989]. Two
other complications which we will address in this research arise from the
existing nuisance parameters in the true series (Said and Dickey [1984],
Schwert [1987, 1989]) and from the introduction of moving parameters
created by temporal aggregation (Working [1960], Brewer [1973], Har-
vey [1981], Haight and Holmes [1991], Maeso-Fernandez [1998], Taylor
[2001]), both of which affect the empirical sizes of unit root tests, e.g.,
Phillips and Perron [1988], Schwert [1989], Hall [1994], Perron [1996].
Small degrees of temporal aggregation transform true ARIMA(p, d, q)
series into IMA (d, d) observed series (Tiao [1972], Brewer [1973]), while
large degrees can make them IMA(d,0) observed series (Rossana and
Seater [1995]). All of these effects from data complications are en-
hanced, as well, by small samples and short data time spans, and some
tests are more prone to these effects than others, see, for example,
Shiller and Perron [1985], Schwert [1987, 1989], Lo and MacKinlay
[1988, 1989], and Leybourne and McCabe [1994].

Finally, a common practice in evaluation of commodity prices is ex-
pressing nominal prices relative to other prices—for example deflating
to account for general price level changes or the prices of alternative
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products in an investment portfolio. Harvey [1981] explains that this
may create a time series process more complex than either of the com-
bined original series, while Schnute [1987] further describes the spurious
patterns that can arise from this.

The choice of statistical test can also affect the outcome of the hypoth-
esis being tested. Each test has its power limitations and empirical size
distortions when faced with various time series complexities. Below, we
elaborate on and show with empirical examples how temporal aggre-
gation, some kinds of nuisance parameters, deflation assumptions, and
the statistical test itself can affect conclusions about price processes.
By explicitly recognizing the effects of each of these issues, we can use
available data and tests to draw more accurate conclusions about the
applicability of the two classes of harvest timing rules.

Methods. Models of harvest timing under stochastic prices belong
to either of two main strands, one assuming that prices are stationary
(mean-reverting) and the other, nonstationary, Table 1. Economic
doctrine that backward-looking asset price perceptions are not rational
or imply market imperfections (Samuelson [1965], Fama [1970, 1991],
LeRoy [1989]) suggests that timber prices should be a martingale
(Abildtrup et al. [1997]), but this assessment only applies under strict
circumstances. For example, more complex price behavior may arise if
obtaining or responding to prices incurs costs.

Timber storage capabilities and nonzero storage costs (Williams and
Wright [1991]) and (Deaton and Laroque [1996]) may also explain why
prices may not behave according to martingale patterns even while
markets are efficient. However, the underlying operation of a storage
model implies that time series tests relying on Gaussian distributions
of price innovations are invalid. The validity of the storage model for
observed stumpage prices, on the other hand, depends on the possibility
that the supply of the stored commodity sometimes comes close to being
exhausted. Although McGough et al. [2002] have simulated the impacts
of storage on an observed price series, we are not aware of research that
empirically evaluates the exhaustion question for U.S. timber markets.

For the purposes of this study we are therefore assuming that price
innovations are consistent with Gaussian behavior at the market level
and that storage processes are unimportant. The implications of this
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assumption are themselves worthy of additional research.

We must acknowledge the simultaneity problem with evaluating tim-
ber price behavior. By acting on their assumptions, individual owners
influence the market whose behavior they seek to understand. The
smaller the geographic scope of evaluation, the greater the impact
one’s harvest has on the price received by that owner. This kind of
fine-scaled harvest timing model is not the subject of our analysis. We
focus instead on broader markets where an individual is a small part
of a market and has little impact on market prices. This direction is
consistent with the harvest timing literature whose conflicting results
we seek to clarify.

Each strand of harvest timing models carries different sets of recom-
mendations and implications for land use and land value and implies
a different response when faced with a price change. In their stark-
est contrast, stationary-price harvest timing models require landown-
ers to harvest when a price exceeds a time-dependent reservation price,
while nonstationary-price models require landowners to harvest when
the price falls below a time-dependent reservation price. See Haight
and Holmes [1991] for an explanation of the reservation price differ-
ences and our Table 1 for a listing of some of the differences in assumed
price processes in different harvest timing models.

Haight and Holmes [1991], reflecting a critique by Working [1960],
recognized that temporal aggregation of data could be an important
statistical barrier to understanding the “true” timber price generation
process so critical to optimal harvest timing. The barrier derived from
period-averaging. In line with a generalization by Taylor [2001] and
works of Tiao [1972] and Brewer [1973], they found that temporal ag-
gregation of a truly stationary underlying price series raises the prob-
ability that a stationary price would appear nonstationary. They also
showed that spot-sampling from a series rather than period-averaging
would not raise this probability. Harvey [1981] and Weiss [1984] explain
that spot-sampling does not create the additional moving average term
that changes this probability. Temporal averaging therefore would be
expected to raise Type I error rates above the rate experienced with
spot prices in stationarity-null unit root tests, e.g., Kwiatkowski et al.
[1992], Leybourne and McCabe [1994]. However, we can find no evi-
dence that this specific effect of temporal averaging has been quantified
in the literature.
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Our analysis of price behavior evaluates the outcomes of unit root
tests of timber prices using simulation and empirical estimation. In
both contexts, we examine three classes of unit root tests that, taken
together, may enhance our confidence regarding the true nature of
a time series. We use simulation to quantify the effects of period-
averaging and spot-sampling observations from a longer underlying
series and to generate adjusted critical values for the available tests
that conform to a desired Type I error rate.

Augmented Dickey-Fuller test. The first class of unit root tests we
examine is the augmented Dickey-Fuller test: the t-test (ADFT) and
the rho-test (ADFR) (Dickey and Fuller [1979, 1981], Said and Dickey
[1984]). The ADFT and the ADFR both begin by considering a series,
{yt}, in which the following relationship holds (Hall [1994]):

Yt = QY1 + 2¢

J
S 2t = Z Pz—j + ey
J

and where —1 < a < 1 and {e;} are independently and normally-
distributed about a mean zero. The augmented form of the ADF test
is based on whether the coefficient b differs from zero in the following
ordinary least-squares (OLS) regression:

K
(2) dys = a+by1 + Z crdyi i + Tt + w4
k=1

where d is the first difference operator and where a, the c¢;’s and 7
are additional (nuisance) parameters to be estimated. The ADFT test
statistic is calculated as ADFT = 1;/ &y, where b is the estimate of b in
(2) and 6y is its standard error. The ADFR test statistic is consistently
calculated as ADFR =T -b/(1 — Y r_, &), where T is the number of
observations in the regression and the ¢;’s are estimates of c¢;’s shown
in (2) (Hamilton [1994, pp. 522-524]).

The size of K in (2) and the deterministic time trend, ¢, should be
based on either a priori expectations or some model selection approach.
The “general-to-specific” model selection strategy recommended by
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Hall [1994], a consistent lag-order selection approach to the ADF,
determines K in our research. The procedure begins at the longest
probable lag and sequentially drops the last lag until the minimum of
the Schwarz Information Criterion (SIC) (Schwarz [1978]) is found. We
note that Agiakloglou and Newbold [1992] found that such a strategy
does badly when the true data-generating process is an ARIMA(0,1,1),
typically choosing K to be too small; this leads to values of the
ADFT that are too large and high Type I error rates compared to
alternative strategies. Nonetheless, if the initial number of lagged terms
is sufficiently long and the selected order of the ADF is zero, then the
ADFT and the ADFR are effectively random walk tests.

Variance-ratio test. From the second class, variance ratio tests, we
use the variance ratio test for the random walk designed by Lo and
MacKinlay [1988]. Variance ratio tests evaluate whether the variance
of longer-term changes in the series rises in step with time, which would
occur with a nonstationary series. The homoscedastic variance version
of Lo and MacKinlay’s [1988, 1989] variance ratio test to identify
a random walk is as follows. Given ng + 1 observations of {y;},
(Y0,Y1,- -+ ,Yng) Where both n and ¢ are integers (> 1), parameters
p and o2 are estimated as w and s2, an adjusted, i.e., unbiased,
specification test statistic is based on

u = (Yng — %0)/(nq),
(3) se=(ng—1)"" (h —ye1 —u).

t=1

Next, the variance of the gth differences of y;, o7, under Lo and
MacKinlay’s [1988] null hypothesis, is ¢ times the variance of first-
differences. Hence, an estimate of o7, divided by ¢, should also converge
to o2 under the null. Let s3(q) be the adjusted (unbiased) estimator of
the variance of the gth-differences of y;, o2(q):
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Now calculate the dimensionless centered variance ratio, M,(q) =
(s2(q)/s2) — 1, which converges in probability to zero (Lo and MacKin-
lay [1988]). In their simulation article, Lo and MacKinlay [1989] show
how the test is more powerful than the ADFT test, as long as ¢ remains
less than half of 7. The normalized N (0, 1) version of M, (q) is z1(q):

_ _ —1/2
(5) 21(g) = Vg, (q) - (2(2(1;;(<zl)> |

Asymptotically, z1(q) is distributed normally. Note, the Lo-MacKinlay
test is powerful against an AR(p) alternative and against ARIMA(p, 1, q)
alternatives. The Lo-MacKinlay is designed to be most powerful at de-
tecting the random walk; comparing it with the ADFT and ADFR test
outcomes becomes a check on the results of each.

Leybourne and McCabe test. Unlike the ADF and the Lo-MacKinlay
test, a third class takes stationarity as the null time series process. In
our analysis we implement a test by Leybourne and McCabe [1994],
shown by those authors to have better size and power properties in
most circumstances than an earlier test developed by Kwiatkowski et
al. [1992]. Leybourne and McCabe’s [1994] score-based stationarity test
begins with the specification of a unit root process, wherein

O(L)y: = oy + Br + &4
(6) -
Qp =1+

where {g,} is independently and identically distributed (0, c2) and {n;}
is distributed independently and identically distributed (0, 072]). Also,
L is the lag operator and ®(L) =1 —¢1 L — ¢oL? —--- — ¢, LP is a pth-
order autoregressive polynomial with roots outside the unit circle. This
model (6) is second-order equivalent in moments to the ARIMA(p, 1, 1)
process, ®(L)(1 — L)y = B+ (1 — 0L)g, where 0 < 6 < 1 and ¢
is independently and identically distributed (0,0?). Leybourne and
McCabe [1994] show that the existence of a nonzero o2 is evidence of a
nonstationary ARIMA(p, 1,1) process against a null of an AR(p,0,0)
process. The test statistic developed by these authors begins with the
maximum-likelihood estimate of the parameters ¢ = (¢1,d2,... ,0p),
made by fitting the ARIMA model,

P
(7) dyr = B+ Z Didye—; + ¢ + Ose—1

i=1
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and then constructs the series y; = ys — > 0_, ¢7y;—;, where the ¢ are
estimates of ¢; from (7).

Two possible least-squares regressions can be estimated: regressing
y; on an intercept (no-trend case), or regressing y; on an intercept
and a trend (deterministic time trend case). The test is conducted on
the residuals, {e*}, from either of these two possible regressions, by
s* = 72T 2e"Ve*, where 022 = ¢*¢*/T and V is the covariance
matrix of a nonstationary series, where the elements v;; of V are the
min(z, j). Critical values for the statistic s* are tabulated for both the
no-trend and the deterministic time trend case by Kwiatkowski et al.
[1992] and are applicable to the test of Leybourne and McCabe [1994].
Leybourne and McCabe showed in simulations how the number of lags
of differenced prices in (7) did not appreciably affect the outcome of
the test.

Because the three classes of unit root tests that we employ here
have different strengths and weaknesses, combining them in a heuristic
fashion can bolster confidence in our conclusions about the actual time
series behavior of timber prices. Specifically, Dickey-Fuller type tests
have been criticized as being more weakened by nuisance parameters
than alternative tests, especially by the additional lags needed to test
for the unit root. Lo and MacKinlay’s [1988, 1989] variance ratio
test avoids many of the specification issues inherent in ADF tests
(Cecchetti and Lam [1994]). Finally, both the ADF and variance ratio
test are weak in identifying stationary series with large but non-unitary
roots, especially when moving average terms are present. Leybourne
and McCabe’s [1994] method is structured to be good at detecting
stationary series with large moving average components. A weakness
of the Leybourne-McCabe test is the severe size distortions in the test
created by these very moving average components (Caner and Killian
[2001]).

Data and empirical approach. Unit root and random walk
behavior for timber prices were evaluated using the statistical tests
described above for twenty-one U.S. southern timber sub-markets.
These sub-markets are geographically delineated as two regions per
state, from Virginia to Texas. Quarterly prices of southern pine
and hardwood stumpage for these sub-markets were obtained from
monthly and quarterly price reports of Timber Mart-South (TMS)
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(Norris Foundation [2002]), from 1977 to 2002 (second quarter). TMS
prices were reported monthly until 1987 and quarterly thereafter, so the
monthly prices were converted to quarterly prices by period-averaging
the monthly series. The quarterly series reported since 1987 are more
akin to quarterly period-averaged prices (Harris et al. [1999]).

TMS sub-market boundaries changed once during the sample period.
In order to make the pre-1992 series spatially consistent with prices
reported 1992-onward, we applied the approach outlined by Prestemon
and Pye [2000]. The Prestemon and Pye [2000] approach used average
timber harvest activity in counties to derive weights for the pre-1992
prices corresponding to the old Timber Mart-South regions. A weighted
sum of pre-1992 prices under the pre-1992 region definitions were
transformed into prices corresponding to the new region boundaries.

Timber Mart-South sub-market boundaries (“areas” in the TMS
reports) were defined by Timber Mart-South, based on their own
studies of market areas. Region boundaries were chosen such that the
forestland and markets contained within are similar in terrain, timber
demand (mill types), harvest activity, and species mixes, among other
factors (see Gunter and Cubbage [1987]).

Normality tests showed that logarithmic price series had distribu-
tions closer to normal than raw prices. Hence, prices—deflated and
undeflated—were transformed by the natural logarithm. Such trans-
formation could affect test results and is an area worthy of additional
research. Nevertheless, if the dependent variable in a least squares
regression is not normally distributed, statistical techniques such as
the least-squares regression of the ADF would not be consistently esti-
mated.

The United States Department of Commerce [2002a,b] was the source
of PPI and CPI data, while stock market returns were taken as the
average value of investments including reinvested dividends of the
Standard and Poors 500 index (Anonymous [2002]). Quarterly PPI,
CPI, and stock indices were generated in the same manner as were
timber prices from monthly reporting periods-period-averaging across
the three months of each quarter.

To better understand the effects of the kinds of period-averaging
present in our data on the outcomes of the ADFT, ADFR, and
Leybourne-McCabe tests, we conducted Monte Carlo simulations for
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a sample size similar to those available for empirical testing of timber
price data, 100 observations. This sample size, coincidentally, is also
a standard sample size evaluated in the unit root test simulation liter-
ature, so using this size makes comparisons with simulations by other
analysts more straightforward.

The simulations of the ADFT and ADFR tests quantified their
empirical sizes (rates of null hypothesis rejection) using the general-
to-specific model selection strategy of Hall [1994] when applied to
series that were period-averaged across the three periods, e.g., creating
a “quarterly” observation out of three “monthly” observations, and
series that were spot-sampled once every three periods, e.g., creating
a “quarterly spot price” observation by sampling every three periods
from the “monthly” observations. This monthly-to-quarterly temporal
aggregation effect is what Haight and Holmes [1991] examined in their
analysis, a logical departure point in our study. Nevertheless, our
results will imply the directional impact of three-to-one aggregation
of point observations, which might not accurately reflect the true rate
of data generation for timber prices. These prices might, in fact, be
best characterized as generated within a region by each timber sale,
and such sales probably occur daily. We note, however, that the span
(the actual time between the beginning and the end of a time series) is
a dominant determinant of statistical power in time series tests of the
unit root (Shiller and Perron [1985]). In our analysis, we do not directly
address the effects of span, although this would be an area worthy of
extensive analysis. We also leave to future research the issue of what
is the “true” rate of data generation for the regional market price of
timber.

In our simulations, we generated 10,000 replicates of an ARIMA series
Yyt = a+ pys—1 + Oes_1 + e;, where e; was a Gaussian random variable;
p was set at 1.0, 0.98, 0.95, 0.8, and 0.5; and 0 was set at -0.8, 0, and
0.8 (simulations for 0.5 and -0.5 are available from the authors). The
number of “monthly” observations in each replicate of the true ARIMA
series was set at 1000 + [3 * int{8(7/100)*/4} + 3] + 300 = 1327. The
first 1,000 observations of a simulated “monthly” series were not used
to avoid start-up effects, while the (3  int{8(7/100)'/4} + 3) + 300
observations were used for generating an effective quarterly data sample
size of 100 upon which to implement the Hall [1994] strategy with
conditioning. The formula between the braces of this sum, the integer
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part of the ratio of 87'/100, equal to 8 for an effective sample size
of T = 100 “quarterly” observations, see Schwert [1989], was the
number of lagged difference terms used in the ADF regression on
the “quarterly” data. Conversion of the “monthly” data required
three times that number. Eight lags reflected a compromise between
potential over-specification (and hence power reductions) and under-
specification (and hence inconsistency). Three observations were added
to the braced term to generate an additional “quarterly” observation
to accommodate the first lagged term in the ADF regression. The
Hall [1994] general-to-specific procedure used the Schwarz Information
Criterion (SIC) (Schwarz [1978]), starting with eight lagged difference
terms. Simulations were done for both the trend- and the no-trend
versions of the ADFT and ADFR tests. In the interest of clarity, we
limit most of our discussion results to those of the no-trend versions
of the ADFT and ADFR tests. In what follows, tables of results for
simulations of the trend versions of the ADFT and ADFR tests are
briefly discussed, and they are available from the authors upon request.

Simulations of the outcomes of the Leybourne-McCabe test (trend
version) for period-averaged and sampled data were also done, with a
table comparable to those generated for the ADFT and ADFR tests.
The test was based on four lagged autoregressive terms (simulations
with twelve such terms were more distorted and over-sized than tests
with four). As in the ADFT and ADFR tests, the simulations dropped
the first 1,000 observations of a simulated series to avoid start-up
effects, and the subsequent 312 observations were used to generate the
quarterly observations needed for the test, including the four lagged
difference terms.

For the southern timber prices that we analyzed, unit root tests under
the nonstationary null (ADFT, ADFR, Lo-MacKinlay) were done both
with and without a deterministic time trend. Tables of results using the
trend versions are available from the authors upon request. ADFT and
ADFR tests with the Hall [1994] procedure began with a maximum of
sixteen lagged difference terms, to account for potential AR or MA gaps
(see Hall [1994]) and held the number of usable observations constant
as the lags were reduced toward zero. Given our available sample size
(102), the conditioning allowed for effective sample sizes of 85 for the
majority of series. When we evaluated the outcomes of the ADFT and
ADFR tests for a unit root in southern timber prices, we applied the
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values obtained by applying the algorithms of MacKinnon [1991] for
the ADFT and found in Hamilton [1994, p. 761] or Fuller [1976, p. 371]
for the ADFR.

Lo-MacKinlay tests examined the variance ratio at time lags of
ten quarters. The ten quarter choice was determined to be a good
compromise between power and nominal size of the test—very short and
very long lags shorten the series and were shown by Lo and MacKinlay
[1989] to be most powerful against the random walk null. Although we
did not address the issue through simulation, we are not sure whether
such a compromise between power and consistency would be effective
or possible using period-averaged or sampled data.

Leybourne-McCabe tests incorporated four lags of price difference
terms, sufficient to cover autoregressive behavior in a price series.
This choice was also a compromise between statistical power and
potential inferential mistakes associated with under-specification of the
autoregressive price structure. The Leybourne-McCabe test included a
time trend, as recommended by Caner and Killian [2001].

Assessments on whether series are random walks were made based
on the results of the Lo and MacKinlay [1988, 1989] test, and whether
the ADFT and ADFR test regressions selected using the Hall [1994]
model selection approach included lagged difference terms. The null
hypothesis of the Lo-MacKinlay test is the random walk, so a non-
rejection of the Lo-MacKinlay test provides some empirical support
of the random walk. The null hypothesis of the simple Dickey-Fuller
test is that a series is a random walk. If the Hall [1994] model
selection procedure indicates that no lagged difference terms are needed
in the augmented Dickey-Fuller t-test, then the resulting statistical
test for a unit root amounts to a test of the random walk conjecture.
This latter approach on the ADFT was used by Prestemon [2003].
Missing data limited the tests that we could run in some Timber Mart-
South sub-markets for the Lo-MacKinlay and Leybourne-McCabe tests.
Consensus conclusions about the existence of a unit root and a random
walk were confined to the continuous series.
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TABLE 1. Some timber harvest timing research based on

stochastic timber (stumpage) prices.

Citation Price Process Assumed

Brazee & Bulte [2000] Stationary, discrete time

Brazee & Mendelsohn [1988] Stationary, discrete time

Clarke & Reed [1989] Nonstationary, continuous time
geometric Brownian motion (GBM)

Forboseh et al. [1996] Stationary, discrete time

Gong [1998] Stationary, discrete time

Gong [1999] Stationary or random walk,
discrete time

Haight & Holmes [1991] Stationary, discrete time; nonsta-
tionary random walk, discrete time

Haight & Smith [1991] Stationary, discrete time

Lohmander [1988] Stationary, discrete time

Norstrgm [1975] Stationary, discrete time

Plantinga [1998] Stationary, nonstationary,

discrete time
Reeves & Haight [2000] Stationary, discrete time
Thomson [1992] Nonstationary, random walk

(discrete time)

Yin & Newman [1995a] Nonstationary, GBM
Yin & Newman [1996] Nonstationary, GBM with Poisson jumps
Yoshimoto & Shoji [2002] Nonstationary or stationary continuous-

time state-dependent volatility process

Results. We first present the results from the simulations that
compare period averaging with spot sampling, and then explore results
of empirical tests of softwood sawtimber, and softwood and hardwood
pulpwood markets.
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Simulations. Tables 2 and 3 summarize simulations of outcomes
of ADFT and ADFR tests and support two principal findings. First,
tests applied to either spot-sampled or temporally-averaged series have
similar empirical sizes. Across all truly stationary models, in most
cases period-averaging resulted in modest power reductions compared
to spot-sampling, but the pattern of effect varies according to the size
and sign of the moving average parameter. With a zero or positive
MA(1) parameter, period-averaging reduces power; with a negative
and large moving-average parameter, period-averaging increases power.
With large or positive moving average parameters, the ADFT correctly
rejects a false null more often with sampled data; the opposite can
occur when the moving average parameter is negative. Empirical
sizes for truly nonstationary series (p = 1) at 5 percent nominal
significance average about 0.01 closer to nominal significance for spot-
sampled data; but the period-averaged nonstationary series produce
better size properties than the comparable sampled series when the
additional moving average parameter is negative and large. These sizes
correspond closely to those generated by continuous datasets of lengths
of about 250 observations (see Hall [1994]), validating a finding by
Shiller and Perron [1985] that size distortions are more sensitive to
span than frequency of observation. So even though averaging or spot-
sampling data can weaken inference in testing through the introduction
of nuisance parameters (Brewer [1973], Harvey [1981], Weiss [1984]),
inferences are more accurate than those obtained using data modeled
at the true rate of generation but covering a shorter span.

With the ADFR, the empirical size of the test is not much different
between spot-sampled and period-averaged series, but both kinds of
series result in over-sized ADFR tests. Spot-sampled nonstationary
series produce sizes six times the nominal rate of 0.05 when the moving
average parameter is -0.8, while period-averaged series produce ADFR
tests that are less distorted when the MA(1) parameter is negative.
The ability of the ADFR to detect large but non-unitary autoregressive
roots differs little between spot-sampled and period-averaged series: for
positive and zero MA(1) terms, period-averaged data produce more
powerful ADFR tests; for negative MA(1) terms, ADFR tests on spot-
sampled data are more powerful.
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TABLE 2. Augmented Dickey-Fuller t-test (ADFT) empirical sizes for 10,000
simulated 324-observation pseudo-monthly series converted to pseudo-quarterly
spot or quarterly averaged series of effective lengths of 100 observations. Sizes are
based on the Hall [1994] SIC-based general-to-specific model selection strategy, eight
lagged difference terms, and eight observations withheld for conditioning across

models. Empirical sizes are evaluated at 5 percent significance using the nominal

J.P. PRESTEMON

levels determined by MacKinnon [1991].

AR(1) MA(1)  Empirical Sizes (Rejection Rates)
Parameter Parameter at 5% Nominal Significance
Samples Period-Averages
1.00 0.00 0.064 0.067
0.98 0.00 0.186 0.174
0.95 0.00 0.563 0.497
0.90 0.00 0.861 0.822
0.80 0.00 0.927 0.920
0.50 0.00 0.955 0.950
1.00 0.80 0.058 0.068
0.98 0.80 0.158 0.191
0.95 0.80 0.478 0.521
0.90 0.80 0.845 0.806
0.80 0.80 0.919 0.919
0.50 0.80 0.955 0.947
1.00 -0.80 0.210 0.124
0.98 -0.80 0.520 0.363
0.95 -0.80 0.816 0.731
0.90 -0.80 0.928 0.899
0.80 -0.80 0.958 0.959
0.50 -0.80 0.958 0.985
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TABLE 3. Augmented Dickey-Fuller rho-test (ADFR) empirical sizes for 10,000
simulated 324-pseudo-monthly series converted to pseudo-quarterly spot or quar-
terly averaged series of effective lengths of 100 observations. Sizes are based on
the Hall [1994] SIC-based general-to-specific model selection strategy, eight lagged
difference terms and eight observations withheld for conditioning across models.
Empirical sizes are evaluated at 5 percent significance using the nominal levels
found in Fuller [1976, p. 371].

AR(1) MA(1)  Empirical Sizes (Rejection Rates)
Parameter Parameter at 5% Nominal Significance
Samples Period-Averages
1.00 0.00 0.101 0.108
0.98 0.00 0.316 0.332
0.95 0.00 0.730 0.669
0.90 0.00 0.916 0.905
0.80 0.00 0.905 0.909
0.50 0.00 0.862 0.867
1.00 0.80 0.103 0.116
0.98 0.80 0.295 0.349
0.95 0.80 0.670 0.715
0.90 0.80 0.908 0.897
0.80 0.80 0.907 0.914
0.50 0.80 0.867 0.879
1.00 -0.80 0.303 0.193
0.98 -0.80 0.704 0.542
0.95 -0.80 0.909 0.868
0.90 -0.80 0.903 0.918
0.80 -0.80 0.849 0.846
0.50 -0.80 0.843 0.689

Comparing Tables 2 and 3, although the ADFR is more powerful
than the ADFT in rejecting a false unit root null—almost twice as
powerful with large positive moving average parameters and highly
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autoregressive series with non-unitary roots—the ADFT has empirical
sizes that are closer to nominal levels. In other words, the ADFR’s
advantage of statistical power carries with it the greater risk of false
rejection of a unit root, and the price of more accurate empirical sizes
with the ADFT is its lower statistical power against a false null.

Second, our results show that inclusion of a moving-average parame-
ter in sampled and period-averaged data affects the size of the ADFT
and ADFR tests. When the moving-average parameter is negative and
large, the differences in statistical outcomes between period-averaged
and spot-sampled data are most pronounced. Validating results of
Said and Dickey [1984] and simulations by Hall [1994], the SIC-based
general-to-specific modeling strategy appears to have allowed inclusion
of enough lagged difference terms in the selected ADF regression to
capture and account for the moving average error terms and therefore
preserve statistical power. In contrast, ADFR and ADFT tests con-
ducted on a period-averaged process with a negative moving average
error parameter have empirical sizes closer to nominal sizes than the
same tests conducted on a sampled series.

We also conducted the same simulations on spot-sampled and period-
averaged data for trend versions of the ADFT and the ADFR (results
not shown). When confronted with either kind of data, power and
empirical size differences between the ADFT and ADFR tests were
qualitatively similar to differences found with the no-trend versions.
We included no trend in our Monte Carlo-generated series, so including
trends in the ADFT and ADFR tests had two effects. First, it inflated
empirical sizes in the face of a true unit root null. At 5 percent nominal
significance, the empirical sizes were 0.03 higher than the nominal rate
in the ADFT and 0.08 higher than the nominal rate for the ADFR for
positive and zero MA(1) parameters. Second, including trends lowered
each test’s statistical power to detect a false unit root null, typically by
about 5 percent and 15 percent lower than the no-trend versions of the
ADFT and ADFR, respectively. In the case of the ADFR, the reduction
in statistical power compared to the no-trend version was greatest for
sampled data, which fell by 15 to 20 percent more, compared to the
no-trend version of the test.

Table 4 reports the empirical sizes of the Leybourne-McCabe test at 5
percent nominal significance. The power (the empirical size reported for
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TABLE 4. Leybourne-McCabe stationarity (unit root) test (trend version) empiri-
cal sizes for 10,000 simulated 312-observation, e.g., pseudo-monthly, series converted
to pseudo-quarterly spot or pseudo-quarterly averaged series of effective sample sizes
of 100 observations. Size estimates are based on the four autoregressive terms (lags),
evaluated at 5 percent significance using the nominal levels reported by Kwiatkowski
et al. [1992].

AR(1) MA(1)  Empirical Sizes (Rejection Rates)
Parameter Parameter at 5% Nominal Significance
Samples Period-Averages
1.00 0.00 0.862 0.875
0.98 0.00 0.835 0.844
0.95 0.00 0.693 0.718
0.90 0.00 0.508 0.539
0.80 0.00 0.295 0.348
0.50 0.00 0.149 0.182
1.00 0.80 0.836 0.862
0.98 0.80 0.839 0.834
0.95 0.80 0.706 0.725
0.90 0.80 0.517 0.556
0.80 0.80 0.316 0.365
0.50 0.80 0.124 0.047
1.00 -0.80 0.705 0.799
0.98 -0.80 0.605 0.727
0.95 -0.80 0.388 0.543
0.90 -0.80 0.219 0.305
0.80 -0.80 0.136 0.129
0.50 -0.80 0.125 0.051

p = 1) of this stationary-null test to detect a truly nonstationary series
with no moving average term is 0.88 for period-averaged data and 0.86
for sampled data. With a moving average term it is often as correct
as the ADFR. It also mimics the ADFR’s weaker ability to detect a
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unit root using sampled data, with rejection rates of stationarity of
0.80 to 0.86 for period-averaged data and 0.71 to 0.84 for sampled
data. Empirical sizes are greatly distorted for both averaged and
sampled series when confronted with highly autocorrelated series with
nonunitary roots, however. For period-averaged stationary series that
have an autoregressive parameter above 0.9 in the original series, the
empirical size of the Leybourne-McCabe test is ten to fifteen times
above its nominal 5 percent significance level. In fact, the ability of
the Leybourne-McCabe test to detect a truly stationary series with
high non-unitary roots using either period-averaged or sampled data
is comparable to that of the ADFT and worse than the ADFR. The
test when applied to period-averaged data demonstrates empirical sizes
that approach nominal sizes when the AR(1) parameter is low, e.g.,
0.5, while the sampled series still has inflated empirical sizes. On the
other hand, when the AR parameter is high, spot-sampled data produce
empirical sizes slightly closer to the nominal level of the test (although
still severely distorted). For example, when the AR parameter is 0.9,
the empirical size of the period averaged data is about 0.05 larger.
These size distortions mirror simulations of Caner and Killian [2001].
In summary, in the evaluation of period-averaged and sampled data
the stationarity-null Leybourne-McCabe test (viewed in isolation) is
no better than the ADFR at detecting a truly nonstationary series. It
is substantially worse than the ADFR and comparable to the ADFT
at correctly identifying series with large but non-unitary autoregressive
roots.

Empirical results. Tables 5-7 summarize the results of our chosen
representatives of the three classes of unit root tests of pine sawtim-
ber stumpage, pine pulpwood stumpage, and mixed hardwood pulp-
wood stumpage price series, including nominal, PPI-deflated, CPI-
deflated, and stocks-deflated. The penultimate column in Tables 5, 6
and 7 reports conclusions, rendered at 5 percent nominal significance,
of whether the Leybourne-McCabe, ADFT, and ADFR tests agree that
the series is stationary (S) (which, incidentally, was never found), non-
stationary (N), or in conflict (I). The last column in these tables evalu-
ates whether the Lo-MacKinlay and ADFT tests agree (Y) on whether
the series is a random walk. Table 8 summarizes results of those
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TABLE 5. Unit root tests on southern pine sawtimber stumpage nominal, PPI-deflated,
CPI-deflated and S&P-500 earnings-deflated prices, 1977:1-2002:11.

Sub- Leybourne- Lo-MacKinlay = ADF Tests Without Trend Form RW?
Market McCabe Test Test Without at 5%
with Trend Trend
[Transfor-
mation] ADFT ADFR Obs. Lags
[Nominal]
Alabama-1 1.29%** -1.50 -0.46 -0.63 85 7 N
Alabama-2 1.16*** -0.79 -0.91 -2.05 85 6 N
Arkansas-1 1.41%** -1.54 -0.95 -2.05 85 2 N
Florida-1 0.90*** -2.02** -1.37 -11.54* 85 16 N
Florida-2 0.71%** -1.64 -1.86 -6.13 85 0 N Y
Georgia-1 0.78*** -1.41 -1.55 -19.52*** 85 16 I
Georgia-2 1.36%** -1.21 -0.69 -0.89 85 5 N
Louisiana-1 1.57*** -1.49 -0.93 -2.57 85 10 N
Louisiana-2 1.48%** -1.55 -0.58 -0.95 85 6 N
Mississippi-1 1.31%** -1.84* -1.02 -2.46 85 N
Mississippi-2 1.37%** -1.27 -1.05 -2.86 85 4 N
No. Carolina-1 1.63*** -2.29%* 1.82 3.03 85 11 N
No. Carolina-2 1.92%** -2.00** 0.49 0.52 85 5 N
So. Carolina-1 1.45%** -1.96* -1.25 -4.19 85 11 N
So. Carolina-2 1.51%** -1.16 -0.45 -0.51 85 6 N
Tennessee-1 -2.15 -8.17 74 9
Tennessee-2 -1.84 -5.94 65 0
Texas-1 1.44%** -0.98 -1.41 -3.32 85 0 N Y
Texas-2 1.40*** -1.18 -1.49 -12.75* 85 14 N
Virginia-1 -0.09 -0.13 85 8
Virginia-2 0.11 -1.99* -0.34 -0.38 85 11 I
[PPI-Deflated]
Alabama-1 1.13%** -1.32 -0.64 -1.14 85 7 N
Alabama-2 1.37%** -0.73 -1.74 -6.17 85 0 N Y
Arkansas-1 1.78%** -1.41 -1.21 -3.41 85 2 N
Florida-1 1.28%** -1.64 -1.34 -9.14 85 16 N
Florida-2 0.83*** -1.39 -2.11 -8.37 85 0 N Y
Georgia-1 0.82*** -1.46 -1.48 -6.29 85 11 N
Georgia-2 1.43%** -1.28 -0.81 -1.38 85 5 N
Louisiana-1 1.80*** -1.37 -0.79 -1.68 85 6 N
Louisiana-2 1.80%** -1.46 -0.94 -2.30 85 5 N
Mississippi-1 1.43*** -1.48 -1.68 -3.80 85 0 N Y
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TABLE 5 CONT’D.
Sub- Leybourne- Lo-MacKinlay =~ ADF Tests Without Trend Form RW?
Market McCabe Test Test Without at 5%
with Trend Trend
[Transfor-
mation] ADFT ADFR Obs. Lags
[PPI-Deflated]
Mississippi-2 1.62%** -1.13 -1.07 -2.90 85 2 N
No. Carolina-1 1.75%** -2.19** -0.25 -0.79 85 4 N
No. Carolina-2 1.88%** -2.08** 0.09 0.13 85 5 N
So. Carolina-1 1.43%** -2.01** -1.25 -3.82 85 11 N
So. Carolina-2 1.61%** -1.40 -1.67 -4.45 85 0 N Y
Tennessee-1 -2.45  -11.88* 76 7
Tennessee-2 -1.83 -5.64 65 0
Texas-1 1.76%** -1.13 -1.87 -5.46 85 0 N Y
Texas-2 1.76*** -1.13 -1.21 -3.53 85 2 N
Virginia-1 -0.85 -1.98 85 3
Virginia-2 0.06 -1.58 -2.25 -6.59 85 0 I
[CPI-Deflated]
Alabama-1 1.25%** -1.46 -0.89 -2.13 85 7 N
Alabama-2 1.47%** -0.85 -2.13 -9.98 85 0 N Y
Arkansas-1 1.83%** -1.41 -1.60 -5.36 85 2 N
Florida-1 1.41*** -1.73* -1.72 -16.42** 85 16 I
Florida-2 0.91%** -1.49 -2.47  -13.05* 85 0 N Y
Georgia-1 0.88*** -1.61 -1.61 -11.13* 85 11 N
Georgia-2 1.51%** -1.47 -1.09 -2.80 85 5 N
Louisiana-1 1.81%** -1.28 -1.37 -3.56 85 6 N
Louisiana-2 1.83%** -1.44 -1.35 -4.15 85 5 N
Mississippi-1 1.46*** -1.49 -2.19 -6.51 85 0 N Y
Mississippi-2 1.69%** -1.15 -1.55 -5.50 85 2 N
No. Carolina-1 1.82%** -2.24** -1.49 -15.48** 85 13 I
No. Carolina-2 1.94%** -2.16** -0.75 -1.76 85 5 N
So. Carolina-1 1.54%** -2.11%* -1.41 -6.14 85 11 N
So. Carolina-2 1.15%** -1.49 -1.43 -6.48 85 11 N
Tennessee-1 -2.69*  -21.07*** 76 7
Tennessee-2 -2.18 -7.83 65 0
Texas-1 1.75%** -0.98 -2.25 -7.62 85 0 N Y
Texas-2 1.77%** -1.02 -1.64 -5.46 85 2 N
Virginia-1 -1.19 -3.59 85 3
Virginia-2 0.08 -1.78* -3.02%* -12.72* 85 0 I
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TABLE 5 CONTD.

Sub- Leybourne- Lo-MacKinlay =~ ADF Tests Without Trend Form RW?
Market McCabe Test Test Without at 5%
with Trend Trend
[Transfor-
mation] ADFT ADFR Obs. Lags
[Stocks-Deflated]
Alabama-1 1.20%** -0.55 -1.31 -2.42 85 0 N Y
Alabama-2 0.86*** 0.26 -0.98 -1.48 85 6 N
Arkansas-1 1.25%** 0.09 -1.45 -2.53 85 0 N Y
Florida-1 0.14* 0.45 -1.06 -1.14 85 0 I
Florida-2 0.70*** 0.25 -0.84 -1.35 85 0 N Y
Georgia-1 0.50*** -0.16 -1.08 -2.35 85 0 N Y
Georgia-2 0.66*** 0.62 -1.10 -1.48 85 0 N Y
Louisiana-1 1.29%** 0.05 -1.56 -3.10 85 11 N
Louisiana-2 1.29%** 0.02 -1.37 -2.82 85 0 N Y
Mississippi-1 0.67*** 0.07 -1.59 -2.73 85 0 N Y
Mississippi-2 1.08%** 0.33 -1.37 -2.20 85 2 N
No. Carolina-1 1.13%** -1.55 -1.79 -2.15 85 2 N
No. Carolina-2 0.16** -0.66 -1.70 -1.40 85 5 N
So. Carolina-1 0.85*** -1.50 -1.31 -2.65 85 11 N
So. Carolina-2 0.82*** 0.81 -1.10 -1.64 85 0 N Y
Tennessee-1 -1.25 -1.81 83 0
Tennessee-2 -1.71 -3.35 65 0
Texas-1 1.23%** 0.44 -1.63 -2.80 85 0 N Y
Texas-2 1.23%** 0.35 -1.59 -3.64 85 11 N
Virginia-1 -1.39 -2.30 85 3
Virginia-2 0.06 -0.71 -1.21 -2.15 85 0 I

Notes: Asterisks indicate rejection of null hypotheses (stationarity for Leybourne-
McCabe and nonstationarity for Lo-MacKinlay, ADFT, and ADFR tests) at 1%
(***), 5% (**), and 10% (*) significance (MacKinnon [1991], Hamilton [1994];
Kwiatkowski et al. [1992]). The form of the series reported in the penultimate col-
umn describes whether, at 5 percent nominal significance, the Leybourne-McCabe,
ADFT, and ADFR tests agree that the series is stationary (S), nonstationary (N),
or in conflict (I). The last column evaluates whether the Lo-MacKinlay and ADFT

tests agree (Y) on whether the series is a random walk.
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TABLE 6. Unit root tests on nominal, CPI-deflated and

stocks-deflated southern pine pulpwood stumpage prices, 1977:1-2002:I1I.

Sub- Leybourne-  Lo-MacKinlay ADF Tests Without Trend Form RW?
Market McCabe Test Test Without at 5%
With Trend Trend
[Transfor-
mation] ADFT ADFR Obs. Lags
[Nominal]
Alabama-1 0.72%** -1.45 -1.73 -17.36** 85 12 I
Alabama-2 0.79*** -0.80 -1.53 -6.70 85 6 N
Arkansas-1 0.87*** -1.87* -2.63* -13.54* 85 1 N
Florida-1 0.12* -1.64 -2.88* -10.28 85 0 I
Florida-2 1.24%** -1.52 -1.65 -12.26* 85 8 N
Georgia-1 0.92%** -1.64 -1.88 -1170.7*** 85 15 I
Georgia-2 0.817%** -1.60 -1.55 -10.62 85 12 N
Louisiana-1 0.55%** -0.39 -1.72 -6.23 85 14 N
Louisiana-2 0.48*** -1.73* -2.02 -6.32 85 2 N
Mississippi-1 0.75*** -0.80 -2.11 -45.91*** 85 13 I
Mississippi-2 0.64*** -1.43 -1.37 -3.64 85 6 N
No. Carolina-1 1.06*** -2.38%* -1.58 -5.71 85 11 N
No. Carolina-2 0.08 -2.01** -1.08 -2.30 85 14 I
So. Carolina-1 0.67*** -1.97* -1.40 -3.92 85 4 N
So. Carolina-2 0.63*** -1.59 -1.81 -6.09 85 2 N
Tennessee-1 -1.74 -7.00 70 5
Tennessee-2 -1.65 -6.05 55 7
Texas-1 0.36*** -1.37 -2.25 -14.07** 85 7 I
Texas-2 0.41%** -1.07 -2.51 -9.62 85 0 N Y
Virginia-1 0.09 0.13 50 15
Virginia-2 0.21** -2.42%* 0.25 0.57 85 15 N
[PPI-Deflated)]
Alabama-1 0.74%** -1.34 -2.01 73.43 85 12 N
Alabama-2 0.76*** -0.95 -1.60 -13.78** 85 6 I
Arkansas-1 0.54%** -1.73* -2.28 -12.10* 85 1 N
Florida-1 0.63*** -1.58 -2.48 -9.20 85 0 N Y
Florida-2 1.10%** -1.56 -1.73 237.61 85 8 N
Georgia-1 0.94*** -1.34 -2.18 16.26 85 15 N
Georgia-2 0.82%** -1.50 -1.54 -144.94*** 85 12 I
Louisiana-1 0.35%** -0.87 -2.47 -11.55* 85 0 N Y
Louisiana-2 0.44*** -1.69* -2.57 -10.49 85 2 N
Mississippi-1 0.77*** -0.70 -2.18 -91.62*** 85 13 I
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TABLE 6 CONT’D.
Sub- Leybourne-  Lo-MacKinlay ADF Tests Without Trend Form RW?
Market McCabe Test Test Without at 5%
with Trend Trend
[Transfor-
mation] ADFT ADFR  Obs. Lags
[PPI-Deflated]
Mississippi-2 0.81%** -1.34 -1.97 -9.41 85 4 N
No. Carolina-1 1.05%** -2.33** -1.63 -4.66 85 2 N
No. Carolina-2 0.39*** -1.86* -2.00 -15.63** 85 11 I
So. Carolina-1 0.89*** -1.91* -1.44 -5.21 85 4 N
So. Carolina-2 0.70*** -1.26 -1.98 -15.11** 85 7 I
Tennessee-1 -2.08 -11.27* 75 2
Tennessee-2 -1.77 -5.06 55 7
Texas-1 0.34*** -1.37 -3.04** -28.43*** 85 4 I
Texas-2 0.39*** -0.99 -2.58 -12.08* 85 0 N Y
Virginia-1 0.10 0.18 50 15
Virginia-2 0.06 -2.24%* -1.95 -81.40*** 85 10 I
[CPI-Deflated]
Alabama-1 0.71%** -1.39 -2.17 16.46 85 12 N
Alabama-2 0.75%** -0.96 -0.84 -6.86 85 6 N
Arkansas-1 0.47*** -1.65 -1.41 -5.89 85 1 N
Florida-1 0.58%** -1.51 -1.78 -4.70 85 0 N Y
Florida-2 1.05%** -1.50 -0.50 -4.98 85 8 N
Georgia-1 0.92%** -1.33 -2.41 11.78 85 15 N
Georgia-2 0.76*** -1.43 -1.03 -2685.4*** 85 12 I
Louisiana-1 0.30*** -0.82 -2.22 -74.76%** 85 7 I
Louisiana-2 0.44*** -1.75* -3.75%**  -21.35*** 85 0 I
Mississippi-1 0.75%** -0.74 -2.60* 36.86 85 13 N
Mississippi-2 0.85*** -1.38 -1.39 -6.07 85 6 N
No. Carolina-1 0.86*** -2.43** -1.60 -21.23*** 85 13 I
No. Carolina-2 0.32%** -2.03** -3.08** 62.26 85 11 I
So. Carolina-1 0.94*** -1.98* -1.57 -9.05 85 4 N
So. Carolina-2 0.74%** -1.37 -0.72 -3.43 85 3 N
Tennessee-1 -3.96%**  -32.29*** 79 0
Tennessee-2 -1.95 -7.80 55 7
Texas-1 0.34%** -1.43 -3.08**  -46.49*** 85 4 I
Texas-2 0.38%** -1.02 -2.26 -11.04* 85 0 N Y
Virginia-1 -0.50 -1.85 50 15
Virginia-2 0.10 -2.36** -2.31 28.08 85 12 I
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TABLE 6 CONT"D.

Sub- Leybourne- Lo-MacKinlay =~ ADF Tests Without Trend Form RW?
Market McCabe Test Test Without at 5%
with Trend Trend
[Transfor-
mation] ADFT ADFR Obs. Lags
[Stocks-Deflated]
Alabama-1 0.96*** -0.11 0.10 0.13 85 1 N
Alabama-2 0.82*** 0.63 -0.28 -0.21 85 0 N Y
Arkansas-1 0.71%** 0.12 -0.28 -0.34 85 1 N
Florida-1 0.06 0.48 -0.30 -0.15 85 0 I
Florida-2 1.16*** 0.26 0.49 0.43 85 3 N
Georgia-1 0.98*** 0.32 -0.24 -0.55 85 12 N
Georgia-2 0.88*** 0.43 -0.31 -0.19 85 0 N Y
Louisiana-1 0.66*** 0.29 -0.24 0.05 85 0 N Y
Louisiana-2 0.54*** -0.77 -0.75 -1.31 85 0 N Y
Mississippi-1 0.71*** 0.23 -0.03 -0.04 85 10 N
Mississippi-2 0.61*** 0.22 -0.20 -0.25 85 6 N
No. Carolina-1 1.17%** -1.48 -0.70 -1.84 85 13 N
No. Carolina-2 0.58*** -0.20 -0.52 -0.52 85 3 N
So. Carolina-1 0.68*** -0.77 -0.32 -0.31 85 3 N
So. Carolina-2 0.66*** 0.22 0.13 0.13 85 3 N
Tennessee-1 -0.01 -0.03 60 15
Tennessee-2 -0.34 -0.78 45 12
Texas-1 0.48*** -1.00 -0.39 -0.80 85 4 N
Texas-2 0.56*** -0.37 -0.32 -0.26 85 0 N Y
Virginia-1 -0.34 -0.07 50 15
Virginia-2 0.11 -1.64 -0.93 -0.84 85 16 I

Notes: Asterisks indicate rejection of null hypotheses (stationarity for Leybourne-
McCabe and nonstationarity for Lo-MacKinlay, ADFT, and ADFR tests) at 1%
(***), 5% (**), and 10% (*) significance (MacKinnon [1991], Hamilton [1994];
Kwiatkowski et al. [1992]). The form of the series reported in the penultimate
column describes whether, at 5% nominal significance, the Leybourne-McCabe,
ADFT, and ADFR tests agree that the series is stationary (S), nonstationary (N),
or in conflict (I). The last column evaluates whether the Lo-MacKinlay and ADFT

tests agree (Y) on whether the series is a random walk.
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TABLE 7. Unit root tests on nominal, PPI-deflated, CPI-deflated and
Standard and Poor’s 500 earnings-deflated hardwood pulpwood stumpage prices, 1977:1-2002:11.

Sub- Leybourne- Lo-MacKinlay = ADF Tests Without Trend Form RW?
Market McCabe Test Test Without at 5%
With Trend Trend
[Transfor-
mation] ADFT ADFR Obs. Lags
[Nominal]
Alabama-1 0.69*** -2.12%* -1.17 -2.93 85 4 N
Alabama-2 0.81*** -0.92 -1.10 -1.85 85 4 N
Arkansas-1 0.12* -1.90* -0.46 -0.92 85 15 I
Florida-1 0.10 -2.42%* -1.82 -6.74 85 2 I
Florida-2 0.75%** -2.03** -0.53 -1.03 85 13 N
Georgia-1 0.33*** -2.01** -0.84 -2.17 85 13 N
Georgia-2 0.11 -1.76* 0.03 0.04 85 9 I
Louisiana-1 -0.78 -1.58 7 6
Louisiana-2 0.10 -2.31%* -1.39 -4.64 85 2 I
Mississippi-1 1.01%** -2.01** -1.06 -3.68 85 16 N
Mississippi-2 0.62*** -2.07** -1.18 -2.61 85 7 N
No. Carolina-1 0.68*** -2.26** -0.91 -0.87 85 7 N
No. Carolina-2 0.47*** -2.29** -1.21 -2.65 85 5 N
So. Carolina-1 1.37%** -1.58 -0.80 -1.49 85 2 N
So. Carolina-2 0.38*** -1.70* -0.46 -0.70 85 9 N
Tennessee-1 -0.74 -1.97 85 11
Tennessee-2 -1.14 -3.26 85 15
Texas-1 0.36*** -1.98* -0.62 -1.91 85 8 N
Texas-2 -1.44 -4.66 7 5
Virginia-1 -0.75 -2.03 78
Virginia-2 0.08 -2.32%* -0.35 -1.00 85 12 I
[PPI-Deflated]
Alabama-1 0.69*** -1.71* -1.03 -2.08 85 4 N
Alabama-2 0.70*** -0.81 -1.52 -3.16 85 0 N Y
Arkansas-1 0.10 -1.71* -0.87 -2.64 85 9 I
Florida-1 0.10 -2.26** -1.83 -7.15 85 2 I
Florida-2 0.14* -1.37 -1.70 -4.04 85 0 I
Georgia-1 0.26*** -1.59 -0.79 -1.59 85 6 N
Georgia-2 0.52*** -1.54 -0.32 -0.56 85 11 N
Louisiana-1 -1.02 -2.23 73 10
Louisiana-2 0.72%** -2.16** -1.18 -3.49 85 2 N

Mississippi-1 0.09 -1.86* -1.13 -5.26 85 16 I
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TABLE 7 CONT’D.
Sub- Leybourne- Lo-MacKinlay =~ ADF Tests Without Trend Form RW?
Market McCabe Test Test Without at 5%
with Trend Trend
[Transfor-
mation] ADFT ADFR Obs. Lags
[PPI-Deflated]
Mississippi-2 0.80*** -2.00** -1.74 -6.07 85 2 N
No. Carolina-1 0.82*** -2.10** -1.37 -1.66 85 7 N
No. Carolina-2 0.54*** -2.29%* -1.19 -2.74 85 5 N
So. Carolina-1 1.40*** -1.43 -0.74 -1.38 85 2 N
So. Carolina-2 1.35%** -1.38 -1.00 -2.30 85 1 N
Tennessee-1 -0.94 -2.01 85 5
Tennessee-2 -1.88 -4.67 85 0
Texas-1 0.43*** -2.06** -0.43 -0.91 85 7 N
Texas-2 -2.94** -11.51* 82 0
Virginia-1 -1.61 -7.34 80 3
Virginia-2 0.11 -2.26** -1.46 -15.20** 85 12 I
[CPI-Deflated]
Alabama-1 0.66*** -1.73* -1.18 -2.97 85 4 N
Alabama-2 0.64*** -0.90 -1.65 -4.24 85 0 N Y
Arkansas-1 0.11 -1.72* -1.20 -5.11 85 9 I
Florida-1 0.09 -2.23** -2.25 -11.25* 85 2 I
Florida-2 0.17** -1.36 -2.10 -6.22 85 0 N Y
Georgia-1 0.09 -1.56 -1.04 -2.81 85 6 I
Georgia-2 0.45*** -1.56 -0.55 -1.29 85 11 N
Louisiana-1 -1.24 -4.00 73 10
Louisiana-2 0.80*** -2.17** -1.53 -5.59 85 2 N
Mississippi-1 0.09 -1.84* -1.51  -13.10* 85 16 I
Mississippi-2 0.80*** -2.01** -3.52%**_15.55** 85 0 I
No. Carolina-1 0.79*** -2.23** -1.38 -2.37 85 7 N
No. Carolina-2 0.51%** -2.34** -1.69  -12.51* 85 13 N
So. Carolina-1 1.42%** -1.52 -0.95 -2.16 85 2 N
So. Carolina-2 0.10 -1.47 -1.61 -3.36 85 0 I
Tennessee-1 -1.13 -3.13 85 5
Tennessee-2 -2.14 -6.21 85 0
Texas-1 0.44*** -2.07** -0.68 -1.85 85 7 N
Texas-2 -3.39** -15.70** 82 0
Virginia-1 -2.24 -66.02*** 68 15
Virginia-2 0.12* -2.26** -2.77*  -66.33*** 85 12 I
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TABLE 7 CONT’D.

Sub- Leybourne- Lo-MacKinlay =~ ADF Tests Without Trend Form RW?
Market McCabe Test Test Without at 5%
with Trend Trend
[Transfor-
mation] ADFT ADFR Obs. Lags
[Stocks-Deflated]
Alabama-1 0.62*** -1.07 -1.62 -4.97 85 1 N
Alabama-2 0.67*** -0.01 -1.25 -2.39 85 N Y
Arkansas-1 0.10 -1.08 -1.73 -7.41 85 9 I
Florida-1 0.46*** -1.80* -0.49 -0.87 85 15 N
Florida-2 0.61*** -0.48 -1.93 -4.58 85 0 N Y
Georgia-1 0.56*** -0.84 -1.84 -11.31* 85 12 N
Georgia-2 0.63*** -0.77 -1.99 -7.84 85 7 N
Louisiana-1 -1.00 -1.98 7 6
Louisiana-2 0.08 -1.53 -2.23 -5.74 85 0 I
Mississippi-1 0.78*** -1.16 -1.48 -4.03 85 1 N
Mississippi-2 0.59*** -1.19 -1.65 -3.45 85 0 N Y
No. Carolina-1 0.83*** -1.05 -1.00 -1.83 85 5 N
No. Carolina-2 0.61*** -1.72* -0.79 -1.33 85 7 N
So. Carolina-1 0.74*** -0.75 -1.52 -5.90 85 14 N
So. Carolina-2 0.98*** -0.58 -2.09 -5.34 85 0 N Y
Tennessee-1 -1.93  -23.48*** 85 11
Tennessee-2 -2.16 -6.32 85 0
Texas-1 0.10 -1.77* -2.87* -12.38* 85 0 I
Texas-2 -2.52 -8.59 82 0
Virginia-1 -1.49 -2.75 80 3
Virginia-2 0.23*** -1.21 -0.67 -0.43 85 15 N

Notes: Asterisks indicate rejection of null hypotheses (stationarity for Leybourne-
McCabe and nonstationarity for Lo-MacKinlay, ADFT, and ADFR tests) at 1%
(***), 5% (**), and 10% (*) significance (MacKinnon [1991], Hamilton [1994];
Kwiatkowski et al. [1992]). The form of the series reported in the penultimate
column describes whether, at 5% nominal significance, the Leybourne-McCabe,
ADFT, and ADFR tests agree that the series is stationary (S), nonstationary (N),
or in conflict (I). The last column evaluates whether the Lo-MacKinlay and ADFT

tests agree (Y) on whether the series is a random walk.
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TABLE 8. Proportion of consensus conclusions about the time series properties
of southern timber prices, by product and deflation method (1977:1-2002:1I).

Product Deflation Consensus Consensus
Method of Tests For or
in Favor of Against
A Unit Station- Random
Root arity Walk
Southern Pine Nominal 0.89 0.00 0.28
Sawtimber
PPI-deflated 0.94 0.00 0.44
CPI-deflated 0.83 0.00 0.39
Stocks-deflated 0.89 0.00 0.50
Southern Pine Nominal 0.67 0.00 0.22
Pulpwood
PPI-deflated 0.61 0.00 0.28
CPI-deflated 0.61 0.00 0.28
Stocks-deflated 0.89 0.00 0.28
Hardwood Nominal 0.69 0.00 0.63
Pulpwood
PPI-deflated 0.69 0.00 0.50
CPI-deflated 0.56 0.00 0.50
Stocks-deflated  0.81 0.00 0.25

conclusions using nominal significance thresholds. For sawtimber
stumpage, the ADFR rejected the null four times out of 84 at 5 percent
nominal significance, while the ADFT test rejected a unit root once at
this significance. The rejections for the ADFR were in Florida, North
Carolina, and Tennessee. These results are consistent with the simple
Dickey-Fuller t-test results reported by Yin et al. [2002] for southern
pine sawtimber. That study used a shorter span, a smaller subset of
sub-markets within the South, and different spatial aggregations com-
pared to those that we examine here, where a unit root was supported
for southern pine sawtimber stumpage prices. Given our findings in
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the simulations, the ADFR and the ADFT tend to reject the null too
often with period-averaged data, so our results for timber prices might
be surprising. On the other hand, the low rate of rejections just as
well might be reflecting the low power of the ADF at detecting a high,
nonunitary root.

The Leybourne-McCabe test provides additional support for the
contention that sawtimber prices are nonstationary Southwide. In all
but four cases (and just Virginia sub-market 2 under each deflation
method), the Leybourne-McCabe test rejected the null of a stationary
process at 5 percent significance. The Lo-MacKinlay variance ratio
test rarely rejected the random walk null at the 5 percent nominal
significance level. Rejections were found in nine cases out of 72 across
deflation methods for southern pine sawtimber, most in the Carolinas.

The results of the Leybourne-McCabe, the ADFT, and the ADFR
tests can be combined into a conclusion of stationary or nonstationary
price behavior based on a consensus of the three. This shows that
the majority of sawtimber price series are likely to be nonstationary
at nominal significance levels (Table 8), regardless of deflation method.
Nonstationarity was the consensus for 83 percent of CPI-deflated, 89
percent of stocks-deflated and nominal series, and 94 percent of PPI-
deflated series. Stationarity was never the consensus. For sawtimber,
the random walk rarely gained consensus support (Table 5), but the
rate of acceptance of this hypothesis was higher for deflated series than
for nominal series. Agreement was most common for stocks-deflated
prices (50 percent) and least common for nominal prices (28 percent)
(Table 8). An additional caveat is that the random walk may only have
been accepted for these series because of the anomalous simplification
of the sawtimber price process caused by a high degree of temporal
aggregation in short time series (Rossana and Seater [1995]).

Results for southern pine pulpwood (Table 6) were similar to those of
sawtimber stumpage. The ADFT favored the stationarity alternative
hypothesis in five cases out of 84, while the ADFR favored this in 17
cases. Lo-MacKinlay tests rejected the random walk null hypothesis
eight times out of 72, about the same rate as for sawtimber. Only for
stocks-deflated timber prices was the random walk never rejected using
this test. The Leybourne-McCabe test rejected the stationary null in
every case except three, all in coastal Virginia. When the results of tests
are combined we see that the nonstationary price consensus was most
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common for stocks-deflated and least common for CPI-deflated prices.
Consensus for or against random walk pulpwood price behavior was
even lower for pulpwood than for sawtimber prices, with the greatest
conflict found for nominal prices.

Results for hardwood pulpwood prices (Table 7) are available for a
smaller subset of sub-markets in the South because data limitations
were more common than for southern pine. Results provide a more
mixed picture than for southern pine products and are less consistent
between the three tests. In three cases out of 84, the ADFT rejected the
nonstationary null, and in five cases out of 84 the ADFR rejected the
null. However, in 18 out of 64 cases the Leybourne-McCabe test could
not reject the stationarity null, a much higher rate of disagreement than
found for pine. Also different from southern pine pulpwood, the Lo-
MacKinlay test rejected the random walk three times as often—24 out
of 64 times. The random walk was favored by consensus in seven cases
out of 64, with four of those in stocks-deflated prices. Still, in nearly 70
percent of cases at nominal significance thresholds, hardwood pulpwood
stumpage prices appear to conform to unit root price behavior, with
that behavior most commonly identified in stocks-deflated prices and
least common in CPI-deflated prices.

Results of the tests on these products using the trend versions of the
ADFT, ADFR, and the Lo-MacKinlay tests, not reported in tables,
were similar to results without a trend. The primary difference is that
the trend versions resulted in a slightly higher rate of rejection of the
unit root null and the random walk. This higher rejection rate of the
null of a unit root for the ADFT and ADFR is not surprising, given our
simulation results for trend-versions of these tests, which are over-sized
with period-averaged data and small samples. The ADFT rejection
rates at 5 percent nominal significance were 4 out of 84 for southern
pine sawtimber (1 in the no-trend case), 9 out of 84 for southern pine
pulpwood (5 in the no-trend case), and 14 out of 84 for mixed hardwood
pulpwood (3 in the no-trend case). Using the ADFR, these rates were
18 (9 with the no-trend), 16 (17 in the no-trend), and 37 (5 in the
no-trend case) out of 84 for southern pine sawtimber, southern pine
pulpwood, and mixed hardwood pulpwood, respectively. Using the
trend version of the Lo-MacKinlay test, the corresponding rejection
rates at b percent nominal significance were 13 out of 72 for southern
pine sawtimber, 11 out of 72 for southern pine pulpwood, and 28 out
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of 64 for mixed hardwood pulpwood. When a trend is included, the
likelihood of rejecting the null of a unit root or the random walk is
double the rate without a trend. However, when evaluated using the
nominal significance levels, the majority of series are still consistent in
behavior with series containing a unit root when tests include a trend
in the ADFT, ADFR, and the Lo-MacKinlay tests.

Caner and Killian [2001] state that simulations can be used to empiri-
cally identify critical values so that the nominal size of the test matches
its empirical size. This strategy might be applied to any test. In our
simulations, we obtained the critical values necessary to attain empir-
ical sizes that match the nominal size of the Leybourne-McCabe test
for series of effective sizes of 100 observations for monthly data that
were period-averaged to quarterly data. At 5 percent significance, the
critical value was 1.24 for ARIMA(1,0,1) series with an AR(1) param-
eter of 0.95 and an MA(1) parameter of 0.80. Using this threshold and
referring to the values reported in Table 5 for southern pine sawtimber,
it can be seen that the null is rejected for 13 out of 18 tested nomi-
nal series (Alabama-2, Florida-1, Florida-2, Georgia-1, and Virginia-2
were not), 14 tested PPI- and CPI-deflated series, and 5 stocks-deflated
series.

For pulpwood, our results are more definitive. For southern pine
pulpwood (Table 6), the corresponding rejection rates using 1.24 for this
test at 5 percent significance are 1, 0, 0, and 0 for 18 tested undeflated,
PPI-deflated, CPI-deflated, and stocks-deflated series, respectively. For
hardwood pulpwood, those rejection rates out of 16 tested series are 1,
2, 1, and 0, given the test statistics reported in Table 7.

We similarly obtained the critical values necessary to attain empirical
sizes that match the nominal size of the no-trend ADFT test for
an effective sample size of 85 observations with eight possible lagged
difference terms. The empirical size-adjusted 5 percent ADFT critical
value based on 1,000 simulated “monthly” ARIMA(0,1,1) series that
were period-averaged to “quarterly” observations with a “monthly”
MA(1) parameter equal to -0.80 was -3.94. Based on this threshold,
we found the following rejection rates for southern timber prices:
no rejections out of 84 tests of the unit root null for southern pine
sawtimber, one rejection out of 84 for southern pine pulpwood, and no
rejections out of 64 for hardwood pulpwood.
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If the true rate of data generation of timber prices is monthly and so
the size-adjusted critical value of 1.24 for the Leybourne-McCabe test
and -3.94 for the no-trend ADFT approximately correspond to the 5
percent nominal significance levels for our timber price series, then we
can conclude that the ADFT test mostly conflicts with the Leybourne-
McCabe test for pulpwood series but still commonly supports a unit
root for southern pine sawtimber. Sawtimber series, however, in their
majority reject the stationarity null in the Leybourne-McCabe and
accept the unit root null in the ADFT, even when the empirical critical
values are adjusted to more closely match their nominal sizes.

Conclusions. These results have documented the effects of infre-
quent data reporting on typical unit root tests, and in light of this the
time series properties of southern timber prices with applicability to
choice of alternative harvest timing models. We therefore have four
principal conclusions.

First, the period-averaged data reported by Timber Mart-South and
most other sources of timber price data readily available to managers
pose substantial statistical challenges for identifying true price pro-
cesses. Unit root tests based on data that are reported less frequently
than the true process are statistically weaker and empirically oversized.
Both period-averaging and spot-sampling render the common unit root
tests less powerful and distorted in size, compared to results derived
from data reported at their true rate of generation but over the same
time span. Published research into timber price behavior that has used
unit-root null statistical tests such as the ADFT has therefore suf-
fered from reduced statistical power, leading to a failure to reject unit
roots even when the true process was stationary. We found, notably,
that there are more powerful and sometimes no more complicated al-
ternatives to the ADFT (e.g., the ADFR) that analysts could apply.
However, we caution the analyst against using the trend version of the
ADFR on such data when no solid reason exists to include such a trend,
given how much the superfluous trend reduces the statistical power of
the test.

Second, comparing the results of tests with opposing nulls (unit-
root null and stationarity-null) might enhance confidence regarding
the presence of a unit root, rather than simply evaluating one kind
of test with its known statistical limitations (Taylor [2001], Caner and
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Killian [2001]). Improved confidence using this strategy can also come
about through simulations that adjust the critical values to match the
empirical and nominal sizes of the tests. However, improved confidence
using this approach is by no means a certainty, as empirical size
adjustment has the drawback of reducing statistical power against a
false null. So, sometimes adjusting these sizes can create new conflicts
while resolving others. This strategy also depends on knowledge of
the true rate of data generation and whether nuisance parameters
exist in the data generation process of the true series, knowledge few
researchers have. In our case, the strategy of comparing results across
tests worked to raise our confidence about the behavior of southern
pine sawtimber prices but not pulpwood prices. In the latter case,
the comparison yielded conflicts between the stationarity- and unit
root-null tests. Our simulations also revealed that, applied on their
own, stationarity-null tests are not better than unit root-null tests
at detecting truly stationary series, in slight contradiction to Taylor’s
[2001] recommendation for period-averaged or sampled data.

Third, analysts and timber owners are urged to favor nonstation-
ary price harvest timing models for managing southern pine stands for
sawtimber in the Southern U.S. Recommendations for pulpwood man-
agement, both southern pine and mixed hardwood, must be more cau-
tious based on the conflicting results for southern pine and hardwood
pulpwood when empirical size-adjusted critical values were used. The
best stationary price harvest timing models for these products would
seem to be those that include large autoregressive parameters, e.g., the
stationary model of Haight and Holmes [1991]. Additionally, because
many stands derive value from a combination of products whose mix
varies over time, future research should clarify how to adaptively time
harvests for stands with mixes of products, each with a different price
process. Recent work by Reeves and Haight [2000], which explicitly
accounted for the different price processes of pulpwood and sawtim-
ber, including their large autoregressive parameters using a Markowitz
portfolio approach, is a step in that direction.

Fourth, although neither random walk nor stationary timber price
behaviors were fully supported by consensus across our empirical tests,
our results do not discount the usefulness of timing models based on
random walk or diffusion price processes. The moving average terms
introduced through data collection and temporal averaging may cause
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the random walk or martingale test to fail even though the true series
conforms to these behaviors (Working [1960], Brewer [1973], Harvey
[1981], Haight and Holmes [1991], Maeso-Fernandez [1998], Taylor
[2001]). Nevertheless, the underlying nonstationary timber price series
may still be more complex than a random walk. A model that assumes
that timber prices follow a more general ARIMA(p,1,q) or a general
diffusion process might better capture observed producer behavior, e.g.,
Gomez et al. [1999]; Reeves and Haight [2000], Yoshimoto and Shoji
[2002]).

Our analysis used the temporal aggregation question addressed by
Haight and Holmes [1991] as a departure point. A more fundamental
question we have not addressed is, “What is the ‘true’ rate of timber
price generation for a region?” We can only speculate that the true
rate is more frequent than monthly or quarterly. Nonetheless, our
research does lead us to several recommendations on what a timber
manager or analyst can do to enhance certainty about how timber
prices actually behave. First, the analyst should use multiple testing
frameworks—different tests—to raise confidence about actual price
behavior. Second, although no clear results were produced on the
effects of deflation on our test outcomes, we take seriously the critique
of Schnute [1987] and recommend that tests of the time series properties
of timber prices be conducted on the undeflated series. Third, the span
of a series should be as long as possible. Span may be a more important
determinant of the power of a test than frequency of observation,
temporal averaging, or the presence of nuisance parameters. Fourth,
unit root tests should be selected to allow for the presence of moving
average parameters, which are introduced through simple sampling
error as well as temporal aggregation. This means applying augmented
versions of the ADFT and ADFR and tests designed to be powerful
when moving average terms are present.
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