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A simultaneous density-integral system
for estimating stem profile and biomass:
slash pine and willow oak
Bernard R. Parresol and Charles E. Thomas

Abstract: In the wood utilization industry, both stem profile and biomass are important quantities. The two have
traditionally been estimated separately. The introduction of a density-integral method allows for coincident
estimation of stem profile and biomass, based on the calculus of mass theory, and provides an alternative to
weight-ratio methodology. In the initial development of the technique, sectional bole weight was predicted from
a density integral formed from two equations that were fitted independently using ordinary least squares: (1) a
stem-profile, or taper, function and (2) a specific gravity function. A test for contemporaneous correlations using
slash pine (Pinus  elliottii Engelm. var. elliottii) and willow oak (Quercus phellos L.) data showed highly
significant correlations between the density integral and the stem-profile equation as well as the specific gravity
equation. However, there was little or no correlation between the stem-profile and specific gravity equations.
Because contemporaneous correlations exist between some of the equations, more efficient parameter estimation
can be achieved through joint-generalized least  squares,  better known as seemingly unrelated regressions.
However,  the improvement in efficiency across parameters varies markedly based on the pattern of contemporaneous
correlations. A simultaneous system of three equations was derived for slash pine and willow oak ,with  nonlinear
constraints across equations. Parameter estimates from seemingly unrelated regressions estimation had smaller
standard errors in all cases than those from ordinary least squares estimation. For slash pine, standard errors
were reduced by 11 to 29% and for willow oak, by 5 to 20%.

R&urn6 : A la fois le dCfilement  de la tige et la biomasse rev&tent une importance particulikre pour l’industrie
du bois. 11s  ont traditionnellement CtC  estimCs  sCpar6ment.  Une mCthode  basCe  sur l’integration  de la masse et
appelCe  mCthode  d’integration  de densitC  permet  d’estimer simultankment  le dCfilement  et la biomasse tout en
offrant  une alternative B la mCthode  du ratio du poids. Au dCbut  du dCveloppement  de la mCthode,  le poids des
sections de tige Ctait prCdit  par une intCgrale  de densitC  composCe  de deux Cquations ajustCes  sCparCment  par la
mCthode  classique des moindres car&  : (1) une Cquation du profil, ou du dkfilement, et (2) une Cquation du
poids spkcifique.  Un test de corrClations  simultanCes  sur les don&es  du pin de Floride (Pinus  elliottii Engelm.
var. elliottii) et du ch&ne  saule (Quercus phellos L.) montraient des corrClations  fortement significatives entre
1’intCgrale  de densitC  et 1’Cquation  du dCfilement  ainsi que 1’Cquation  du poids spkcifique.  Cependant, il y avait
peu ou pas de corrklation  entre 1’Cquation  du dCfilement  et celle du poids spkcifique.  Comme il existe des
corrClations  simultankes  entre certaines  de ces Cquations, on peut obtenir une meilleure estimation des
parambtres par la mCthode  des moindres car&  unifiCs  et gCnCraux,  mieux connue  sous  le nom de mCthode  des
rkgressions  apparemment indkpentiantes.  Toutefois, cette amklioration de l’efficacitt!  au niveau des parambtres
varie fortement selon le patron des corrClations  simultanCes.  Un systbme de trois Cquations simultankes  g
contraintes non 1inCaires  a CtC  dCveloppC  pour le pin de Floride et le chCne  saule. Dans tous  les cas, les
parambtres estimCs  par la mCthode  des rkgressions  apparemment indkpendantes  comportaient des erreurs
standards plus faibles que celles  qui Ctaient obtenues par la mCthode  classique des moindres car&.  Les
rCductions  varient de 11 & 29% pour le pin de Floride et de 5 B 20% pour le ch&ne  saule.
[Traduit par la RCdaction]

Introduction
As early as 1950, the use of weight as a measure of wood
quantity has been practiced by many of the larger companies
in North America and northern Europe (Husch  et al. 1982).
The use of weight measurement has steadily grown in
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importance with the increased demand for wood fiber and
fuel. While weight has become increasingly important as a
measure, so too stem form or taper has increased in impor-
tance to the sawnwood  industry. The development of taper
equations allows for prediction of product mix produced
from a tree, and hence the economic value of trees (Busby
and Ward 1989). Softwood species are particularly appro-
priate for the development of stem-profile, or taper, models
because of the simplicity of stem form. Hardwood species
are somewhat more difficult to model conceptually as well
as practically because of the form of the stems in the crown
and the tendency of the central stem to break up into
smaller, but still significant branches. Use of weight in



7 7 4 Can. J. For. Res. Vol. 26, 1996

Fig. 1. Excurrent tree conceptualized as a two-dimensional lamina.

HEIGHT

specifying the amount of hardwood is nonetheless appealing
because of the recent increased interest in the utilization of
smaller hardwood stems in chipboard and paper furnish.

This paper develops an integrated approach for stem
biomass estimation that was first introduced by Parresol
and Thomas (1989) using a piecewise approach. This new
approach uses a generalized integral model for the prediction
of dry-weight yield of wood for any portion of a tree bole,
given diameter at breast height (DBH) and total tree height
(H). This contrasts with the standard approach for predicting
sectional bole weights, namely the use of ratio equations
times total stem weight equations. We investigated the
comparison of the weight ratio and the integrated approach
in the earlier paper and found significant improvement in
prediction using the integrated approach.

Methodology

The weight of an object is simply its volume multiplied
by its density. It is the basis for calculation of bolt dry
weights from sample trees used in biomass studies. The
normal procedure is to cut disks from the base of each
bolt for laboratory determination of its density or its specific
gravity. Since the base of a bolt is the top of the previous
bolt, a measure of density at the ends of each bolt (except
the tip) is obtained. A weighted average bolt density (where
weight is disk cross-sectional area) is determined, which is
then multiplied by bolt volume to obtain bolt dry weight.
The need for weighting density results from the fact that it
varies throughout the tree. Specific gravity typically changes
as a function of height within a tree stem, decreasing from
base to tip (Husch  et al. 1982; Parresol and Thomas 1987,
1989). Other factors such as age and size (i.e., DBH and H)
may affect tree specific gravity (Taras  and Wahlgren 1963).

Weight-ratio approach
When researchers first started fitting tree volume equations
for different merchantability limits, they found, contrary
to logic and fact, that the regression lines sometimes crossed

each other. To circumvent this problem researchers devised
a two-step method to calculate merchantable volume to
any utilization specification. First, they estimated an equa-
tion to predict total tree volume. Second, they estimated
an equation to predict the proportion or ratio of merchant-
able volume to total volume given the merchantability lim-
its. When attention shifted to estimating tree biomass, it
was natural to apply the ratio approach, thus avoiding sim-
ilar problems encountered in tree volume estimation
(Williams 1982).

The weight-rat io approach uses the fol lowing relat ionship:

$j = jg

where w is merchantable weight, W is total weight, and R
is w/W. Interested readers may refer to Honer (1964),
Burkhart (1977),  and Van Deusen et al. (1981) for the
early developmental work on the ratio approach. Parresol
and Thomas (1989) compared the weight-ratio approach
with the density-integral approach and concluded that the
density-integral approach gave more precise estimates of
sectional and total bole weight.

Density-integral approach
Parresol and Thomas (1989) derived a tree density-integral
model by applying some simple calculus of mass theory.
Many standard calculus texts (e.g., Loomis 1977, p. 622;
Swokowski 1983, p. 799) define mass (M) for a lamina
with a continuous, varying density function p(x, y) using a
generalized equation:

A 4  =  jjP(G  Y>  dA
R

where R represents the region of integration, A is area,
and x and y are the dimensions of the lamina. The three-
dimensional structure of a tree is easily conceptualized as
a two-dimensional lamina by taking cross-sectional area
(y) as one dimension and height above ground (h) as the
other dimension (Fig. 1). As we move from lower limit
h, to upper limit h, in Fig. 1, the variable y is seen to span
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f(h). This establishes a basis for adopting the following
model for stem biomass:

hu
I I

f(h)
w =

h 0
P@, Y> dy dh + e

wheref(h)  is an equation expressing taper in cross-sectional
area as a function of height, w is bole dry weight of wood
between limits h, and h,, and e is residual error. Typically
stem profile (cross-sectional area) is modeled using relative
height (x = h/H) instead of actual height. Performing a
change of variable from h to x results in the following
generalized stem biomass model:

Ul w=H  ”I I
f(x)

XI 0 P(X,  Y) dy h + e

For a specific biomass model one needs to define p and
$ In practice, the completely generalized model [l] can
be simplified to one integral because specific gravity is
usually held constant over the y dimension. In field sam-
pling, disks are cut from bolts for laboratory determination
of their specific gravity (SG). Normally a single SG is
determined for each disk as opposed to being expressed
as a function of radius within the disk. Hence, a tree can be
viewed as disks such that the within-disk SG is constant and
varies up the tree according to p(x). Now stem biomass
can be expressed as

PI w = H Jx:"  p(x).f(x) k + e

One could fit stem profile (f(x)) and density (p(x)) inde-
pendently and place them into model [2] for prediction of
biomass. The coefficients off(x) are of interest in and of
themselves because of their application in the prediction of
taper and volume. Furthermore, one would expect weight,
density, and volume to be correlated at the same measure-
ment bolt on the tree. This correlation is referred to as
contemporaneous in econometric methods and literature
(Srivastava and Giles 1987, pp. 5-6; Judge et al. 1988,
p. 443). It has been shown that ignoring the correlation
leads to inefficient estimates of the parameters (see, for
example, Srivastava and Giles 1987, Chaps. 3 and 4; Judge
et al. 1988, Chap. 11). Thus econometricians recommend to
check for contemporaneous correlations.

Data summary
Slash pine
The data are described by Lohrey (1984). Data were col-
lected from permanent growth and yield plots scattered
throughout Louisiana. The database consists of 192 felled
plantation-grown slash pine (Pinus  elliottii  Engelm. var.
elliottii) trees, 106 of which were from unthinned stands and
86 of which were from stands that had been thinned from
below. All trees were cut at a 0.15-m stump. Diameter
inside bark in centimeters was measured at 0.15, 0.6, and
1.4 m and every 1.5 m thereafter throughout the remainder
of the stem. Total tree height in meters was measured, and
the stem was sectioned into bolts. After each bolt was
weighed, a 4 cm thick disk was cut off the bottom end for
laboratory determination of wood specific gravity. Bolt
volumes inside bark were calculated using Smalian’s for-
mula. A weighted (by cross-sectional area) average wood

Table 1. Characteristics of the slash pine plantation trees
and willow oak.

Slash pine

Unthinned Thinned
Willow

o a k

No. of trees 106 86 61
No. of bolts 1256 1237 1050
Mean age (years) 26 37 68
Age range (years) 12-45 24-48 34-111
Mean DBH (cm) 16.9 26.0 48.7
DBH range (cm) 5.6-33.0 6.9-48.5 I17.3-94.0
Mean height (m) 16.2 20.4 27.0
Height range (m) 6-28 9-34 17-38
Mean stem dry wt. (kg) 82 296 1104
Dry wt. range (kg) 2-45 1 6-1387 88-4056

specific gravity was computed based on disks from the
upper and lower end of each bolt, so that dry weight of
the bolt in kilograms could be determined. Table 1 gives
some simple descriptive statistics on the trees.

Willow oak
The willow oak (Quercus  phellos  L.) data are described
by Schlaegel (1981); we briefly review his descriptions
here. Data were collected from 10 natural bottomland hard-
wood stands in Mississippi. Sixty-one trees were chosen
for destructive sampling from uneven-aged mixed species
stands. Stump height, total height, and age were measured
on each tree. Diameter inside bark and specific gravity
were determined at stump height and then from ground to
tree top at 1.5-m intervals along the bole for trees 13 cm
DBH and larger and at 0.9-m intervals for trees smaller
than 13 cm DBH. Bolt volumes and weights were calculated
in an analogous manner to the slash pine. Table 1 gives
simple descriptive statistics on the trees.

Models
Taper
Our first step was to obtain a simple taper model that pro-
vides a practical fit of the volume of the bole. We settled
on a simple trigonometric transformation that resulted in a
three-term taper model (Thomas and Parresol 1991) that
fit the data as reliably as multitermed polynomial models.
It has the form

[31
d=
3 = P,l(X  - 1) + P,2(

where d is diameter inside bark, D is DBH, and c is 1.5 for
slash pine and 2.0 for willow oak.

Specific gravity
Careful examination of plots of the specific gravity data
revealed linear trends over all variables tested. The follow-
ing variables were used in fitting all possible regressions:
relative height, stem diameter inside bark, age, site index
(base age 25 years, slash pine only) (Zarnoch and Feduccia
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1984), DBH, and total tree height. Examining the residual
sum of squares for each subset revealed that only the vari-
ables relative height and age were important in estimating
bole specific gravity. The following equation was fitted
separately to the unthinned and thinned slash plantation
data and to the willow oak data:

[41 SG = I&,  + Pzp + P22A + e

where SG is specific gravity, and A represents age in years.

Density integral
The specific integral weight equation for slash pine and
willow oak stemwood dry weight is derived below. Given
~(4 = (P2o  + P2,x + P22A)kl  andf(4  = D2Wll(x  - 1) +
B,*(sin  cnx)  + B,s(cot  nx/2)]k,,  where k, = 1000 (the fac-
tor for converting SG to density in kg/m3)  and k , = IT/
40 000 (the factor for converting D2  from cm2  to area in
m2), the following model is obtained upon integrating
eq. 2, simplifying results, and expressing in linear form:

[51 -$g  =  p3,[[v)  - (x,-  xl)]  +  &?A[(v)  - (x,-  +j]  +  p,,[‘“’  “TIxu;-cos  cnxl]

+ P34A
cos mx,  - cos mx,

+ P35
2 sin TX,  I2
- ln In

sin TX,  I2
CT I [ sin ~FX,  I21 [+ P36A  2

71 5-r sin TX, I2 1

4
+ p39T- Isin:x,  - sincxi  + Y-lr

L
‘ L L

k=l

where In is the natural logarithm, B3, = B,,&,,  Bs2  = pi1 B22,
P33  =  -h2i320’  P34 =  -h2i322’  P35 =  h3P209  P36 =  Pl3P22,

I337  =  PllP21~  I338  =  P12P219 and B39 = B,sB2,.  Equations 3,
4, and 5 form a set of linear statistical models with non-
linear cross-equation constraints. If contemporaneous cor-
relations are present and sufficiently large (>0.3,  Mehta
and Swamy 1976) then seemingly unrelated regressions
(SUR) estimation should achieve more efficient parameter
estimates than ordinary least squares (OLS).

Estimation
Equations 3, 4, and 5 can be written in the usual matrix
algebra notation as

Y l  =  X,Pl + e1

y2  = X2P2  + e2

y3  = X3P3  + e3
where yi is a vector containing the dependent variable from
the ith equation, Xi is a matrix containing the independent
variables from the ith equation, and the rest of the notation
is self-explanatory. The usual assumptions are

E[ei] = 0 and Z?[eiej]  = cr,I, i,j = 1, 2, 3

Combining all equations yields

161  [;;I=[;  i2 ;J]+[z]

(3T x 1) (3T x 15) (15 x 1) (3T x 1)

or alternatively

y = f(p) = Xp + e

where T is number of observations.

The variances and covariances are unknown and must be
estimated, with their estimates being used to examine the
question of contemporaneous correlations and to form the
SUR estimator. To estimate the oij, first estimate each
equation by least squares bi = (XIX,)--‘X:y,  and obtain the
least squares residuals ei  = yi - X,b,. Consistent estimates
of the variances and covariances are then given by

where the degrees of freedom corrections Ki  and Kjare
the number of coefficients per equation. If we define Z as
the matrix containing the estimates eij,  then the restzicted
SUR estimator is obtained by minimizing (y - Xp)’ (2-l @
I) (y - XB) subject to the nonlinear restrictions q(p) = 0.
For our purposes, equality restrictions can be introduced by
reducing the dimension of the parameter space. The p vec-
tor contains 15 parameters but as has been noted the sys-
tem really has only 6 parameters. The restrictions can be
expressed in the form

P = g(a)
where (Y is a six-dimensional vector. Define (Y = (Bll,B,2,
B13,B20,B2,,B22)’  and the vector valued function

Obtain the restricted SUR estimator by minimizing the
objective function O(g(a))  = e’(Z-’  8 I)e, where e = (y -
Xg(cw)).  Under the Gauss-Newton gradient minimization
method, the direction matrix is defined as F’F, where F =
[df/dg(cx)‘I,c,,]  is the Jacobian matrix (Judge et al. 1985,
Appendix B). The iteration function is

[71 &+I =  ~2, +  [F&’ @ I)F,]-IF;&’ C3  I)@,
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Table 2. Parameter estimates (with standard errors in parentheses) for the slash pine
density-integral system using OLS and SUR.

% reduction
OLS SUR in SE

Unthinned

-0.663 0.028 (0.003 2 (0.003 97) 26) -0.658 0.021 (0.003 8 (0.002 30) 47) 24 17

0.004 41 (0.000 099 3) 0.004 16 (0.000 070 5) 29

-0.145 0.478 (0.003 (0.003 90) 82) -0.145 0.471 (0.003 (0.003 43) 34) 13 12
0.001 75 (0.000 124) 0.001 87 (0.000 109) 12

Thinned

-0.741 0.034 4 (0.003 (0.003 86) 17) -0.738 0.026 9 (0.003 (0.002 27) 54) 20 15

0.003 0.487 78 (0.005 (0.000 09) 083 9) 0.003 0.483 61 (0.004 (0.000 47) 061 0) 27 12
-0.161 (0.003 39) -0.157 (0.003 03) 1 1

0.001 82 (0.000 126) 0.001 77 (0.000 112) 1 1

Table 3. SUR regression results for the slash pine
densi ty- integral  system.

Model

Unthinned Thinned
stands stands

R2 RMSE R2 RMSE

Taper 0.96 0.056 0.96 0.055
Specif ic gravity 0.55 0.041 0.66 0.036
Biomass 0.94 0.0022 0.95 0.0018

N o t e :  R M S E ,  root mean square error.

Starting values for hi,  were obtained by applying OLS to
eqs. 3 and 4. GAUSS version 3.0 matrix language software
(Aptech Systems, Inc. 1992) was used to solve for di from
iteration function [7]. The relative offset orthogonality
convergence criterion (ROOCC) of Bates and Watts (1981)
was used to determine convergence of the parameter esti-
mates (ROOCC < 0.001). It is defined as

I

k’($-’ 0 I)F(F’&’ 0 I)F)-‘F’(i;-’ @ I)& 1
112

i’& 0 1);)

which is a measure of the orthogonality of the residuals
to the Jacobian columns, and goes to zero as the gradient
of the objective function becomes small. The covariance
matrix of the parameter estimates is calculated as

L$ = [F’($-’ @ I)F]-’

Analysis and results
Testing for contemporaneous correlations
If contemporaneous correlations do not exist, least squares
applied to the restricted system in [6]  (which is equivalent

to applying OLS to models [3] and [4] for this particular
system of equations) is fully efficient and there is no need
to employ the seemingly unrelated regression estimator.
Thus, we want to test whether all of the contemporaneous
covariances are zero. It should be noted that only one
covariance needs to be nonzero  to achieve a theoretical
gain in efficiency (Breusch and Pagan 1980). In the context
of the density-integral system, the null and alternative
hypotheses for this test are

Ho:  CT12  = cr,j = CT23  = 0

Hi:  at least one covariance is nonzero

An appropriate test statistic is the Lagrange multiplier
statistic (Judge et al. 1988, p. 456). In the three-equation
case this statistic is given by

A =  T(rf,  +  l-y3  +  r;,,

where  is the estimate of squared correlation

G?.
[8] q;  = 1

i+ii6jj

Under Ha,  X has an asymptotic x2 distribution with 3 df.

Slash pine
Upon applying SUR to the density-integral system of equa-
tions forAunthinned  and thinned slash pine stands, the fol-
lowing 2 matrices, which contain the eij’s,  were obtained:

i

0.003153 -0.000165 0.00008 12

-0.000165 0.001711 0.0000396 10.0000812 0.0000396 4.7083 x lO-‘j  unthinned

0.003050 0.0000567 0.0000708

0.0000567 0.001277 0.0000289

0.0000708 10.0000289 3.3673 x 1O-6  thinned
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Table 4. Parameter estimates (with standard errors in parentheses) for the willow oak
density-integral system using OLS and SUR.

Parameter OLS SUR
% reduction

in SE

-0.568 (0.004 61) -0.589 (0.003 76) 18
0.073 6 (0.003 12) 0.074 2 (0.002 50) 20

;:a 0.019 0.624 6 (0.003 (0.000 48) 281) 0.017 0.631 6 (0.003 (0.000 29) 236) 16 5
P 21 0.063 9 (0.003 24) 0.057 4 (0.003 08) 5
P 22 -0.000 730 (0.000 043 7) -0.000 766 (0.000 041 6) 5

Table 5. SUR regression results for the
willow oak density-integral system.

Model R2 R M S E

Taper 0.96 0.068
Specific gravity 0.38 0.030
Biomass 0.95 0.0020

Note: RMSE, root mean square error.

Using these values to calculate X gives

hunthinned  = 1256(0.0050  + 0.4445 + 0.1947) = 809.1

binned = 1237(0.0008  + 0.4878 + 0.1946) = 845.1

These large values indicate significant contemporaneous
correlations between equations in the system. This suggests
SUR should provide gains in efficiency. Table 2 lists the
parameter estimates and associated standard errors from
OLS and SUR estimation for the slash pine density-integral
system. The standard errors are all smaller under SUR esti-
mation, indicating more efficient parameter estimates as
was hypothesized. As can be seen in Table 2, standard errors
were reduced by 11 to 13% for the specific gravity - biomass
coefficients and by 15 to 29% for the taper-biomass coef-
ficients.  The contemporaneous correlations between equations
can be constructed by taking the square roots of the values
from eq. 8 and attaching the sign of the numerator. For the
unthinned slash pine system they are r,*  = -0.071, r,s =
0.667, r,, = 0.441. For the thinned slash they are r,2  = 0.029,
7,s  = 0.698,  = 0.441. There is a strong correlation between
the taper (eq. 3) and biomass (eq. 5) models. There is a
good correlation between the specific gravity (eq. 4) and
the biomass models, and a very weak correlation between
taper and specific gravity models. This explains why the
standard eqors  for fhe specific gravity - biomass coeffi-
cients (&,, pZ,,  and a,)  were not reduced  as_much  as for the
taper-biomass coefficients (B,,, Bt2, and Bts).  Regression
results, in terms of coefficients of determination and root
mean square errors, for slash pine are given in Table 3. The
fit of the biomass model (eq. 5) appears very good. As a
final check of the performance of the SUR approach, we
plotted the unthinned and thinned slash pine taper equa-
tions and examined the plots to assure that no undue shifts
in the shapes of the stem boles had occurred as a result  of the
fitting procedures.

Willow oak
The results for willow oak are similar. The following 2
matrix was obtained:

L

0.004561 -0.000113 0.000105

-0.000 113 0.000 874 0.0000102

I0 .000105  0 .0000102  4 .136  x  1O-6  oak

Using these values to calculate A gives

A oak  = 1050(0.0032  + 0.5880 + 0.0288) = 651.0

The Lagrange multiplier statistic indicates significant con-
temporaneous correlations. Table 4 lists the parameter esti-
mates and associated standard errors from OLS and SUR
estimation for the willow oak density-integral system. As
with slash pine, the standard errors are all smaller using
SUR estimation, indicating that more efficient parameter
estimates were achieved over using OLS. As can be seen
in Table 4, standard errors were reduced by 5% for the
specific gravity - biomass coefficients and by 16 to 20% for
the taper-biomass coefficients. The willow oak system did
not realize as much of a gain in efficiency as the slash
pine systems, which is not surprising because the slash
pine grew in homogeneous plantations, whereas the willow
oak sample trees were from heterogeneous natural stands.
The contemporaneous correlations between the willow oak
equations are r,2 = -0.057, r,s  = 0.767, rz3  = 0.170. Again,
there is a strong correlation between the taper (eq. 3) and
biomass (eq. 5) models. However, the correlation between
the specific gravity (eq. 4) and the biomass models is poor,
and there is only weak correlation between taper and spe-
cific gravity models. Overall, the between-equation cor-
relations are not as strong in willow oak. The poor to weak
correlations of the specific gravity error term with the
taper and biomass error terms explain why there w-as  oply
a modest 5% reduction in standard errors for the &a,  B2,,
and BZ2  coefficients. Table 5 lists the regression results
for the willow oak system of equations. As with the slash
pine, the fit of the biomass model (eq. 5) appears very
good. A plot of the taper equation assured us that the gen-
erated stem-profiles matched the data.

A surprising result is that the linear  trend of specific
gravity over relative tree height (BZ1) and tree age (B2J
had a positive slope and a negative slope, respectively
(Table 4). This is counter to what we have observed with
every other species we have worked on. Willow oak does
not readily prune itself of branches, and a tendency exists
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for the production of epicormic branches (Bums and Honkala
1990). Perhaps this characteristic promotes an increase in
wood density. We have no explanation on why specific
gravity should decrease with age, and a graph of the data
clearly shows this trend. The mean tree age was 68 years,
so these are not young trees. In general, tree growth slows
after a certain age with a resultant increase in wood density.

Discussion
Taper and biomass are critical components of forest product
characterization. Use of a taper model allows industry to
assess the product yields of trees to capture the highest
value from the raw wood. Biomass is most important in
assessing chip furnish yields for paper industry. The mix of
forest products between hardwoods and softwoods has also
changed over recent years, making characterization of the
yields of hardwoods more widely needed.

The tree taper-volume-biomass system we have devel-
oped is based on parsimonious taper models that can be
integrated for the whole bole or portions of it and yet have
small errors in any portion of the bole. Practically speaking,
the functions fit best in that portion of the bole that is
merchantable. The deviations that occur are minor, located
in the tip and in the stump. Use of the trigonometric func-
tion avoids multiple join points in segmented regressions
to estimate bole volume. Even so, use of these straight-
forward trigonometric equations leads to complicated solu-
tions for the entire system. Methods for solution of restricted
SUR have provided a route to minimize errors in the coef-
ficients and allow for direct evaluation of the biomass
function. The coefficients developed using this approach are
important in both high value sawnwood  product predictions
and in total volume and biomass predictions. Gains in effi-
ciency of estimation compare favorably with other appli-
cations of SUR, which also validates the application to
this problem (Zellner 1962; Judge et al. 1988, Chap. 11).
Taper-volume-biomass data are obtained only through
labor-intensive field measurements, which are also costly.
The best techniques available should be employed to obtain
the best inferences possible. Computers and software have
made integrated systems like this possible so that we can
take advantage of the mathematically complicated, but
unified approach to solutions for the taper-volume-biomass
system of equations.
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Appendix A: Integration of x cot =x/2
Upon evaluating the first integral of model [l] given f is eq. 3 and p  is eq. 4, along with the appropriate units conversion
factors, the following result is obtained

w = $D~H jz [I320 + Pm41 pll(x - 1) + PI2 sin crux  + B1s  cot tx1
+ P2, Pdx2- x) + p,2x s in mx + p13x  cot  ;x1 dx

All the terms in this integral are easily resolved into antiderivatives except  for x cot ITX/~.  Let t = TX/~,  hence x = (2/n)t;
and let dtldx = IT/~,  hence dx = (2/T)dt.  Substituting we obtain jt (4tln )cot t dt. Integrating by parts gives

4

7
t In sin t - I”  In sin t d t

tl I

Let u = sin t, which results in

42
[

t In u  - JEs:nnz In u
:I&2

1

Let r = In u, dr = l/u du, v = -COST’  u, and dv = dul(1 - u2)“*. Again, using integration by parts we obtain

- t l n u -
,“z r (

-cos-‘ulnu- I
sin t, cos-’  udu

sin tl U
11

By substituting a Maclaurin series expansion for cos-’ u  in the integral and integrating each term and combining certain
terms we obtain

sin mu / 2
4

7
1Tx + cos-‘sinzx  - TT

u3 3us 15u7
u+ii+-+-

+
.‘.2 2 2 200 2352

sinnq /2

The expression (TX/~  + cos-’ sin rrx/2 - IT/~)  equals zero, which greatly simplifies the antiderivative expression. Upon
evaluating the antiderivative at the limits of integration and writing the result in summation and product notation, the
final result is obtained

4 m
7

sin:x,  - singx,  + C ( kf!‘;’ - ‘)

k=’ n2n  ( 2 k  +  l)?
n=l

[(sin+x”)i*“- (sinz-..j;
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Appendix 6: The T+,,, transformation to accelerate the convergence of infinite
series

The T,, transformation (Gray and Clark 1969) is very useful for finding the convergence of an infinite series because it
makes the series converge many times faster than normal. This method makes use of the idea of partial sums of a series.
S denotes the infinite series and S(n) is the partial sum, of length II, of S. The T,, transformation is defined as

IAll T,,[W  +  m)l =
S(n)S(n  +  m  - 1 )  - S(n +  m)S(n  - 1)

S(n) - S(n  - 1) - S(n  + m) + S(n  + m - 1)

This transformation can be applied to the infinite series expression for the ] x cot TX/~.  S(n) can be written in terms of S,
that is, S(n) = S + en,  where e, is an error term associated with terms in S that are not in S(n). If the error terms have the
property en+m = 8e, then a test for applicabilty  and a means of selecting m is through use of the lagged serial correlation
coefficient (Jones 1982). The following equation is used for the correlation coefficient

i S(i) i  S(i  + m)
i S(i)S(i  +  m )  - i=’ i=l

[A21  r = i=l n

:

2 ( 1
i  S ( i )  2

scij2 _  i=l

(i  S(i  + -,)
i qj + m)2 - i=’

i=l n i=l n

This coefficient is tried over different values (lags) of m and the m with the most significant correlation is chosen.
Once a suitable m has been found use eq. Al and an appropriate stopping rule to find the limit of the sequence. This

limit, which is based on the transformation and a partial sum of the original infinite sequence, is as accurate as finding the
limit of the infinite sequence but is considerably faster in convergence.

Through a trial process using partial sums S(1) through S(6) and m values of 1, 2, and 3, eq. A2 identified m = 1 as the
best choice. The following generic BASIC program can be used to find the value of j x cot nx/2:

100 REM PROGRAM TO EVALUATE INTEGRAL X * COT(PI/2  * X) USING T+ 1
110 PRINT TAB( 15); “PROGRAM TO EVALUATE INTEGRAL X * COT(PI/2  * X)“: PRINT
120 DEFINT I-N: DEFDBL A-H, O-Z
130 DIM S(3)
140 INPUT “LOWER LIMIT OF INTEGRATION =“; XL
150 INPUT “UPPER LIMIT OF INTEGRATION =“; XU
160PI = 4 * ATN(1)
170 CU = SIN(P1 / 2# * XU): CL = SIN(P1 / 2# * XL)
180PRODl  = 1: PROD2 = 1
190 SUM = 0#
200 FOR I = 1 TO 1948 STEP 3
2 1 0  FORK=ITOI+2
220 PROD1 = PROD 1 * 2 * K / 1000:3

P PROD2 = PROD2 * (2 * K - 1) / 1000
230 J=2*K+  1
240 SUM=SUM+PROD2*(CU”J-CL”J)/(PRODl*J*J)

* 250 S ( K - I +  l)=SUM
260 NEXT K
270 IF I = 1 THEN TOLD = S(3)
280 TPLUSI = (S(2) * S(2) - S(3) * S( 1))  / (2 * S(2) - S(I) - S(3))
290 IF ABS(TPLUS1  - TOLD) < .000000001#

THEN GOT0 320
300 TOLD = TPLUSl
310 NEXT I
320 VALUE = (2# / PI) h 2 * (CU - CL + TPLUS 1)
330 PRINT : PRINT TAB( 11); “VALUE OF INTEGRAL =“; VALUE, “n+m =“; K - 1
340 END




