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Table 4 Measures of heterozygosity deficiency for eastern hemlock populations, using the program 
Bottleneck (Piry et al. 1999) assuming the two-phase model (TPM) of locus evolution 

Group T2 p Wilcoxon 

All -3.00 ** ** 

Eastern -2.95 ** ** 
Interior -1.68 * * 

Western -1.42 * * 
T2 bottleneck statistic from standardized difference test, with negative value indicating heterozygosity 
excess and a likely recent population expansion; Wilcoxon: statistical significance of Wilcoxon test for 
heterozygosity excess 

*Significant at 0.1 

**Significant at 0.01 

heterozygosity of eastern hemlock was 0.072 compared to the average of 0.176 across 103 
allozyme studies in Pinaceae species, while, 57.9% of eastern hemlock loci were poly­
morphic, compared to 73% in the other Pinaceae species (Hamrick and Godt 1996). Also, 
while eastern hemlock had higher allozyme polymorphism than either mountain hemlock 
(Tsuga mertensiana Bong.) or western hemlock (Tsuga heterophylla [Raf.] Sarg.) in 
British Columbia (Ally et al. 2000; Wellman et al. 2003), eastern hemlock had lower 
expected heterozygosity values than both species, which were 0.087 and 0.142, 
respectively. 

It is possible that the high inbreeding and low heterozygosity estimates in the current 
study result from a Wahlund effect caused by spatial sub-structuring of within-population 
demes (Alvarez-Buylla et al. 1996). It seems unlikely that a Wahlund effect would lead to 
large overestimates of inbreeding and large underestimates of heterozygosity, however, 
even though we did not employ a clustered sampling strategy to avoid population sub­
structuring. Fine-scale genetic structure within plant populations is predominantly the 
result of limited pollen and seed dispersal (Cavers et al. 2005), so out-crossing tree species 
with effective long-distance dispersal mechanisms are expected to exhibit only weak fine­
scale spatial genetic structure (Vekemans and Hardy 2004). As an out-crossing wind­
pollinated species with very small seeds (Young and Young 1992), eastern hemlock is 
probably an efficient disperser of genes within and among stands. Additionally, the esti­
mates of the number of inter-population migrants per generation (Nm) were high (Table 2), 
and while calculating this statistic from F ST is problematic (Whitlock and McCauley 
1999), the results suggest the potential for ample gene flow within and among populations. 

This study offers insights into the recent evolutionary history of eastern hemlock in the 
southern portion of its current distribution. The results, when compared to past research, 
suggest that greater eastern hemlock genetic diversity resides in the southeastern United 
States than in the northern part of the species' range. Specifically, this study revealed a 
considerably greater level of polymorphism than in Zabinski's (1992) range-wide allozyme 
study of eastern hemlock, in which only one of ten loci was polymorphic. Of the five loci 
included in both analyses (JDH, MDH-J, MDH-3, PGJ-J, and PGJ-2), two were poly­
morphic in the Southeast (IDH and PGI-2), while none were polymorphic in the range­
wide study (Zabinski 1992). The overall expected heterozygosity of Zabinski's study 
would be 0.037, or half that of the current Southeastern study, given that the expected 
heterozygosity of the single polymorphic locus was 0.37. These results support paleobo­
tanical evidence that the refuge area for eastern hemlock during the peak of the 
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Wisconsinian glaciation was located in the Southeast (Cronin et al. 1981; Davis 1981; 
Delcourt and Delcourt 1987). 

The current allozyme results also appear to shed additional light on where in the 
Southeast hemlock refuge regions may have been located. The presence of hemlock pollen 
in 25,000-year-old Carolina bay sediment in northeastern North Carolina (Whitehead 
1973) and in 16,000-year-old pond sediments in northwest Georgia (Watts 1970), as well 
as the existence of a relict hemlock stand in the eastern Piedmont of North Carolina 
(Oosting and Hess 1956; Hardin and Cooper 1967), are all in keeping with the hypothesis 
that the refuge area was located in the Appalachians, on the coastal plain of the Carolinas 
and Virginia, or on the continental shelf (Cronin et al. 1981; Davis 1981). The discovery of 
hemlock pollen from 20,000 years ago in western Tennessee (De1court et al. 1980), 
however, led Delcourt and Delcourt (1987) to note the possibility that restricted hemlock 
populations existed at the time in a narrow latitudinal band of mixed conifer-northern 
hardwood forest stretching from the Mississippi valley to the Atlantic Ocean. The results of 
the current study, however, appear to support the hypothesis that eastern hemlock popu­
lations in the southeastern United States descended mostly or entirely from refugia located 
to the east of the southern Appalachians. Specifically, the eastern populations are most 
likely the closest to the glacial refugia, given their higher number of polymorphic loci and 
alleles per locus (Table 1) and the expectation that areas closer to a refuge will have higher 
genetic diversity than those more recently colonized (Hewitt 1996; Hewitt (2000). The 
high genetic variation present in these populations may, in fact, have resulted from the 
admixture of descendents from more than one glacial refuge, as Petit et al. (2003) found 
among 22 widespread European tree species. The four western peripheral populations, 
meanwhile, were the least diverse, 'and were presumably colonized later than the interior 
and eastern populations, and by fewer refugial lineages. This is consistent with Zabinski's 
(1992) results from the two southeastern populations in her analysis; her single Alabama 
population was monomorphic at the single locus polymorphic for the species, while the 
Joyce Kilmer Memorial Forest population in North Carolina had somewhat higher than 
average expected heterozygosity. 

The results of the Structure cluster analysis for eastern hemlock in the Southeast (Fig. 1) 
infer the prevalence of four ancestral gene pools within and to the east of the Appalachians, 
but only three to the west. Of these, gene pool 1 seems most prevalent in the southern part 
of the range, suggesting that populations in this area may have descended at least in part 
from a single refuge. This is underscored by the observation that the only well-supported 
cluster in the neighbor-joining dendrogram (Fig. 2) encompasses the same populations: 
Newfound Gap, Cataloochee, Back Creek, and South Mountains. It seems unlikely that the 
western popUlations descended from a different refuge to the west of the Appalachians, 
given that they do not cluster closely in the neighbor-joining dendrogram, and that the 
three Structure gene pools represented in these populations are also common in the interior 
and eastern populations. 

An allozyme study of Virginia pine detected a similar pattern to the current eastern 
hemlock results, leading the authors to conclude that this species moved northwestward 
across the Appalachians from glacial refugia located southeast of the mountain chain 
(Parker et al. 1997). The findings from the current study, as well as fossil data documenting 
the establishment of new hemlock stands in the upper Midwest (Parshall 2002), are in line 
with Hewitt's (2000) hypothesis that the leading edge of population expansion following 
climate warming would probably be by a few long-distance dispersers, resulting in lower 
heterozygosity and fewer alleles than in the refugial area. This genetic pattern was dem­
onstrated for Coulter pine, where population mean heterozygosity and allele occurrence 

~ Springer 



142 New Forests (2008) 35:131-145 

decreased with latitude (Ledig 2000). The current eastern hemlock study shows a similar 
pattern, with population latitude negatively correlated with several genetic diversity 
measures; in other words, populations farther south had more effective alleles per locus, 
higher polymorphism, and greater expected heterozygosity. This may indicate that the 
southernmost populations are located at or near the site of one or more glacial refuge. The 
higher levels of inbreeding in these populations, and at Newfound Gap in particular, may 
have resulted from the decrease in interpopulation gene flow as the warming conditions 
shifted the main distribution of the hemlock range to the north by '" 6,()()() years ago 
(Delcourt and Delcourt 1987). 

Another factor probably shaping the current genetic composition of eastern hemlock in 
the southeastern United States was a dramatic decline in the species that occurred 
5,000 years ago in association with a pest infestation (Bhiry and Filion 1996; Fuller 1998). 
This caused a considerable decrease in the abundance of hemlock pollen in the fossil 
record, followed by a period of '" 2,000 years before returning to its former level of 
abundance (Davis 1981; Delcourt and Delcourt 1987). This event may help explain why 
the current allozyme study revealed considerably less genetic variation in southern pop­
ulations of eastern hemlock than in other conifers (Hamrick and Godt 1996), because local 
populations of the species probably passed through small demographic bottlenecks as the 
majority of hemlock trees died. This is, in fact, a plausible alternative explanation for the 
high inbreeding estimates for some of the southern populations, including Newfound Gap, 
the only population found by Bottleneck analysis to exhibit the heterozygosity deficiency 
consistent with a recent population bottleneck. However, the influence of the pest-caused 
mortality on eastern hemlock population genetics is likely to be smaller than that of long­
term Pleistocene refugial and migration patterns. While eastern hemlock typically dropped 
to 10% dominance in central Appalachian forests following the dieback, the species 
apparently still existed in many places in reduced numbers and was, in fact, able to expand 
its range westward through northern Indiana and in Wisconsin (Delcourt and Delcourt 
1987). These local bottlenecks would have reduced genetic diversity in many places, but at 
least some genetic variation and differentiation probably survived to be inherited by 
current eastern hemlock populations. At <2,000 years in duration, these recent bottlenecks 
were also much shorter than the periods of time over the course of the lOO,OOO-year 
Wisconsinian glaciation during which eastern hemlock existed in glacial refugia. Inter­
estingly, the Bottleneck analyses did not detect the heterozygosity deficiency associated 
with a recent demographic bottleneck (fable 4) in eastern hemlock in the Southeast, or in 
any of its three sub-regional divisions. In fact, the results strongly suggested a recent 
expansion in population size, without immigration, for the species and its three divisions. 
This may reflect the recovery of eastern hemlock from its severe size reduction 5,000-
3,000 years ago, and the subsequent expansion of the species' importance that has con­
tinued into recent centuries (Delcourt and Delcourt 1987). The importance of eastern 
hemlock, however, is now decreasing in many places as a result of infestation by the exotic 
hemlock woolly adelgid (Orwig and Foster 1998; Kizlinski et al. 2002; Orwig et al. 2(02). 

Implications 

Camcore and USDA Forest Service Forest Health Protection plan to collect and send seeds 
from many of the study populations to areas in the United States, Brazil and Chile, where 
the hemlock woolly adelgid does not occur. These seeds will be used to establish ex situ 
conservation areas to maintain the genetic diversity of eastern hemlock in case researchers 
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are unable to control hemlock mortality resulting from adelgid infestation. If this worst­
case scenario occurs, genetic material from these ex situ eastern hemlock plantings could 
eventually be reintroduced into the southeastern United States to repopulate areas where 
this species has been devastated. 

The results of this allozyme study suggest that ex situ conservation seed collections of 
eastern hemlock in the southeastern United States should be concentrated to the east of the 
southern Appalachians and in the high-elevation populations of the southernmost Appa­
lachians in North Carolina, South Carolina, and Tennessee. The area of Great Smoky 
Mountains National Park, which includes the Newfound Gap, Cataloochee, and Abrams 
Creek populations, should be of particular interest, given the higher heterozygosity and 
number of rare alleles occurring in these populations. Areas of lower genetic diversity, 
such as in the western periphery of the eastern hemlock range in the Southeast, also should 
be included in collections, but at lower site selection intensity. 
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