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ABSTRACT

 

The combination of remote imagery data, geographic
information systems software, and landscape ecology
theory provides a unique basis for monitoring and as-
sessing large-scale ecological systems. The unique fea-
ture of the work has been the need to develop and in-
terpret quantitative measures of spatial pattern—the
landscape indices. This article reviews what is known
about the statistical properties of these pattern metrics

and suggests some additional metrics based on island
biogeography, percolation theory, hierarchy theory, and
economic geography. Assessment applications of this
approach have required interpreting the pattern metrics
in terms of specific environmental endpoints, such as
wildlife and water quality, and research into how to rep-
resent synergystic effects of many overlapping sources
of stress.
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INTRODUCTION

 

Analyses at large spatial scales can never replace
the need to understand structure and function at
the ecosystem level of organization. However, spa-
tial changes, such as deforestation and urbaniza-
tion, can place important constraints on ecosys-
tem rate processes (O’Neill 

 

et al.

 

 1986). For
example, fragmentation can alter ecosystem re-
covery rates by impeding the dispersal of pioneer
species (Gardner 

 

et al.

 

 1993). Because of such
constraints, considerable research has focused on
changes in spatial pattern at larger scales (O’Neill

 

et al.

 

 1994).
The emphasis on larger scales has been made

feasible by the availability of remotely sensed data.
Satellite imagery can be interpreted for land
cover and provides an economical approach to
studying large areas (O’Neill 

 

et al.

 

 1992). This ap-

proach has already proven invaluable, for exam-
ple in support of global change studies (Rough-
garden 1991). The development of geographic
information systems (GIS) technology provides
the means for handling the large spatial data sets.
The technical capabilities of satellite imagery cou-
pled with GIS technology offers an ideal combina-
tion for monitoring and assessing landscape con-
dition.

Landscapes, in turn, provide the spatial con-
text for ecosystem dynamics (O’Neill 1999) and may
enhance or disrupt ecosystem integrity (O’Neill 

 

et
al.

 

 1997). Many of the proposed indicators of eco-
system health, including surrogates for produc-
tivity and organization (Mageau 

 

et al. 

 

1995) are
amenable to monitoring by remotely sensed data
(Rapport 

 

et al.

 

 1996; Jones 

 

et al.

 

 1997). In addi-
tion, landscape metrics can directly estimate some
aspects of terrestrial and aquatic ecosystem health,
such as habitat integrity (Riitters 

 

et al.

 

 1997) and
water quality (Hunsaker 

 

et al.

 

 1992). As ecological
theory advances, we can anticipate the synthesis
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of landscape and ecosystem dynamics (Turner 

 

et al.

 

1995). As ecological assessment advances, we can
anticipate a continued integration of landscape
and ecosystem viewpoints (Graham 

 

et al.

 

 1991).
Finally, the emergence of landscape ecology

provided a theoretical framework (O’Neill 

 

et al.

 

1995) and developed some metrics of spatial pat-
tern. Following an initial effort (O’Neill 

 

et al.

 

1988a), a large number of candidate indices have
been proposed from landscape ecology (Baker &
Cai 1992) and from traditional image processing
(Gonzalez & Woods 1992). Helpful reviews are
available for measures based on diversity and in-
formation theory (Magurran 1988), fractal geom-
etry (Milne 1991), and image textural methods
(Musick & Grover 1991).

The goal of the research presented here was
to test and refine the existing suite of landscape
pattern metrics and to propose several new indi-
ces capable of monitoring additional aspects of
pattern change and ecosystem constraint.

 

PROPERTIES OF THE
LANDSCAPE INDICES

 

Pattern indices were a new approach to data analy-
sis and assessment. Ecologists have experimented
with novel metrics in the past, such as biodiversity,
that created difficult statistical problems (Pielou
1977). It was clear, therefore, that routine appli-
cation of landscape indices would require a firm
statistical foundation. Key issues included (1)
whether the metrics were orthogonal, i.e., whether
the indices captured different, independent as-
pects of pattern, (2) whether they were sensitive to
ecological change and errors in the data, and (3)
how they changed with the scale of the data, both
resolution (data grain) and range (data extent).

Many of the pattern metrics are correlated
with each other. We performed a factor analysis
on approximately 50 indices taken from the liter-
ature. The indices were averaged over all cover
types in the image. This large suite of metrics ac-
tually measures, at most, a half-dozen indepen-
dent aspects of pattern (Riitters 

 

et al.

 

 1995). The
first five factors all have eigenvalues greater than
1.0 and explain about 83% of the variance. The
analysis was valid for land cover maps from differ-
ent geographic regions and at scales (pixel size,
number of attribute classes, analysis unit, etc.)
likely to be encountered in regional assessments
(Cain 

 

et al.

 

 1997). Therefore, at present, land-

 

scape pattern can be represented as a point in a
multidimensional (

 

z

 

5) “state space” of indices
(O’Neill 

 

et al.

 

 1996; Wickham 

 

et al.

 

 1996).
Each factor is composed of several indicators

and some subjective judgment is required to
choose a single metric from each group. Based on
the ease of calculation and interpretation, the fol-
lowing indices are recommended:

1. Average patch perimeter-area ratio:

where there are a total of m patches and 

 

E

 

k

 

 is the
perimeter of the k’th patch and 

 

A

 

k

 

 is the area.
2. Contagion:

where there are a total of n land cover types and
p

 

ij

 

 is the probability of type i being adjacent to
type j.
3. Relative patch area: (average ratio of patch
area to the area of an enclosing circle)

where L

 

k

 

 is one half of the longest straight line
that can be drawn within the patch and the de-
moninator is the area of a circle, with L

 

k

 

 as the ra-
dius.
4. Fractal Dimension:

where B is the slope from the regression of ln
(E

 

k

 

) on ln (A

 

k

 

) for all patches greater than 3 pix-
els that do not touch the edge of the map.

Very small patches and those with a straight
edge along the map boundary tend to distort the
estimated slope in the regression (Krummel 

 

et al.

 

1987). A number of other measures of fractal di-
mension have been proposed (Milne 1991). Some
appear to have properties that make them supe-
rior for specific applications (Loehle 

 

et al.

 

 1996).
However, factor analysis of these measures (Riit-
ters 

 

et al.

 

 1995; Cain 

 

et al.

 

 1997) indicated they are
usually correlated with contagion or with perime-
ter-area ratio. Therefore, at present, it seems pru-
dent to recommend the fractal dimension given
above which has proven to be orthogonal to other
landscape indices.
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5. Cover Types: (The total number of different 
land cover types on the map).

This final measure plays no role in describing the
pattern of patches on a single landscape, but be-
comes important in comparing pattern across a
number of different maps.

These five metrics provide relatively indepen-
dent measures of spatial pattern. They are based
on empirical analysis of 85 landscapes scattered
across the United States (Riitters 

 

et al.

 

 1995) and
should be valid for most applications, at least in
temperate zones around the world.

Most of the variance among indices (not among
maps) is associated with overall image “texture” or
contagion (eqn. 2) and considerable attention has
focused on this metric (Li & Reynolds 1993; Riit-
ters 

 

et al.

 

 1996). Texture was originally calculated
from raster data, i.e., land cover represented by
discrete pixels. A vector-based method was also de-
veloped (Wickham 

 

et al.

 

 1996) because geographic
data may also be in a format that specifies the pe-
rimeter drawn around distinguishable patches.
Computer algorithms to calculate texture can dif-
fer by orders-of-magnitude based on how the data
is tabulated (Riitters 

 

et al.

 

 1996). Much of this
problem can be eliminated by adopting a simpler
measure of texture (Wickham & Riitters 1995).

Experience with applying the indices to land-
scape analysis has suggested some rules of thumb
for scale (O’Neill 

 

et al.

 

 1996). Grain size should
be 2–5 times smaller than the patch or other spa-
tial feature of interest. The landscape size or ex-
tent should be 2–5 times larger. In practice, both
of these requirements are easily met in regional
assessments using 30–100 m satellite data.

We have explored the effects of scale on habi-
tat assessment by using a sliding window algo-
rithm (Riitters 

 

et al.

 

 1997). The algorithm speci-
fies a square window and asks whether all habitat
requirements are fulfilled within the window. The
window is then moved, pixel by pixel, to all posi-
tions on the map. This procedure permits one to
visualize the landscape as a surface of habitats as
perceived by organisms of increasing size and mo-
bility. Thus, by changing window size, habitat suit-
ability at several scales can be examined.

To compare maps at different scales, it would
be convenient if the indices were insensitive to
changes in scale. However, preliminary examina-
tion suggested that the indices are very sensitive
to scale (grain, extent, number of attributes, etc.).
At extreme values of scale, of course, this must be
true since the pattern itself is distorted at the ex-

tremes. Therefore, the practical issue is not ad-
dressed by comparing the metrics at extreme
scales, e.g., 10 m resolution maps with 10,000 m
resolution maps. The issue is the sensitivity of pat-
tern metrics to scale changes over a range of
scales likely to be encountered in real-world satel-
lite data, e.g., 10–100 m (SPOT/TM/MSS). Over
this reduced range, indicators are relatively insen-
sitive to pixel size, but results will vary depending
on actual pattern and the specific indicator
(Wickham & Riitters 1995).

There is a conundrum of sorts when thinking
about the sensitivity of metrics. On one hand, the
indicators must be sensitive to pattern change.
That is the purpose for indices. But, on the other
hand, we want those same metrics to be insensi-
tive to scale change and data errors. The puzzler
is, how do you have an index that both is and is
not sensitive to pattern differences? Clearly, any
indicator is limited to detecting change that is sig-
nificantly greater than data errors.

The dilemma requires some attention to the
nature of data errors in satellite imagery. The
most important source of error is misclassifica-
tion, i.e., a pixel is assigned to an incorrect land
cover category. Unfortunately, available metrics
depend heavily on patch perimeters and both mis-
classification and real change tend to occur along
the perimeter. Simulations demonstrated that er-
rors in the metrics were no greater than the data
error itself (Wickham 

 

et al.

 

 1997), i.e., the metrics
do not artificially amplify the errors. Further-
more, applications to real landscapes indicates
that actual pattern changes are quite large com-
pared to the noise arising from misclassification
(Wickham 

 

et al.

 

 1997). Nevertheless, caution is re-
quired in ascribing significance to a very small
change in pattern unless the data error is also
very small. And in all cases, it will be necessary to
know the misclassification error.

The metrics are also sensitive to scale in the
sense of data grain or pixel size. This sensitivity
makes it difficult to compare indices computed
from different satellite sensors. Fortunately, these
changes are systematic and can be described by
the fractal dimension of the landscape (Krummel

 

et al.

 

 1987; Milne 1991). This approach is reliable
over scales where the fractal dimension itself does
not change (O’Neill 

 

et al.

 

 1991). The logarithm of
the index changes linearly with the logarithm of
the grain size, with a slope related to the fractal
dimension. Recent work by Plotnick & Gardner
(1993) applies another parameter of scaling, la-
cunarity, for a similar purpose.
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NEW LANDSCAPE INDICES

 

The early emphasis on measuring pattern required
easily measured parameters and resulted in indices
that rely heavily on patch size and perimeter. But
there are other possibilities that are now being ex-
plored.

 

OTHER MAP MEASUREMENTS

 

Classic GIS overlay techniques provide access to ad-
ditional aspects of landscape pattern. Based on
combinations of land-cover, stream, and digital ele-
vation data, these measures are likely to be orthog-
onal to the suite of pattern metrics discussed
above. For example, riparian forest cover can be
approximated by counting forest pixels adjacent to
streams. Peterjohn & Correll (1984) have shown
the importance of riparian forests for filtering agri-
cultural runoff. Riparian forests are also important
habitat for many species (Wharton 

 

et al.

 

 1982).
The Universal Soil Loss Equation (USLE)

(Renard 

 

et al.

 

 1997) provides a conceptual source
for estimating erosion and sediment transport.
The index combines agriculture on steeply slop-
ing land, patches of excessive soil erosion, and dis-
tance of erosion patches from recipient streams.
Jones 

 

et al.

 

 (1997) demonstrated how pattern indi-
ces can be combined with GIS-derived measures to
provide an integrated environmental assessment
of the mid-Atlantic states.

 

ISLAND BIOGEOGRAPHY.

 

One potential source of
new indices is the Island Biogeography Theory of
MacArthur & Wilson (1967; MacArthur 1972). The
theory states that, at equilibrium, the number of
species on a patch will be constant because immi-
gration of new species will balance extinction. Im-
migration is expressed as a function of distance
from the “source” community and extinction is a
function of island size. An index that captures the
key features of the landscape might be

where A

 

i

 

 is the area of the source patch and A

 

j

 

 is
the area of the recipient patch, and D

 

2
ij

 

 is the dis-
tance between the patches. Note that A

 

i

 

 

 

.

 

 A

 

j

 

.
The index assumes that the dispersal relation-

ship between two patches is proportional to the ra-
tio of the areas and inversely proportional to the
square of the distance between them. Insofar as
dispersal between habitat patches follows Metapo-

Ai

A j Dij
2

---------------
i 1=

n

∑
j 1=

n

∑

 

pulation Theory (Hanski 1983) and experimental
results dating back to Huffaker (1958), the index
should be related to the stability of consumer pop-
ulations operating on the landscape.

 

PERCOLATION THEORY.

 

Percolation theory (Stauf-
fer 1985) deals with the connectedness of a land-
scape (Gardner & O’Neill 1991). Consider a land-
scape with cover type A, distributed randomly with
probability P

 

A

 

. For very large, random maps, there
exists a critical threshold for P

 

A

 

. We assume that
the landscape is represented by a square lattice
with pixels connected in the cardinal directions
and that the landscape is represented by only two
cover types: A 

 

5

 

 habitat, and B 

 

5

 

 nonhabitat.
When P

 

A

 

 

 

.

 

 0.5928. . . . the pixels of A form a single
patch.

The threshold, P

 

A

 

, can be expressed in more
meaningful ecological terms by considering how
wildlife moves across the landscape (Gardner 

 

et
al.

 

 1989). A consumer must adjust the scale of its
movements to reach sufficient resources. Let us
assume that the consumer can move n spatial
units per unit time. When P

 

A

 

 

 

.

 

 0.6 and n 

 

5

 

 1, the
consumer should be able to find a unit of re-
source at each step in time. But if P

 

A

 

 

 

,,

 

0.6, then
the resource is not continuously connected and
the consumer will have to take multiple steps to
find a unit of resource during each unit of time.
We can define:

This Resource Utilization Scale (O’Neill 

 

et al.

 

1988b) simply rescales the map so that the perco-
lation threshold is reached. If the consumer takes
n steps, the resource will appear to be connected
throughout the landscape.

The concept of Resource Utilization Scale
can be extended to landscapes that show some
degree of pattern. Consider, for example, that A
occurs in patches characterized by Q, the proba-
bility of finding an adjacent unit of A, given that
one is standing on a unit of A. Then

If P

 

A

 

 

 

5

 

 0.5928, n* 

 

5

 

 1 irrespective of the value of
Q. As Q approaches 1.0 and the resource is all
clumped in one place, the denominator approaches
0.0 and n9 approaches infinity. Since the resource
is all in one place, it becomes impossible to locate
additional resources by moving around on the land-

n
0.89845–

ln 1 PA–( )
--------------------------=

n*
0.89845– 2 ln 1 PA–( ) ln 1 2PA QPA+–( )+–

ln 1 2PA QPA+–( ) ln 1 PA–( )–
-----------------------------------------------------------------------------------------------------------------=
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scape. When Q 5 PA, the resource is randomly
scattered and n9 5 n.

Percolation theory also predicts the largest
patch size (Plotnick et al. 1993). As long as PA .
0.6, the largest patch will occupy PA of the land-
scape. This aspect of percolation theory was used
to examine the relationship between the size of
largest forest patch and the amount of anthro-
pogenic cover (nonhabitat) across 120 watersheds
in the U.S. mid-Atlantic region (Wickham et al.,
1999). The size of the largest forest patch began to
decrease at an increasing rate, well before the per-
colation threshold. A similar nonlinear relation-
ship was found by Vogelmann (1995) in a forest
fragmentation study in New England.

The clumped nature of the fragmentation
pattern suggests a strategy for restoration. By
carefully selecting reforestation sites, it should be
possible to reconnect existing fragments into
larger, continuous patches. By examining a subset
of the 120 watersheds (Wickham et al., 1999), it
was found that the size of the largest forest patch
could be increased quite close to PA. The concep-
tual approach represents a multiscale targeting
for ecosystem restoration.

HIERARCHY THEORY. Hierarchy theory (Allen &
Starr 1982; O’Neill et al. 1986) predicts that eco-
system processes are not uniformly distributed
over spatial and temporal scales. Dynamics and
spatial pattern tend to be lumped into discrete
scales of interaction (Rowe 1961; Simon 1962).

The simplest way to measure spatial hierar-
chies (Levin & Buttel 1986) plots variance as a
function of scale. Variance is inversely propor-
tional to sample size n, the number of samples or
the spatial size of the sample. If ln S2 is plotted as a
function of ln n, we expect a straight line with a
slope of 21. However, if the spatial data is orga-
nized into levels, then immediately adjacent
points within a level will be correlated and the
slope will lie between 21 and 0. If there are sev-
eral hierarchical levels, we would expect to show
slopes of 21.0 (no correlation 5 no level) alter-
nating with slopes much closer to 0.0 (high corre-
lation 5 distinct level). The resulting graph would
look like a staircase and the number of “steps”
would be an indicator of the number of hierarchi-
cal levels. The number of hierarchical levels could
then be used as the indicator of landscape pattern.

Several applications indicate that the ap-
proach is practical. O’Neill et al. (1991) used the
analysis on two grassland and four forest land-
scapes. The expected “staircase” pattern appeared

on all landscapes. Multiple scales appeared on
four of the landscapes and a single scale was evi-
dent on the two landscapes dominated by urban
development. This approach was also applied by
Palmer (1988) to spatial patterns in plant com-
munities.

ECONOMIC  GEOGRAPHY  THEORY. Geographers
have long been concerned with the physical loca-
tion of economic activity (Thoman et al. 1962;
Healey & Ilbery 1990). A significant body of the-
ory has been developed including: location the-
ory (e.g., Hall 1966; Friedrich 1929), market area
analysis (e.g., Losch 1954), and central place the-
ory (e.g., Berry & Pred 1961). These theories pro-
vide idealized projections of where activities
“ought” to be located. Location theory, for exam-
ple, considers the value of various products and
the cost of transporting them to a central market
( Jones & O’Neill 1993; 1994). The theory then pre-
dicts which product will be grown close to the mar-
ket and which can be profitably grown at greater
distances ( Jones & O’Neill 1995). The theory has
been used to model land use change and defores-
tation in Brazil (Southworth et al. 1991; Dale et al.
1993)

The simple theories do not provide realistic
predictions but can be used in the sense of a
“neutral model” (Gardner et al. 1987). The ap-
proach would be similar to applications of perco-
lation theory (Gardner et al. 1989), which gives
properties of a totally randomized landscape. De-
viations from the expectation, then, can be used
to analyze nonrandom or structured properties.
We don’t expect the model to fit, we want to ana-
lyze the residuals.

In the case of economic geography theories,
deviations from the “ideal” picture might be a
measure of the “tension for change” in the region.
For example, changes in the transportation system
might alter the economic viability of patches in
traditional crops, increasing the probability of the
patches disappearing or relocating. The region
could then be characterized as spatially “stable” or
“transitional” depending on the deviation from
the ideal location theory.

ASSESSMENT APPLICATIONS
Following the National Environmental Policy Act
(NEPA) in 1970 (Shoemaker 1994), assessment
largely focused on identifiable “point sources” of
stress. The emphasis shifted away from large re-
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gional scales, though it was clear from the begin-
ning that individual assessments would provide
baseline information against which larger scaled
impacts could be evaluated (see Fabos 1985).

One of the motivations for the landscape ap-
proach was the need to link changes in land cover
to “nonpoint-source” environmental stresses in a
region (Mankin et al. 1981; Graham et al. 1991).
The use of metrics based on land-cover data cov-
ering large spatial scales provided the opportu-
nity to conduct environmental assessments at the
same scale (O’Neill et al. 1997). The landscape
approach has made feasible a regional approach
to assessment (Klopatek et al. 1983), and the pre-
liminary evaluation of large regions, such as the
mid-Atlantic states ( Jones et al. 1997).

The best developed areas of regional assessment
deal with wildlife and water quality. The wildlife con-
nection is based on the established relationships be-
tween habitat fragmentation and biodiversity (Dale
et al. 1994; Gustafson 1998; Hargis et al. 1998). Thus,
one can go directly from a change in spatial pattern-
ing of habitat on the landscape to impact on a valued
resource, e.g., biodiversity (Offerman et al. 1995;
Pearson et al. 1996). The water quality connection is
based on the established relationship between water-
shed land cover and concentrations of nitrogen,
phosphorus, and silt (Hunsaker et al. 1990). Thus,
one can go directly from measures of agriculture on
steep slopes, riparian vegetation, road crossing
streams, etc. to an impact on a second valued re-
source, such as water quality (Hunsaker et al. 1992).

As the scale of environmental assessments in-
creased, recognition grew that impacts could be
cumulative (Odum 1982). For example, two or
more disturbances may overlap in space and time.
Each would produce an effect by itself, but if act-
ing together at the same place and time, there is
also the possibility of synergistic effects. Account-
ing for interactions of many stress factors provides
a framework for making integrated environmen-
tal assessments. At present, integrated environ-
mental assessments that are regional in scope de-
pend heavily on landscape metrics for practical
applications (Wickham et al. 1999).

FUTURE RESEARCH
Future possibilities include the increased use of
covariates to improve statistical analysis and inter-
pretation of landscape change. Although initial
research focused on measures of land cover, ex-
perience has demonstrated that other nonpattern

covariates (e.g., erosion, biodiversity, productiv-
ity, roads, etc.) are needed to relate pattern to
ecological endpoints. Ecological models, such as
individual-based models of animal movement, are
needed to relate pattern change to potential im-
pacts on ecosystem function. Output from such
models forms another class of covariates.

Such covariates have only received a modicum
of analytical treatment and form but one of the
continuing statistical challenges. There will be need
to optimize data collection and indices for specific
purposes. There is also need for better characteriza-
tion of data quality, beyond simple estimates of per-
pixel error rates. There is need, for example, for
variance estimation including error propagation
with a dozen sources of error. Characterization of
the errors will be critical before we have the ability
to make statements about the significance of
changes in land-cover time series. We also need to
develop methods for automated pattern recogni-
tion as opposed to simple pattern description. And
with the availability of time-series of large regional
maps, we will need the development of data man-
agement and visualization techniques.

Finally, there is the need to translate the com-
plex multistaged assessment process into a “risk
assessment” framework (O’Neill et al. 1982). The
fundamental difference in the risk approach is
that assessments needs to be conservative, even
though they cannot be completely accurate. Con-
sider the difference between our inability to pre-
dict tomorrow’s weather and the need to issue
“severe winter storm watches.” In the case of
storms, it is permissible to be inaccurate if the
storm does not occur. An inaccurate storm watch
causes inconvenience, but no real loss. But the
analysis needs to be conservative because it is not
permissible to miss any storms and have them oc-
cur without any warning. If no warning is issued
of a severe winter storm, the losses can be tremen-
dous. Translated into the assessment context, we
want to identify large scale, synergistic stresses that
might endanger the environment. At one level,
additional detailed monitoring might be called
for, a sort of a storm “watch.” At another level,
policy or legal action might be called for, a sort of
a storm “warning.”
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