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Abstract 

Remotely sensed data for Southeastern United States (Standard Federal Region 4) are used to examine the 
scale problems involved in reporting landscape pattern for a large, heterogeneous region. Frequency distribu- 
tions of landscape indices illustrate problems associated with the grain or resolution of the data. Grain should 
be 2 to 5 times smaller than the spatial features of interest. The analyses also reveal that the indices are sensi- 
tive to the calculation scale, i.e., the unit area or extent over which the index is computed. This “sample area” 
must be 2 to 5 times larger than landscape patches to avoid bias in calculating the indices. 

Introduction 

A strong motivation for developing Landscape 
Ecology has been the need to deal with ecological 
impacts at large spatial scales (Hett 1971; Krum- 
me1 et al. 1980, 1983, 1984; Mankin et al. 1981). 
An expanding human population, combined with 
continuing development, are causing unprecedent- 
ed land use changes (Krummel et al. 1986; 
Franklin and Forman 1987). Vast areas of natural 
vegetation are being changed into agriculture or 
urban areas (Klopatek et al. 1983). Infrastructure, 
such as roads and power lines, are impacting the 
remaining natural areas (KruGel  et al. 1987). 

These land use changes, in turn, have serious 
impact on large-scale ecological systems. Defor- 
estation increases carbon dioxide in the atmosphere 
(Chan et al. 1980; Emanuel et al. 1984). Fragmen- 
tation often reduces biodiversity (Kareiva 1986; 
Pacala 1987) and, consequently, decreases genetic 
diversity. 

Major environmental changes may involve alter- 
ations in spatial pattern at the regional scale. Some 

general circulation models of the atmosphere pre- 
dict hotter and drier conditions in the mid-latitudes 
as a result of increased Carbon Dioxide. Studies 
based on that scenario predict that the American 
Cornbelt will move far to the north and east (Blas- 
ing and Solomon 1984). Forests would change 
species or transform into shrubs or grassland (Sed- 
jo and Solomon 1989). If rates of climate change 
exceed rates of forest migration, the ecosystem will 
be at risk for increased disease and fires (Batie and 
Shugart 1989). 

Even without global changes, spatial pattern is 
important in structuring ecological communities 
(Levin 1976). Pattern is particularly important in 
maintaining the coexistence of competitors (Levins 
and Culver 197 1 ; Slatkin 1974; Comins and Noble 
1985). Pattern may be determined by disturbance 
(Paine and Levin 1981) and may, in turn, determine 
how disturbances propagate through the system 
(Turner et al. 1989). 

Dealing with landscape change will require 
increased sophistication in our ability to monitor 
spatial pattern. The question then arises: at what 
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Fig. 1. Standard Federal Regions adopted by the U.S. Environ- 
mental Protection Agency (Office of Management and Budget 
1974). Region 4 contains portions of 3 of the Omemik (1987, 
Omemik and Gallant 1989) ecoregions. 

spatial scale is it relevant to monitor, report and 
assess landscape patterns? For the individual inves- 
tigator, developing the principles of landscape ecol- 
ogy, relatively small spatial scales may suffice. 
However, for purposes of monitoring status and 
assessing changes across the continent, there is a 
need to consider the regional scale. 

The regional scale 

A region is an area of similar vegetation, geology, 
and historic landuse such that principles of land- 
scape ecology established anywhere within the 
region can be reasonably expected to extrapolate 
across the region (Omernik 1987). A region can be 
loosely defined as an area containing lo3 to lo6 
landscape units. The landscape unit will depend on 
the question being asked. For questions of forest 
biodiversity, the logical unit might be a forest 
patch. For questions of water quality assessment, 
the unit might be a watershed. 

However, in many cases, a region is less a logi- 
cal unit of ecological interaction and more a conve- 
nient socio-political unit for assessment and regula- 

tory purposes. One example is the Standard Federal 
Regions (OMB 1974) that have been adopted by 
the Environmental Protection Agency. No one, of 
course, is suggesting that a Federal Region is eco- 
logically uniform. Nevertheless, environmental sta- 
tus and trends must be reported by the Federal 
Region as a unit (OMB 1974). The scale question 
then becomes what problems will arise in reporting 
landscape pattern over the heterogeneous adminis- 
trative region? For the purposes of the present 
paper, we will focus on Region 4 in Southeastern 
U.S.A. Figure 1 shows that Region 4 contains por- 
tions of three of the aggregated ecoregions suggest- 
ed by Omernik and Gallant (1989). 

The differences between landscapes and report- 
ing regions raise a series of questions. What hap- 
pens as one aggregates landscape metrics to the 
regional scale? A common sense approach would 
subdivide the region into more homogeneous sub- 
regions. However, even this approach is, at present 
unguided by any quantitative study of the issue. 
Explicit examination of the question will bring to 
light a number of unexpected scale phenomena that 
were previously unknown and must be considered 
in future regional studies. 

The spatial data base 

Landcover was taken from the prototype database 
developed by Loveland et al. (1991). The database 
contains classified land cover for the conterminous 
United States. The database uses Advanced Very 
High Resolution Radiometer (AVHRR) imagery (1 
km2 grain size) collected from March through 
October, 1990. For present purposes, cover classes 
were aggregated into Anderson Level I (Anderson 
et al. 1976) categories. This results in 9 potential 
cover types, of which 7 occur in Region 4 (Hun- 
saker et al., in press). The AVHRR database cap- 
tures major landscape features but loses fine 
details, such as small scale fragmentation and road 
cuts. Thus, the resolution is too coarse for relating 
spatial changes to many ecological processes. 
However, it should be sufficient for investigating 
how measures of pattern aggregate to regional 
scales. 

Region 4 contains portions of 3 ecoregions (Fig. 
1). The first is the southern tip of the Appalachian 
mountains, largely covered with forest (Omernik 

1 



171 

region 11). The second contains the plains to the 
east and south of the mountains (Omernik region 
111). The third subregion is the coastal areas and 
wetlands (Omernik region VIIF). 

To calculate landscape indices, the region was 
subdivided into 1505 hexagons, each containing 
640 km2. This subdivision corresponds to the sam- 
pling design being utilized in the U.S. Environmen- 
tal Protection Agency’s Environmental Monitoring 
and Assessment Program (EMAP). This approach 
provides a sufficiently large sample to examine the 
statistical properties of the pattern indices. 

On each hexagon, we calculated Dominance, D 
(O’Neill et al. 1988), 

D = 1 - SUM, [(-P, In P,)/ln n] 

where P, is the proportion of land cover k, Conta- 
gion, C (Li and Reynolds 1993), 

C = 1 - SUM, SUMj [(-P, In P,)/n In n] 

where Pij is the proportion of the total adjacencies 
involving land covers i and j, and Shape Complexi- 
ty, S (O’Neill et al. 1988). We also calculated three 
additional indices, Pmax, Enat, and C,. Pmax is the 
proportion of the hexagon covered by the most 
common landuse type. Enat compares natural 
edges to total edges. An edge is an adjacency of 2 
pixels with different land uses. A forest-grassland 
edge would be considered natural, while a forest- 
urban edge would not. Enat is the ratio of types of 
natural edges ( i e . ,  Nij) to all possible types of 
edges (i.e., Nk,J. 

The index C, is another measure of contagion. It 
compares the number of pixels that are in patches 
of 5 pixels or greater (e.g., N,) to the total number 
of pixels (e.g., NdJ. The ratio NS/Nall is averaged 
over all land use types. The index was calculated 
for C, through C, and a value of 5 pixels was cho- 
sen to define a patch because C, had the most rea- 
sonable statistical distribution. 

Statistical properties of landscape indices 

The first set of analyses deals with the statistical 
properties of the indices. For a large region, an 
ideal index would show values spanning the poten- 
tial range of the index and have the mean and stan- 

Dominance 

Contagion I--- 

---- 
0 1 2  3 4 5 6 7 8 9 1 0  

Fig. 2. Bar graphs illustrating the mean, standard deviation, 
and range of landscape indices calculated for Region 4. 

Table 1. Pearson correlation coefficients for landscape indices 
calculated for Region 4. 

Pmax Contagion Contagion 5 Shape Complexity 

Dominance 0.86 0.72 -0.42 -0.44 
Pmax 0.40 -0.20 -0.48 
Contagion -0.48 -0.25 
Contagion 5 -0.24 

dard deviation reasonably centered in the potential 
range. 

Figure 2 shows that D, C, C, and S, calculated 
for the entire region, have reasonable behavior by 
this criterion. The mean for S is relatively low. We 
will show in later analyses that the coarse resolu- 
tion of the AVHRR data biases the calculation of 
shape complexity. 

In contrast to these four indices, Pmax and Enat 
appear to be compressed at the high and low ends 
of their respective ranges. Because of this restricted 
range, these indices are unlikely to be able to dis- 
tinguish between patterns in this region. 

A second criterion for a useful set of landscape 
indicators is statistical independence. If some of 
the indicators are highly correlated, they may not 
be measuring different aspects of pattern. Table 1 
shows that the indices have an intermediate level of 
correlation, except for D with C and D with Pmax. 
With n = 1505, all of the coefficients are significant 
at alpha = 0.05. Therefore, this set of pattern 
indices is far from an ideal set. However, except for 
the high correlations with Dominance, it is clear 
that each index adds additional information about 
pattern. 

Figure 3 shows the scatter plot of Dominance 
and Contagion for Region 4. The dominant feature 
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Fig. 3. Graph of Dominance and Contagion for all hexagons in Region 4. 

of the graph is the lack of points in the upper left 
and lower right portions of the figure. Simply stat- 
ed, as dominance increases, the landscape must 
have fewer, larger clusters and contagion must 
increase. It is not possible to have significant frag- 
mentation (low contagion) on a landscape dominat- 
ed by a single land use (high dominance). On the 
other hand, when dominance is low, the landscape 
is covered by many land uses, and it is impossible 
to have a single, contiguous cluster. Therefore as 
dominance approaches 0, the values of contagion 
are restricted. 

The relationship between D and Pmax (Fig. 4) is 
even more dramatic. When there are only two land 
cover types, the value of dominance is a simple 
function of Pmax: 

The hexagons with only 2 land uses in Figure 4 all 
lie on the curve described by Eq. 1. Although a 
greater range of D values are possible for more 
than 2 land types, the restrictions are severe. 

Grain and extent 

Grain and extent define the range of spatial scales 
under consideration. Grain is the spatial resolution 
of the data. The grain is defined by the pixel size, 
the smallest spatial unit for which a single land use 
type is specified. That is, the pixel cannot be subdi- 
vided into several land uses. In the present study, 
the grain is 1 km2. Extent is the total area of the 
map being considered. In the present study, the 
extent is Region 4 (Fig. 1). 

Often, in addition to grain and extent, it is neces- D = 0.693 1 + Pmax In Pmax + (1-Pmax)ln 
(1-Pmax) (1) 
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Fig. 4. Graph of Dominance and Pmax for all hexagons in Region 4. 

sary to define an intermediate scale for sampling or 
calculation. When sampling is done, the dimen- 
sions of the sample unit become an important scale. 
But even with complete coverage, it is necessary to 
characterize heterogeneity and necessary to moni- 
tor for changes in heterogeneity across space and 
through time. It would be possible, for example, to 
calculate a single value of Dominance for all of 
region 4. This single value, however, contains no 
information on how D varies across the region. The 
region must be divided into intermediate scale units 
and D must be calculated for each unit in order to 
obtain information on variance. In the present 
study, the intermediate scale is the calculation unit, 
the 640 km2 hexagon. 

Problems with grain arise when elements of the 
landscape pattern (e.g., patches) are scattered and 
are as small or smaller than a pixel. Consider a 

small forest patch (<< 0.5 km2) surrounded by 
agriculture. With a grain size of 1 km2, the forest 
patch will be lost. The pixel is classified as agricul- 
ture. 

Now consider the frequency distribution of for- 
est patch sizes on a landscape. Consider a bell- 
shaped distribution with patches ranging from 0.01 
km2 to 100 km2. With a grain size of 1.0 km2, the 
smallest patches (0.0 to 0.5 km2) are lost. Values 
between 0.5 and 1.0 km2 are lumped as 1.0's. The 
first class (1 .O km2) has too many members. 

The problem will be most acute when the mode 
of the landscape distribution lies to the left of cen- 
ter, i.e., the patches tend to be small. If the mode of 
the distribution lies far to the right, forest tends to 
occur in large patches and should be adequately 
sampled. The small number of uncharacteristically 
small patches will probably not seriously affect cal- 
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Fig. 5. Frequency distribution of patch sizes for subregion C ,  
the coastal plains. Values are the total area occupied by patches 
of a given size, summed over all landcover types and over all 
hexagons. 

culation of landscape indices that are based on 
patch size. 

Figure 5 shows the sample distribution of patch 
sizes. The graph shows the total area, summed over 
all land uses and over all hexagons, contained in 
patches of a given size. The figure is for the coastal 
plain ecoregion. This coastal area is fragmented 
and the mode of the distribution lies far to the left 
of center. The figure suggests that the 1 km2 grain 
of the AVHRR database biases the estimates of 
small patch sizes. 

A similar problem arises if the calculation unit is 
small relative to the patch sizes being measured. 
Consider a landscape that is almost completely 
covered with forest. Patch sizes will be large and 
the landscape frequency distribution will show a 
mode that lies far to the right of center. A signifi- 
cant amount of forest is distributed in patches as 
large or larger than 640 km2. In this case, the 

0 iQm 2wm 3Mw rn 5wm BmDo m a  8WW 

Patches 

Fig. 6. Frequency distribution of patch sizes, summed over all 
land cover types and all hexagons for subregion A, the forested 
mountain area. Values are the total pixels in patches of a given 
size. 

hexagonal sampling unit acts like a “cookie cut- 
ter”, artificially creating many forest “patches” of 
exactly 640 km2. The result wil be a distortion of 
the true distribution and the sample distribution 
will overestimate patches at 640 km2. Even if the 
patches aren’t much larger than 640, still the 
boundaries of the hexagon will begin to slice the 
patches, being recorded as several small patches, 
rather than one large patch. 

Figure 6 shows the sample distribution of patch 
sizes, summed over all land uses, for the forested 
mountain ecoregion. The distribution of patch sizes 
lies far to the right and the sample distribution in 
Figure 6 shows the characteristic peak at the largest 
patch size. 
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Implications of scale for landscape indices 

Using a coarse-grained database biases the estima- 
tion of small patch sizes. An arbitrary, but practical, 
rule of thumb can be derived from our experience: 
for indices that are sensitive to small landscape fea- 
tures, the grain of the data should be 2 to 5 times 
smaller than the feature of interest. Therefore, in 
estimating corridors between forest patches, forest 
gaps, width of riparian zones, or small, dissected 
wetlands, the bias introduced by coarse-grained 
data would produce unacceptable distortion. 

At the same time, it is important to remember 
that the total area involved in small patches is a rel- 
atively minor percentage of the total region. Even 
with the extreme case shown in Figure 5, only 2% 
of the total area is involved in small patches. Land- 
scape indices such as D and C are based on the rel- 
ative proportions of area occupied by different land 
covers. Missing the 1 or 2% of a landcover that is 
contained in small patches does not significantly 
change the overall proportions and, therefore, these 
indices are insensitive to the bias introduced by 
coarse-grained data. 

This observation has two important implications. 
First, indices based on the relative proportions of 
land covers may not provide reliable information 
on fine-scaled features of the landscape. Second, 
because these indices are insensitive to this bias, 
they may provide reliable estimates of meso- and 
macro-scaled features in spite of the bias in the 
coarse-grained data. 

The situation is rather different from the bias 
introduced by the 640 km2 calculation unit. The 
total area now involved is considerable (Fig. 6). 
Too many hexagons have a value of D and C near 
1 .O because the total hexagon is almost filled with 
a single land cover. As discussed in an earlier sec- 
tion, this means that D and C will show unusually 
high correlations. Too many hexagons have a sim- 
ple shape complexity equal to 1.0, because the cal- 
culated value is based on a simple hexagonal patch 
with straight sides. The 640 km2 hexagon is simply 
too small for accurate estimation of these indica- 
tors. Figure 7 shows the frequency distribution of 
values for shape complexity, summed across all of 
Region 4. The bimodal distribution indicates a 
clear bias. Too many hexagons show a value of 1.0, 
indicating that the patch filled the hexagon. The 
calculation unit should be 2 to 5 times greater than 
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Fig. 7. Frequency distribution of values for contagion summed 
over all hexagons of Region 4. The figures illustrate the bias 
introduced by a small calculation unit. 

the largest patch on the landscape or significant 
error can result. 

An additional problem is introduced in the 
calculation of shape complexity. Following O’Neill 
et al. (1988), this index is found by regressing the 
logarithm of the perimeter against the logarithm 
of the area of all patches in the hexagon. Shape 
complexity is twice the slope of this regression. 
When there are very few “patches” because of the 
“cookie cutter” bias of using 640 km2 hexagons, 
the regression does not provide an accurate esti- 
mate. At the very least, the investigator should be 
alert to this problem and disregard calculated val- 
ues of shape complexity that are below 1.0 or 
above 2.0. Inclusion of these infeasible values 
could seriously distort regional mean estimates. 

A further complication arises in deciding how to 
assign a value of shape complexity if the entire 
hexagon is filled with a single landcover. A brief 
discussion will clarify the problem. Consider 2 per- 
fect squares with areas, Ai, and sides, si, and there- 
fore, Ai = s:. 

A S p = 4s 
25 5 20 
36 6 24 

The definition of shape complexity is twice the 
slope of the ln-ln regression, i.e., 
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Table 2. Landscape indices calculated for Region 4, and for 3 
subregions: A - southern Appalachian mountains, B - Eastern 
plains, C - Coastal areas. Values are means with standard devi- 
ations in parentheses. The # Edges index measures the number 
of different kinds of adjacencies, summed across hexagons. 

Subregions Region 4 
A B C 

# Hexagons 188 947 370 1505 
Pmax 0.96 0.82 0.70 0.81 

(0.07) (0.15) (0.15) (0.16) 
Dominance 0.85 0.51 0.40 0.52 

(0.16) (0.31) (0.22) (0.31) 
Contagion 0.72 0.50 0.54 0.54 

(0.22) (0.21) (0.18) (0.22) 
Contagion 5 0.73 0.79 0.70 0.76 

(0.22) (0.17) (0.20) (0.19) 
Shape Complexity 1.17 1.27 1.33 1.27 

(0.23) (0.19) (0.15) (0.19) 
# Edges 1.5 1.6 4.1 2.2 

(1.5) (1.3) (3.1) (2.2) 

2 * (lnP, - lnP,)/(lnA, -lnA,) = 
2 * (11124 - ln20)/(ln36 - ln25) = 
2 * 0.1824/.3646 = 1.0 

The interpretation is that simple shapes like squares 
have values of 1.0. More complex shapes have 
more tortuous perimeters and therefore have larger 
values for shape complexity. 

The hexagon is also a simple shape, such that A 
= 6/4 s2 3°.5. Consider 2 hexagons: 

A S P = 6 s  
640 15.6949 94.1693 
610 15.3226 91.9357 

The calculation of shape complexity proceeds as 
before: 

2 * (11194.1693 - ln91.9357)/(1n640 - 111610) = 
2 * (0.24/0.48) = 1.0. 

To estimate the shape complexity for a single 
object filling the entire space, the usual approach 
uses 2*(lns/lnA). For example, with the first square 
above: 

2 * (ln5An25) = 1.0. 

However, the simple side/area ratio only works for 

SHAPE COMPLEXITY 

Fig. 8. Three dimensional “pattern space” showing the three 
subregions as points characterized by landscape indices. 

squares. The equations for the area of both squares 
and hexagons can be put in the form A = k s2. In 
the case of a square, k = 1.0 and causes no prob- 
lems. In the case of the hexagon, k = 6/4 (3°.5) = 
2.5980762. In this case, the constant must be con- 
sidered. The equation now becomes 

2 * In s/ln (Ak) = 1.0 

We recommend simply setting shape complexity 
equal to one if a hexagon contains only one cover 
type. It remains, however, that the “cookie cutter” 
effect of the 640 km2 hexagon adds smooth sides 
and biases the shape complexity toward lower val- 
ues. 

Reporting at the regional scale 

The next issue concerns the appropriate scale for 
reporting landscape pattern indicators for a hetero- 
geneous area such as Region IV. Table 2 gives 
means and standard deviations for the three subre- 
gions. These values can be compared to the indica- 
tors calculated for the entire region. The first obser- 
vation is that subregion B is much larger than the 
other two. Therefore, indicator values for subregion 
B dominate the grand mean. Second, in spite of the 
biases introduced by the hexagonal calculation 
unit, the indicators do a reasonable job of separat- 
ing the landscape patterns among the subregions. 
Subregion A is dominated by forest and shows the 
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Table 3. Calculated distances (Eq. 2 )  for the three subregions 
from an ideal (D = 0.9, C, = 0.9, S = 1.9) and a degraded state 
(D = 0.1, C, = 0.1, S = 1.1). 

Subregion 
A B C 

Ideal State 0.75 0.75 0.78 
Degraded State 0.98 0.82 0.71 

highest values for Pmax, D, and C .  Forest patches 
tend to be larger than 640 kni2 so the shape com- 
plexity shows a low value. At the other extreme, 
the highly dissected coastal area (Subregion C )  
shows much lower values for Pmax, D, and C,. 
Notice that, on average, Subregion C has many 
more different kinds of edges or adjacencies, indi- 
cating a landscape with many landcover types 
interwoven into a complex pattern. 

The final observation about Table 2 is that the 
grand mean for the entire region tends to lose the 
distinctions among subregions, providing an inter- 
mediate average value. One would expect that 
large, undesirable landscape changes could occur 
in subregions A or C without detecting any signifi- 
cant change in the grand mean. 

Reporting landscape status in pattern space 

Figure 8 shows the relative position of the three 
subregions in a three dimensional space formed by 
D, C,, and S. This approach suggests a simple met- 
ric, distance (Z), that defines the distance between 
landscapes in pattern space. The metric is simply 
the geometric distance: 

Z = (SUM [(D1 - D2)2 + (C5,1 - Cj,2)2 + 
(s, - s ~ ) ~ I ) ~ . ~  (2) 

For three indicators, the metric has a potential 
range: 0 < Z < 1.73 = 3O. , .  

To illustrate the metric, let us assume that we 
wish to evaluate the current status of the landscape 
patterns in the three subregions. We could ask how 
far the present landscapes deviate from an ideal 
landscape with nearly complete forest cover (D = 
0.9), in large (C, = 0.9) and complex (S = 1.9) 
patches. We might also ask how far the landscape 
deviate from a totally degraded state with many 

landcover types (D = O.l) ,  in dissected (C5 = 0.1) 
and simple patches (S = 1.1). 

Table 3 shows the distance values. The values 
are not well distributed over the potential range of 
Z, but follow expectations in indicating that subre- 
gions A and B are closer to the ideal than the heavi- 
ly impacted coastal area (subregion C) .  Likewise, 
the metric indicates that the forested mountains 
(subregion A) are furthest from a degraded state 
and the coastal areas (subregion C )  are closest. 

In addition to defining the current status of a 
landscape, the distance metric can also be used to 
define the direction and magnitude of change 
through time. In a long-term monitoring program, 
such as EMAP, the distance metrics could be calcu- 
lated at each remeasurement period. The metric 
would indicate how much overall change had 
occurred in the region and whether the change 
could be interpreted as degradation or recovery in 
landscape pattern. 

Notice that a distance metric can be defined on 
any arbitrary number of pattern metrics. Equation 2 
easily generalizes to 

(3) 

where Mi is any indicator of pattern. 
There would be two major constraints on using 

this approach. First, ideally the axes of the pattern 
space, i.e., the Mi, should be orthogonal. Falling 
short of this ideal, the axes should be as indepen- 
dent as possible, showing smaller correlation coef- 
ficients than are evident in Table 1. Second, the 
sensitivity of the individual indicators to landscape 
changes will need to be established. The critical 
question is whether the indicator can detect a small 
initial degradation, sufficient to warn society of the 
risk of further change. An insensitive indicator 
might only show significant change after irrepara- 
ble damage had been done. 

Sampling versus full coverage 

Table 4 compares full coverage with a sample. The 
question is whether a 25% areal sample would suf- 
fice for calculation of landscape indices if full cov- 
erage information, such as AVHRR, were not avail- 
able. 
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Table 4. Differences in pattern indicators between full coverage 
(640 km2 hexagons) and a 25% sample (160 km2 hexagons). 
Tabulated values are the differences in means (X,60-Xw), 
divided by the standard deviation (SDMo). 

Subregions 
A B C 

Pmax 0.00 0.13 0.33 
Dominance 0.19 0.10 0.04 
Contagion 0.68 0.38 0.50 

Shape 1.39 0.21 0.07 
Contagion 5 0.50 0.12 0.10 

#Edges -0.57 -0.41 -0.64 
#Cover types -0.72 -0.52 4 .62  

Table 5. A test of the sensitivity of D = In n + SUMi PJnP,. 

Landcover Case 1 Case 2 Case 3 

Dominance 

% Change 

0.5 0.5 
0.1 0.14 
0.1 0.14 
0.1 0.05 
0.1 0.05 
0.1 0.1 

0.2937 0.3406 

16% 

0.6 
0.1 
0.1 
0.1 
0.09 
0.01 

0.5316 

81% 

To address this question, we sampled 160 km2 
hexagons. These smaller hexagons have the same 
central point as the 640 km2 hexagons. To give an 
impression of how well the sample estimated the 
subregional mean, tabulated values are normalized 
by the standard deviations, i.e., the values are cal- 
culated as (X,,, - X64,,)/SD640. Notice that the sign 
is positive if the sample is larger than the calcula- 
tion based on the full 640 km2 hexagon. 

In general, drawing the hexagonal samples did 
not result in unreasonable sampling error. The 
largest error is less than 1.5 standard deviations. 
The errors appear to be greatest in subregion A and 
least in subregion C. This is probably because sub- 
region C is a highly dissected area, something like 
a checkerboard. The smaller sampling unit seems 
adequate to capture the basic pattern under these 
circumstances. 

Of greater concern than the magnitude of the 
error is the systematic bias. The sample always 
overestimates the first 5 indices and always under- 
estimates the last two. Undoubtedly the bias occurs 
because the calculation unit problem seen at 640 
km2 are compounded at 160 km2. 

Discussion 

An important finding of this study concerns the 
sensitivity of landscape indices to grain and calcu- 
lation scales. Some indices may show a bimodel 
distribution (Fig. 7) because they are unacceptably 
biased by the boundaries of the calculation units. In 
general, the grain should be 2 to 5 times smaller 
than the smallest feature of interest and the calcula- 

tion unit should be 2 to 5 times larger than the 
largest feature of interest. 

Because of the biases introduced by the scale of 
the calculation unit, we found that drawing a sam- 
ple, even a 25% sample, could compound the prob- 
lem. The sample unit would necessarily be smaller 
than the calculation unit and the systematic bias 
would increase. Our findings indicate that system- 
atic scale bias tended to appear in frequency distri- 
butions of landscape properties such as patch sizes 
and calculated indices. The distributions showed 
unexpectedly high values for the smallest (Fig. 5 )  
or largest (Fig. 6) classes. Particularly diagnostic 
were frequency distributions that were bimodal 
(Fig. 7). 

The study also revealed some important charac- 
teristic of the basic pattern indices. The indices are 
not orthogonal (Table 1). The result is reasonable 
since Pmax, D, and C are functions of the Pi’s, the 
proportions of the landscape in each landcover 
type. But there are also significant correlations 
with S and C,. In fact, the correlations may simply 
mean that the hexagonal samples tended to fall into 
a few categories of pattern. Nevertheless, the 
search for orthogonal landscape indices should 
continue. Certainly, C,, or some measure of the fre- 
quency distribution of patch sizes, seems to pro- 
vide more independent information than contagion. 

The analyses show that the current set of land- 
scape indices captures major features of pattern, 
but shows little sensitive to the fine-grained fea- 
tures of the landscape. Obviously, if the objective 
is to detect all changes, the most sensitive measure 
is the total number of pixels that have changed 
landcover. 

The insensitivity of the indices to a small 
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amount of fine-scaled bias should not be taken as 
an indication of general lack of sensitivity to pat- 
tern changes. Table 5 contains some simple calcu- 
lations illustrating how sensitive an index like 
Dominance really is to changes in pattern. Case 1 
is a landscape with 50% of the area in landcover A 
and 10% in the other 5 cover types. In Case 2, 10% 
of the landscape has changed from types D and E 
into types B and C. This effects a change in pattern 
but not a major change in dominance by type A. 
Nevertheless, the 10% change in the landscape 
causes a 16% change in the index. In case 3, the 
10% change is from types F and E into the domi- 
nant type, and almost eliminating type F. In this 
case the change has made an important change in 
dominance and the 10% change in the landscape is 
amplified to an 81% change in the dominance 
index. 

Another purpose of this study was to determine a 
reasonable approach for reporting landscape pat- 
tern in a heterogeneous region. A single mean value 
may be too insensitive to detect small changes and 
may be biased by the value of the largest subre- 
gion. In many cases, it would be useful to isolate a 
subregion, such as the Florida Everglades, that is 
particularly sensitive to landscape change. In any 
case, the better defined the subregion, in an ecolog- 
ical sense, the more sensitive and interpretable will 
be the landscape pattern indices. 

The study also suggests that a useful way to 
report on landscape status is by means of a pattern 
state space (Fig. 8) and a distance metric (Eq. 3) 
that measures overall differences between land- 
scapes or changes through time. The distance met- 
ric can accommodate a number of indices, but the 
greater the number of indices, the more the metric 
will tend to average across small changes. A rea- 
sonably small number of orthogonal measures of 
pattern will provide a more sensitive metric of 
change. 
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