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Abstract 
Forest inventory data were used to develop a stand-
age-driven, stochastic predictor of unit-area, frequency-
weighted lists of breast high tree diameters (DBH).  
The average of mean statistics from 40 simulation 
prediction sets of an independent 78-plot validation 
dataset differed from the observed validation means by 
0.5 cm for DBH, and by 12 trees/h for density.  The 40-
simulation average of standard deviation, quartile 
range, maximum value and minimum value differed 
from the validation dataset, respectively, by 0.3, 1.3, 
0.6 and 1.5 cm for DBH, and 10, 42, 29, and 54 trees/h 
for density.  In addition, test statistics were also 
computed individually for each of the 40 single 
simulations of the 78-plot validation dataset.  In all 
cases, the test statistics supported the null hypothesis of 
no difference between simulated and observed DBH 
lists.  When power of these hypothesis test statistics 
was set to 80%, the calculated minimum detectable 
differences were still reasonably small at 2.7 cm for 
mean DBH and 90 trees/h for stocking.  Also, the 
shape and dispersion of simulated mean-DBH/density 
scatter graphs were similar to the same scatter graph 
from the observed, validation dataset. 
 
Introduction 
Sample inventories are a relatively abundant data 
source that routinely contains multi-variable forest 
attribute information useful to GIS analyses.  However, 
the spatial density of plots in sample inventories is, by 
design, generally too sparse to directly populate 
databases associated with most GIS layers of forest 
stand boundaries.  Moeur and Stage (1995) used 
canonical correlation theory on a set of variables 
common to both the inventory and the existing GIS 
databases (hereafter referred to as linkage variables) to 
assign intact, unmodified plot-level data from the 
inventory database to a GIS database that is linked to a 
stand polygon layer.  This research has a similar goal, 
except the focus here is on using the linkage variables 
and the inventory database to parameterize a stochastic 
predictor of within-polygon variation of unit-area, 
frequency-weighted breast high tree diameters (DBH).  
The application potential of this research is illustrated 
by the methodological role it played in a larger project. 

The objective of the larger project was to simulate, 
over time, the effects of alternative location-specific 
partial-cut and clearcut-regeneration harvesting on the 
amount of suitable Red-cockaded Woodpecker (RCW) 
(Picoides borealis Vieillot) habitat available from 
some forested area.  This required predicting 
frequency-weighted DBH lists for assignment to GIS 
pixels representing land areas of a given size, and then 
approximating stand polygons by grouping contiguous 
pixels that fall within the polygons.  These DBH lists 
were subsequently used to calculate wood product 
yields from simulated harvesting, to identify stands 
suitable for RCW nesting sites, to spatially delimit 
RCW foraging areas around nesting sites, and to serve 
as input to a forest growth and mortality simulator 
(Teck et al. 1996).  The forest growth and mortality 
simulator, in conjunction with the GIS database, 
provided a dynamic and spatially specific description 
of vegetation charge over a 20- to 30-year period.  
Alternative, temporal- and location-specific silvicul-
tural treatment scenarios were then applied to the 
simulated forest structure, and their cumulative affects 
over time on wood product outputs and the forest-wide 
suitability RCW habitat were evaluated. 
 
A Generalized Predictor 
Model fitting starts by forming relative-size-based 
subsets made up of individual records of the pth ranked 
DBH (and associated plot-level linkage variables) from 
each plot.  For notation purposes, the subset of trees 
made up of the largest DBH from each plot was 
assigned the rank p = 1, the subset made up of the 
second largest trees was assigned rank p = 2, etc.  The 
linear model for the relationship between DBH and the 
vector of linkage variables ( λ ) is 
 
 ; 1, 2, , ; 1, 2, ,pi p i pid p q i s′= + ε = =β λ K K  (1) 

 
where the linkage variables are made up of plot/stand-
level attributes such as stand age, stocking, and site 
productivity, or other surrogate measures of these 
variables, pid  is the DBH of the pth size-ranked tree 

from the ith plot, pβ  is a k-element vector of 

regression coefficients for the pth subset, piε  is the 

error term for the ith tree in the pth subset (where 
[ ] 0piE ε =  and 2Var [ ]pi pε = σ ), s is the number of 

plots in the inventory database that contain p sampled 
trees (s decreases as p increases), and q is the largest 
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number of trees sampled at a single plot location.  The 
stochastic predictor of the pth-ranked DBH is  
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where Λ  is the s by k matrix of linkage variables from 
the pth subset, 0λ  is the value of the linkage 
variable(s) for which stochastic predictions are being 
made, 1

UF −  is the inverse of the standard normal 
distribution function, the Ur’s are independent uniform 
random variates on the interval [0,1], and ˆ pσ  is the 

root mean square error from the fits of Equation (1) to 
the rank-based subsets.  This model was developed for 
merchantable-sized trees ( ≥ 12.7 cm) that are sampled 
with probability proportional to their DBH, therefore 

the per hectare frequency associated with each ˆ
pd  is 
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where BAF is the basal area factor of the prism used in 
selecting the sample trees (Grosenbaugh 1952). 
 
The Predictor Used in This Investigation 
The specific form of Equation (1) and (2) depends on 
the linkage variables that are available.  The following 
expression of Equation (2),  
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assumes that only stand age is available as the linkage 

variable, with 0
ˆ

β̂ (a -3)p pd = , 0a  the stand age of the 

trees in the DBH list being predicted, the a 'si  are the 
ages from the model-fitting dataset, 
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= ∑  (Draper and Smith 

1966), ˆ
σ̂ V(ε )p pi= , and -1

UF , U1, and U2 are as 

already defined.  It was assumed for this dataset that it 
takes, on the average, three years for a tree to attain 
1.37 m in height from a seed, two years from a planted 
1-year-old seedling, and three years for spouts.     
 
Estimating Trees per Hectare 
The next problem is to decide when to stop adding 
trees to the list.  That is to say, we need to decide the 
number of trees per hectare.  For each of the inventory 
plots, the total per-hectare number trees were deter-
mined.  We used Poisson regression to develop 

predictors for the total trees per hectare as a function of 
stand age. 
 
 0 1ln ai i it = β + β + ε  (5) 
 
where ti is the trees per hectare for the ith plot, ai is the 
stand age on the ith plot, the β’s are model parameters 
and ε is model error.  Poisson regression differs from 
linear least squares regression in assuming that at each 
value of the independent variable (age), the dependent 
variable (trees per hectare) is Poisson distributed as 
opposed to being normally distributed.  In addition, the 
dependent variable is assumed to be a count (discrete 
variable).  The Poisson distribution has only one 
parameter, commonly called mu (µ).  In this distri-
bution the mean equals the variance, hence µ = mean = 
variance.  The value of t is computed as  

0 1
ˆ ˆˆ exp( a)t = β + β .  Of course, all stands of the same 

age are not identical.  Stochastic components are 
required to mimic natural variability.  The stochastic 
predictor used for trees per hectare sto

ˆ( )t  is 
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where t̂S  is the standard error of the prediction 

computed as t̂S ′= a Va , the vector  is [1 a]′a , the 

matrix V is the covariance matrix of the parameter 
estimates from Equation (5), 1

UF −  is as previously 

defined, and ˆPµ  is a Poisson random variable with 

mean and variance equal to µ̂ . 
To build the tree list you start by predicting trees 

per hectare for the stand using Equation (6).  You then 
generate a DBH with rank equal to 1 from Equation 
(4), its per-hectare frequency from Equation (3) and 
subtract the predicted per-hectare frequency for trees of 
rank 1 from the total trees per hectare.  Continue this 
process down through the rankings until the predicted 
total number of trees per hectare is used up, that is, 

sto
ˆ

pn t=∑ .  This is the tree list describing the forest 

structure associated with that age and forest type. 
 
Stochastic Species Assignment  
Besides stand age, plots were classified into one of five 
forest types as being either loblolly pine, slash pine, 
longleaf pine, pine-hardwood mix, or hardwood-pine 
mix.  Equations (4) and (5) were fit for each of the five 
forest type groups.  Within a forest type trees were 
assigned to one of two species groups, either a yellow 
pine group or a hardwood group, but the approach 
works for finer species groupings, even for individual 

2003 Joint Statistical Meetings - Section on Statistics & the Environment

3198



species when the model-fitting dataset is large.  
Empirical probabilities were computed within each 
size-based subset.  Predicting the species group 

assignment for each predicted ˆ
pd  is stochastically 

determined by partitioning the domain [0,1] of a 
uniform random variable into two intervals, the length 
of which equals the respective empirical probability for 
being either a pine or a hardwood.  An independent 
uniform random variate Up is generated for every 

stochastically predicted DBH ˆ( ,  1,..., )pd p q= , and the 

species group into which Up fell was assigned. 
 
Example 
The data used in this analysis comes from an inventory 
of 719 permanent plots located on the Savannah River 
Site (SRS), a 73,451-h land base (comprised of 
approximately 6,700 stands), operated by the 
Department of Energy (DOE).  DOE has an inter-
agency agreement with the USDA Forest Service, 
Region 8 to manage the natural resources on the site.  
As part of the Forest Service’s management activities, 
a GIS layer of stand boundaries is maintained, along 
with an associated database of stand-level attributes.  
This database is made up of numerous variables, but 
only two linkage variables (stand age and forest type) 
were available when this research was done.   

DOE contracted the Forest Inventory and Analysis 
(FIA) unit of the Southern Research Station, another 
Forest Service unit, to install the 719-plot inventory 
used in this research.  Plot center points were laid out 
on an approximate 1000-m grid.  The plot design was 
the same five-subplot layout in use by FIA unit at that 
time for their regional inventory.  At each plot location 
trees 12.7-cm or larger in DBH were sampled at each 
of the five equidistantly spaced subplots with 
probability proportional to their DBH, using an 8.61-
factor prism.  Circular, fixed-radius, 0.00135-h plots 
were also established at each subplot center point for 
sampling trees less than 12.7 cm in DBH, but only the 
trees with DBH equal to or greater than 12.7 cm were 
used in the investigation.  Also, the data from the five 
subplots were pooled, resulting in an effective prism 
factor of 1.72.  The inventory plots were established 
and initially measured in the period 1986-88.  
Approximately half of them (386 plots) were 
remeasured in 1992.  The data used here came from the 
1992 inventory.  
 
Results and Discussion 
This analysis used plots from the 1992 inventory that 
were in the loblolly pine forest type.  This 157-plot 
dataset was randomly split into a 78-plot validation 
subset, and a 79-plot model-fitting subset.  The 50/50-
split method of validation adequately serves the 
illustrative purpose of this investigation. 

The largest number of trees sampled on a single 
plot in the model-fitting subset was 21 (the value of q 
in Equation (1)).  Equations (4) and (5) were fit using 
this 79-plot subset, and validated against the 78-plot 

subset.  The least squares estimates of ˆ
pβ  from 

Equation (4) are listed in Table 1 for each of the 21 
rank-based data groupings.  As expected, the magni-

tudes of ˆ
pβ  and ˆ pσ  decrease with increasing p.  The 

performance of the stochastic prediction process was 
tested using these estimates. 
 
 
Table 1.  Parameter estimates in Equation (4) used to 
predict the 21 DBH-based order statistics. 
 

Rank of 
order 

statistic 

Number 
of data 
points 

Estimate of 

slope ˆ( )pβ  

Root mean 
square ˆ( )pσ  

cm 
1 79 1.146628 12.324 
2 79 1.037074 11.677 
3 79 0.966745 11.337 
4 79 0.903008 10.379 
5 77 0.868421 9.382 
6 76 0.821200 9.062 
7 73 0.778998 9.326 
8 69 0.738786 9.419 
9 64 0.719658 8.810 
10 59 0.691616 8.578 
11 54 0.634936 8.153 
12 44 0.629256 7.533 
13 37 0.580774 7.799 
14 26 0.570619 6.520 
15 24 0.522966 6.587 
16 18 0.471870 6.155 
17 15 0.445366 4.414 
18 11 0.425769 5.045 
19 8 0.423444 4.324 
20 6 0.380717 3.927 
21 4 0.298526 1.807 

 
 

Table 2 compares means of 40 simulation runs 
(each run reusing the stand ages from validation 
subsets as input) with the observed means from the 
validation dataset.  These mean comparison statistics 
include two measures of central tendency (mean and 
median) and four measures of population dispersion 
(standard deviation, quartile range, and average 
minimum and maximum values).  The average 
stochastically predicted means from the 40 simulations 
differed from the observed validation subsets means by 
0.5 cm in DBH, 12 trees/h in density, and 0.0 m2/h in 
basal area.  The same 40-simulation averages for the 
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population-level dispersion statistics of standard 
deviation, quartile range, maximum value and 
minimum value differed from the observed validation 
subset means by 0.3, 1.3, 0.6 and 1.5 cm for DBH, and 
10, 42, 29, and 54 trees/h for density, respectively. 
 
 
Table 2.  The average quadratic mean DBH, trees/h, 
and basal area over all 40 simulation sets compared 
with the observed averages from the validation dataset. 
 
 Variable Mean Median Standard 

deviation 
  cm 
Observed 28.2 27.2 6.1 
Predicted quadd̂  

27.7 26.9 5.8 
  number/ha 
Observed 376 334 195 
Predicted stot̂  

388 343 205 
  m2/ha 
Observed 20.7 19.8 6.4 
Predicted 

�ba  
20.7 20.2 6.8 

     
 Variable Quartile 

range 
Min. Max. 

  cm 
Observed 8.9 15.7 44.2 
Predicted quadd̂  

7.6 16.3 45.7 
  number/ha 
Observed 274 82 974 
Predicted stot̂  

232 111 1028 
  m2/ha 
Observed 10.3 8.6 37.9 
Predicted 

�ba  
9.0 7.5 36.9 

 
 

The power computed using these averages was 

low (8% for quadd̂  and 7% for stot̂ ), which is not 

surprising given closeness of the means.  When the 
power of the comparison is set to 80%, the minimum 

detectable differences were 2.7 cm for ˆ
quadd  and 90 

trees/h for stot̂ .  Expressed as a percentage, this says 
that the probability of correctly accepting the null 
hypothesis is high for true differences no more than 
10% (2.7/27.7) of quadd  and 24% (90/376) of stot .  

Although this suggests considerable unexplained 
variation, the results are not bad considering that only 
stand age was used as a linkage variable, and 
furthermore, that thinning was intensively practiced on 
this forest, further compromising stand age as a 
surrogated for mean size. 

In addition to investigating the average 
performance of repeated simulations of the validation 

subset, the performance of individual simulation 
prediction sets of the validation subsets was also tested.  
Part of this analysis consisted on visually comparing 

sto quad
ˆˆ( , )t d  scatter graphs.  Figure 1 displays the scatter 

graph of sto quad
ˆˆ( , )t d  points from the validation dataset, 

along with the best, median, and worst fit individual 
prediction sets, as determined by a Euclidean distance 
measure.  This measure was calculated as the sum of 
the distances between each of the 78 predicted and 

observed sto quad
ˆˆ( , )t d -points.  The scatter graphs of the 

simulations with the smallest (best fit), the median, and 
the largest value (worst fit) cumulative distance are 
plotted.  The result supports the assertion that the 
model is performing acceptably for this key 
relationship. 

Reineke (1933) showed how the logarithmic 

transformations of quadd̂  and stot̂  linearizes the moving 

average relationship between them.  Fisher’s 
normalizing transformation, 0.5 ln((1 r)/(1-r))× + , was 
used to test for differences between predicted and 

observed correlations between quad
ˆln( )d  and sto

ˆln( )t  

(Steel and Torrie, 1980).  The observed correlation 
coefficient is –0.78.  Only two of the 40 test statistics 
were significant when using a Type I error rate of 0.05.  
This is the expected rejection rate for this error rate 
under the null hypothesis.  Examining these statistics in 
terms of Type II error rate of 0.2 (80% power) shows 
that when the simulated average correlation is larger 
than the observed correlation (for sample size equal to 
78), that the absolute value of minimum detectable 
difference is 0.09.  The minimum detectable difference 
is 0.14 for the same power of test when the simulated 
average correlation is smaller than the observed.  The 
simulated correlation estimates for the 38 non-
significant comparisons range from –0.67 to –0.84.  

The moving mean relationship for individual 
prediction sets was also examined by investigating the 
similarity of the regression relationship between 

quad
ˆln( )d  and sto

ˆln( )t .  Forty analyses of covariance 

were performed, testing for differences in the slope and 

intercept.  The analysis used quad
ˆln( )d as the dependent 

variable, and the sto
ˆln( )t , an indicator variable I 

distinguishing between the predicted and validation 
values, and their interaction sto

ˆI (ln( ))t× , as the 
independent variables.  The null hypothesis of equal 
slopes was rejected 2 times in 40 at the 0.05 alpha 
level, and 3 times in 40 for the intercept.  Again this is 
the expected rejection rate under the null hypothesis. 

Similar results were obtained from comparing 
means for individual prediction sets with observed 
means from the validation dataset.  Again, 38 of the 40 
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Figure 1.  Scatter plots of the quad sto-over-d t for the best fit, median fit, and worst fit of individual simulation runs 

based on the cumulative Euclidean distances between the 78 predicted and observed sto quad
ˆˆ( , )t d -pairs. 

 
 
values of Hotelling’s T2 test statistic were non-
significant (Hotelling, 1931; StataCorp, 1999).  Also, 
test statistics for the null hypotheses of no difference 
between the standard deviations from individual 
simulation prediction sets and the observed standard 
deviation (Ostle, 1963; StataCorp, 1999) supported 
similar assertions. 
 
Conclusions 
This research presents a different application of 
traditional sample inventory data, designed to satisfy 
the data needs of new analytical tools.  The objective 
was to use an inventory database to produce stochastic, 
regression-based predictions of unit-area variation in 
unit-area, frequency-weighted DBH lists for the 
purpose of modeling variation in forest structure within 
stand polygons in a GIS database.  Because of data 
constraints in the databases for which the methodology 
was developed, this illustration used only stand age as 
a linkage variable.  Improved performance would be 
expected for applications that have additional linkage 
variables available.  Given that stand age is only a 
moderately strong surrogate of mean size, the model 

still did an accurate job of predicting mean quadd̂ , stot̂ , 

and �ba .  However, the precision of the predictions was 

weak.  This was due to the fact that stand age is at best 
only a moderately strong surrogate for mean size, and 
that its strength is further compromised when stands 
are thinned, as they were in this application. 

The methodology assumes that variation between 
stands of the same age is a plausible estimate of 
variation within a stand.  This assumption needs more 
rigorous examination.  One possibility would be to use 
subplot information (when it is available as it was in 
this sample design) as a better data source for 
estimating within-stand variation.  Unfortunately, the 
prism factor (8.61 m2/h) in this sample design was 
deemed too large to produce stable results, and so the 
subplot data were pooled. 

Further investigation is needed into testing the 
effect of alternative ways of reducing the number of 

predicted tree diameters ˆ( , 1, 2,..., ,..., )pd p i q=  from 

the maximum tree list down to the i needed to predict 
the target trees per hectare.  In this investigation, the 
list was simply truncated from the bottom up, that is, 

dropping the prediction ˆ
pd  with the largest value of p, 

then the next largest p, etc.  Some type of a probability-
based elimination approach might be tested.  Finally, 
investigations are needed into developing stochastic 
predictors that use additional linkages variables. 
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