
Available online a t www.sciencedirect.com

sc,ENcE@D,mEcT. Computers
and electronics

ELSEVIER Computers dnd Electronics in Agriculture -19 (2005) 44-59

A method for integrating multiple components
in a decision support system

Donald Nute "$*, Walter D. Potter ", Zhiyuan Cheng ", Mayukh Dass ",
Astrid Glende ", Frederick Maierv ", Cy Routh a, Hajime Uchiy ama a,

Jin Wang ", Sarah Witzig ", Mark ~ k v e r ~ b, Peter no^^ b, Scott
~homasma b, K. Michael Rauscher

" Artificinl Irzrel1igent.e Cr~zrei; The Univer.riry o f Georgiu, Athens. (2% .i06M, USA
Pv<irtheii.~tc~rn R~seiirc)t Slurion, Li'SD;1 F<)r-ez.i Scri.ic,i,, PO Box 968, Auriingtcin, VT 05402-0968, US,4
"reek Eqierinlentul Forest, Sorrri~errr Researcli Slufion, CSDA Foresf Service, Aslzci~ille, A.'C, USA

Abstract

We present a fieuible, extensible method tor ~ntegrat~ng mult~ple tool3 into a s~ngle large decision
support system (DSS) urlng a forest ecocyctenl management DSS (NED-2) as an example In our
approach, a rlch ontology tor the target domaill is devcloped and ~mplcmented in the tnternal data
model for the DSS Semt-autonomou5 agents control external componentv and communicate uslng
a blackbodld We illustrate how thls multi-agent approach v ~ ~ t h tt\ blackboard architecture support5
the eupanslon of a DSS (tn thic cace NED-2) to incorporate new models and dec~s~on support tools
as they become available The exemplar NED-? DSS developed using thts method 15 a goal-dnvcn
DSS that integrate.; a sophtsticated Inventory \>stern treatment plan development, growth-and-yleld
models. w~ldlife models. fire rirk models, knowledge based systems for goal satlsfactlon analysis,
and a powerful report generation system
O 2005 Elsevier B V All itghts reseried

Keywiirds: Agents; Blackboard architecture: Ecosystem managenlent; Dccision support system; Knowledge based
system; Regeneration; Fire risk analysis

" Corrcspondiilg author. TeI.: + I 506 542 2823; f a : + I 706 542 2839.
E-inci!ad~ires.ses: dnuie@uga.cdu iD. Nute), potterG*i.i.aga.edu iW.D. Potter), rntwery @fs.fed.~ca (M. Twery).

mrauscher@fs.fcd.us (H.M. Rauscher).

0168-1 h99i$ -see fi-ont matter O 2005 Elsevier B.V. Ail rights reserved.
doi: 10.101 h,j.compag.2005.02.007

1. Introduction

A technical report issued by the USDA Forest Service (Mowrer, 1997). surveyed 24
decision support systems (DSSs) for ecosystem management developed in the govern-
ment, academic, and private sectors in the United States. Twery (2004) considers these
same DSSs along with an additional nine systems. Both authors emphasize the importance
of integl-ating different kinds of software tools in constructing DSSs for ecosystem man-
agement. In his introduction to the earlier report, Mowrer wrote, "In natural resources,
DSS's have evolved to encompass multi-component systems that include various combi-
nations of simulation modeling, optimization techniques, heuristics and artificial intelli-
gence techniques, geographic information systems (GIs), associated databases for cali-
bration and execution, and user interface components (Stock and Rauscher, f 996). While
each of these components considered individually may to some degree satisfy the loose
interpretation of a DSS, in the current context they are considered as components of an
integrated whole." (Mowrer, 1997, p. 2) Both of these surveys focus on the functionality
of the various DSSs. Neither of them investigates the infrastructure necessasy to support
this integration. In this paper, we will describe one promising approach for integrating
multiple components into a single powerful DSS. While this approach is not limited to
ecosystem management, it is domain specific in the sense that the architecture itself re-
quires a large component that must be specific to the target domain for the DSS that is
developed.

The method for developing DSSs with multiple components described in this paper
was used to develop the NED-2 forest ecosystem management. To make the description
of the method more concrete, we will use NED-2 as an extended example throughout the
paper, and we will refer to our approach to integrating different decision support tools
into a single DSS as the NED-2 approach. An essential feature of the NED-2 approach is
that the underlying architecture of the DSS is open, meaning that it is designed to facilitate
integration of new components later. ri major part of this paper will describe how additional
components were added to NED-2 after the initial prototype was completed. As we shall
see, one requirement for this kind of openness is nzodztlari~. It should be possible to add
new components without the need to make extensive revisions in every other part of the
already existing system. We contend that ad hoc methods for integrating decision support
tools do not meet this criterion. When a new component is added to a system created using
ad hnc methods, a separate ud hoc solution will typically need to be found for each already
existing component with which the new component will need to communicate. Only an
architecture that allows each component to be developed so that it can communicate with
any other existing orfiltirre component without modification can meet this goal. Urc will see
how this is accomplislled as we describe the NED-2 architecture and the process of adding
new components to an existing version of NED-2.

The decision process inodeied in NED-2 is goal-driven and the goals that drive the process
include timber, wildlife, forest health. fire risk managemetlt, water, and visual goals. NED- 1
(Twery el al., 2000) grafted knowledge-based goal evaluation modules onto a C++ program
for inventory management and report generation. The next step was to add components for
creating and simulating silviculturai treatment plarts. The NED- 1 architecture did not easily
support these enhancements.

The NED-2 arch~tecture was developed wlth a few key design princ~ples in mind, some
of which were anticipated above. hrst , NED-2 users should be able to enter data and -view
outcomes using a single, simple interface regardless of how those outcomes are produced.
Second, NED-2 should perform all conversions between the data formats used by different
tools and models without user intervention. Third, NED-2 should have an open architecture
that allows additional third-party components to be added to the system without extensive
revision of existing NED-:! code. Fourth, debelopers of new NED-2 components should not
need to know bery much about how other components work. These design criteria resulted in
three essential features of the NED-2 architecture. The first is a robust ontology that supports
communication between NED-2 and a wide variety of forest management decision support
tools. This ontology is implemented using both database and logic programming technolo-
gies. Second, NED-:! is an agent-based system in ~ h i c h semi-autonomous agents perform
different. tasks as parts of the overall decision process. Third, NED-? agents coordinate their
behaviors and communicate information using a blackboard architecture (Ni, 1989).

We described the NED-2 architecture and NED-2 version 0.2 in (Nute et a]., 2002).
A companion to this paper (TwJery et al.. 2005) describes NED-2 functionally from the
point of vieul of the forest manager and includes seberal figurec showing the interface.
In this paper, we will discuss NED-2 version 0.6. The first part of the paper provides a
more detailed description of the NED-2 architecture. An important claim for the NED-2
blackboard architecture is that it facilitates incorporation of new components. The evolution
of NED-2 version 0.6 from NED-2 version 0.2 put this claim to the test. Without any changes
in the underlying architecture, we hale provided the forest manager with the ability to
create and share knowledge bases of parameter settings for silbicultmal treatments, we
have integrated new models for regeneration and fire risk analysis, and we have integrated
GIS displays of the results of NED-2 analyses using the commercial product Archlap. The
second part of the paper will explain how these enhancements were accomplished.

2. Overview of the NED-2 architecture

Wherever possible, NED-:! Integrates already existing tools. So far, these include a
Microsoft Access database, the Forect Vegetation Simulator (FVS) (Crookston, 1997), and
ArcMap. For some tasks, including goal analysis, no appropriate tools were available and
the NED developers had to construct the needed component. Whenever we integrate a third-
party component, a NED-2 agent is developed that knows how touse that component. Where
there is no available third-party component, the necessary functionality ir built directly into
the NED-:! agent.

A complex software system that integrates many components can have any number of
architecture\. One fundamental design question is whether control of the system will be
centralized or distributed. The NED urchitecture i r c-li~tributed. This was seen as the bect
choice for a system chat allowed additional components of unanticipated kinds to be added
later. NED-2 is a community of agents. each performing some specialized task. Another
question is how the components will communicate with each other. Hierarchical models
and other architectures where one agent sends requests or information directly to other
agents require that agents have conriderable knowledge of what other agents do and of

Interface ACCESS
Agent DATABASE

BLACKBOARD

Fig l A ~ h d r t of the major component5 in the N E D 2 bldckboard architecture

what information they need to perform their tasks. NED-2 uses a blackboard architecture.
With this approach, all information and requests for tasks to be performed are placed on
a blackboard where all agents can view them. This approach minimizes the amount of
knowledge each agent must have about other agents in the system. Fig. 1 illustrates the
NED-2 architecture.

The NED-2 blackboard qystem and all of the NED-2 agents are implemented in WIN-
Prolop 4.300. a commercial implementation of the logic programming language Prolog
(LPA, 2002). ProData, an extension of Prolog to support access to an external database using
SQL queries, is used to integrate a Microsoft Access database into the NED-2 blackboard.
Most of the NED-2 user interface and the codes for computing basal area, volume, and
other values are developed as Dynamic Link Libraries (DLLs) in lClicrosoft Visual C++.
Different Prolog agents call functions in these DLLs as appropriate, but a single Prolog
interface agent handles most of the communication between NED-2 and the user through
the C++ interface.

3. The NED-2 ontology and internal data model

There are specialized tools such as DAML (Hendler and McGuinness. 2000) for repre-
senting ontologies. However, the ultimate purpose of an ontology is to provide a system with
the abilitj to represent domain knowledge and to utilize information and knowledge about

the domain. We have adopted a less abstract and more practically motivated method for
representing the NED-2 ontology. The ontology for NED-2 is incorporated into the design
of the NED-:! database and the design of a set of Prolog clauses that store temporary infor-
mation during a NED-:! session. To communicate with a variety of external components,
to represent a forest over time, to evaluate a potentially large set of management goals, and
to generate all the reports that a manager might require, NED-2 requires a robust ontology
and internal data model.

A management unit is divided into stands. Database tables were designed to hold per-
manent information about the management unit and the stands such as location, size, and
physical characteristics. Management goals must be coordinated with knowledge bases for
evaluating whether aparticular goal has been satisfied. So the set of available goals is limited
to those included in the database in a goals table. New goals can be added to the system by
entering the goal in the goals table and adding rules for evaluating the goal to the knowledge
base. There is also a table that includes necessary infornution about all the different reports
NED-:! can generate. There will be a goal report for each goal in the system. Currently the
goals table includes timber. wildlife, water, ecology, and visual goals. Fire management
goals are under development.

Neither the management unit nor the stand is static. So most information about stands is
stored as snapshots that represent the stand at a point in time under a particular treatment
regime. The initial snapshot for each stand represents a year when inventory was taken for
at least one plot in the stand. Each snapshot includes a set of observations for the overstory,
understory, and groundcover component of the stand. These include individual tree data for
the overstory and understory, and additional information for the understory and the ground
layers concerning the presence of ponds, rocky areas, coasse woody debris, etc.

All plans are developed from a common baseline year. If inventory has not been taken
on every stand during the baseline year, then simulated data are generated for that stand
using a growth sirnulator. To generate the baseline and to simulate treatment plans later, a
simulation model must be chosen for each stand. The user selects treatments from a pre-
established list and either accepts default parameters or enters his own parameters for each
treatment. The user's treatment definitions are stored in a knowledge base and in a treatment
table in the database.

The user develops one or more treatment scenarios for the management unit, specifying
both silvicultural and non-silvicultural treatments and the years they are to be applied. This
information is stored in a [Scenarios] and a 1Scenarios-design] table in the database. When a
plan is simulated, NED-2 will generate pre- and post-treatment snapshots for each year that
a treatment has been specified. Each snapshot is represented in the database by a snapshot
number. This coordinates the snapshot observations with the treatment entry in the plan or
scenario.

Facts are stored temporarily on the blackboard as Prolog clauses. Persistent information is
stored in the database or in ProIog knowledge bases. Facts on the blackboard are represented
as Attrihute-0b.ject-Value triples. The Attribute in an AOV triple is always represented as
a simple "atom", but the Object and the Value can be complex. For example, in the triple
represented by the Prolog clause

I>. Nure er cil. I Cornpuler.; arld Eltrcfroiiics in Agriculture 49 12111?5/ 44-39 19

the Attribute is tpa (trees per acre) the Object is [snapshot(l7), specie\(oak). size(6) J (6-in.
oaks in snapshot 17), and the value is 24, indicating that there are 24 &in. oaks per acre in
snapshot 17, while in the triple represented by the Prolog clause

the Attribute is goal (meaning that a goal is satisfied) the Object is balance-size-classes, and
the Value is [2 1,0.0],[22.0.4],[23,1.0]], indicating that the goal of balancing size classes is
satisfied by snapshot 21 with confidence 0, snapshot 22 with confidence 0.4, and silapshot 23
with confidence 1. Objects are always indicated by a list of identifiers. In the first example.
the attribute is trees per acre; here the object is complex (6-in. oaks in snapshot 17) but
the Value is simple (24). In the second example, the attribute is goal satisfaction; now the
object is simple (a timber goal: balancing size classes) but the value is complex (a list of
snapshots together with the confidence that each snapshot satisfies the goal.)

The NED-2 ontology and internal data model must be robust enough to support exchange
of information with all external components integrated into the NED-2 system. The structure
of the database and of the Prolog facts on the blackboard provides the concepts of the
ontology. We also need to establish critical relations between these concepts. These are
provided partly by knowledge bases of rules relating the concepts and partly by utilities that
calculate the values of certain attributes from the values of other attributes. These knowledge
bases and utilities may be accessed by any NED-2 agent that needs them.

Finally, part of the ontology of the NED-2 system is stored in meta-knowledge bases
that describe the structure of the XED-2 database including relations between information
in different tables. The function of these meta-knowledge bases is described in the next
section.

(I. The NED-% blackboard/database integration

When a user opens a NED-' working file containing an inventory, goals. treatment
definitions, and plans. this database becomes an integral part of the NED-2 blackboard, not
physically but conceptually. Any NED-2 agent may access a fact from the blackboard using
the Prolog query

known(Attribute(Object, Value))

whethzr that fact is stored as a Prolog clause or as a record or set of records in the darabase.
To achieve this transparent integration, the blackboard must be an active set of procedures
rather than just a static set of facts. These procedures analyze the request for information
to determine how the request may be satisfied. First, the system looks to see if there is a
corresponding Prolog fact. If not, then the system determines whether or not the informa-
tion is stored in the database. To do this. the system must consult a meta-knowledge base
regarding the structure of the NED-2 database. This may require performing joins across
several tables. For example, the query

?- known(bat[standi 171, piani'l\ifaximize Timber'), year(2023)], BA)).

asks what the basal area of stand 17 will be in 2023 if we implement the plan called
'Maximize Timber'. The blackboard will look in the [Scenarios] table to find the scenario
number for the '?vZY;Laximire Timber'plan. Then it will look in the [Scenarios-design] table
to find the snapshot number corresponding to that plan for stand 17 and year 2023. Then
it will look in the (Treatmentmrasurements] table to find the basal area for that snapshot.
which will have been calculated from values in the [Overstory-obs] table when the plan was
simulated. A11 of this will occur automatically without user involvement. The developer
building a new NED-2 agent does not need to know the underlying structure of the database
that supports the NED-2 ontology in order to formulate a query because the blackboard
knows this. The knowledge is provided by the meta-knowledge base.

Updating knowledge on the blackboard is more complex. Any agent can put temporary
data on the blackboard as a Prolog clause, btlt only certain agents may update persistent
information in the database. These include the interface agent, the treatment development
agent, and the simulation agent all described below. These agents construct specific SQL
queries for database update. So these agents must have specific knowledge of the database
and its relationship to the NED-2 ontology. For more details on integrating the database
with the Prolog blackboard {see Maier. 2002: Maier et al., 2002).

Requests are also stored on rhe blackboard as Prolog clauses. Requests can be as simple
as

or as complex as

request(fana1y sisi' Wildlife',[american-goldfinch, cedar-waxwing . north-
ern-flying-squirrel1 [inventory, baseline]), analysis('Ti1nber'. [cubic-foot], [inventory,
baseline)) arcview(,[american-goldfinch, cedar-waxwing, norther~l-flying-squirrel,
cubic-foot], [inventory, baseline]. 'mystandmap.shp')])

The first example simply requests that the interface dialogs be enabled. This is the request
that initiates interaction uith the user when NED-2 starts. The second request is actually
a plan of action including several component requests: analyze the inventory and baseline
data to see whether habitat is available for the American goldfinch, the cedar waxwing, and
the northern flying squirrel; analyze the inventory and baseline data to see whether the goal
of focusing timber production on cubic foot production is satisfied; and display the results
of this analysis on a map defined in the shape file mystandmap.shp. Different agents bill
satisfy these requests as explained below.

5. Adding a treatments definition editor to NED-2

Treatment plans are developed in NED-2 using a spreadsheet dialog box. Rows in the
spreadsheet represent stands in the management unit and eolumnc represent years. The plan
begins with a bingle col~lmn for the baseline year and the user adds additional years to
the plan as needed. By double-clicking on a cell in the spreadsheet, the user can call up a
treatment celeci~on dlalog. Multiple treatments can be entered in a plan for a single stand and
year. The planning module. part ot the NED-2 C++ user interface, includes plan integrity

checks. If treatments are entered that ~ o u l d invalidate later treatments already entered for
that stand, the later treatments are removed from the plan. Plans can be stored, ed~ted, and
copied for alteration. Every treatment in a plan is represented in the NED-2 interi~al data
model as a row of values in the [Scenario-designs] table. The keys for this table are the
plan or SCENARIO number, the STAND number, and a SEQUENCE number representing
the position of that treatment in the sequence of treatment5 defining the plan tor that stand.
For every cell in the plan spreadsheet except the baseline cells, there 1s an implicit growth
treatment that occurs before an) other treatments. So a stand is groan for the appropriate
number of years before any other treatments are applied to it.

In NED-2 version 0.2, only f i ~ e treatments are available: clearcutting and light and heavy
thinning from above and below using basal area. Residual basal areas and other parameters
for these treatments are 'hard-wired' in the simulation agent. Basic infortnation about these
five treatments is stored in a [Treatments] table in every NED-2 working file. When the user
requests plan simulation, the NED-2 C++ interface passes a message to the Prolog interface
agent. The interface agent puts a request for simulation on the blackboard and suspends
the currently active interface module. The simulation agent then responds to the request by
simulating every treatment (~ncluding growth treatments) in every plan the user has saved
for every stand in the management unit. Thrs asrangement was adequate for developing and
testing the origlnal simulation agent, but we need more Aevlbility in the treatments that can
be used in plans and in the s a y plans are simulated.

The first requirement %as a method for including more treatments in NED-2. We also
wanted to allow users to modify the parameters for any treatments that were already in-
cluded in NED-2. The process for adding treatment definitions to NED-2 involved four
steps. First, we designed the format for a treatments knowledge base to hold a user's
treatment specifications. Second, we developed the user dialogs to allow the user to re-
view and edit the specifications for treatments. Third we developed a new NED-2 agent
that operates the treatment definition editor and creates the uqer's treatments knowledge
base. Fo~trth, we made necessary changes in the simulation agent and the C++ planning
module.

We began by creating a default treatments knowledge base that includes a library of stan-
dard treatments togethcr u~ith default parameter settings for these treatments. This knowl-
edge base contains a set of Prolog clauses wrth the following form:

def_treatment(fvs(-), 'Clearcut', '5-clearcut-2.bmp', ", clearcut,
[[key word(thindbh),
field(2,'Minimum DBH',' 1.0'1,
field(3,'Maximum DBH'.'999.0'),
field(4,'Cutting Efficiency',' 1.0'),
field(5,'Species','ALCj,
field(6,'Residual TPK ,'O' j,

field(7.'Residual BA','O')]]).

The first argument in each of these clauses gives the simulation model for which the
treatment is defined. In this case, the default treatment definition applies to both the north-
eastern and southern variants of the Forest Vegetation Simulator (fvs(ne) and fvs(sn)). The
second argument is the name of the treatment, the third is an icon that will be used to

represent the treatment In the plannlng spreadsheet, and the fourth 15 a descript~on of the
treatment The user enn modrfy these values uslng the treatments editor The fifth argument
indicates the treatment type; thls argument is internal to NED-2 and cannot be altered by
the user. Finally, we get a list of values including the keyvrords wed by FVS to descrlbe the
treatment together with a list of parameters and values the s~mulator will use to Implement
the treatment. Here we have defined a clearcut as a thlnning based on the diameter (dbh) of
the trees to be cut mhere we will cut all trees of all spccles regardless of dbh wlth a cuttlng
efficiency of I .0 leatlng no residual bawl area and no residual trees per acre.

After the knowledge base of default treatments had been constructed, the treatment\
editor was designed. T h ~ s 1s a series of dtalogs written in WIh-Prolog 4.300. We used Prolog
rather than C++ for this part of the NED-2 interface because the treatments editor would
need to Interpret Prolog dames, build dialog boxes at run tlme based on the information tn
these Prolog clauses, and the11 modlfy the Prolog clauses In response to user actlons.

When the user is bullding a treatment plan. he cannot dlrectlq access the treatments
definitions in the default treatments knowledge base. No treatments are atallable for the
users to use In plan development untll the} bullds their own treatments ki~ouledge base or
loads a treatments knowledge base that was created and saved previously. Mln~mally, the
user must plck the default treatments he wants to use in the~r plans and move them into
their own treatments knouledge bare together with the default parameter settlngs for the
selected treatments.

The first diaiog box for the treatments editor allows the user to select a clmulation model
and starts a new treatments knowledge base or selects an exlstlng treatments knowledge
base to ed~ t . The user then select, one of the default treatments to add to then knowledge
base. The edltor creates a new dialog box m wh~ch the user can review fixed parameters and
edit modifiable parameters for the treatment he has selected. The user can always change
the name and Icon tor the treatment and can enter a brlef description for the treatment
Vvhlch parameters can be modified will depend on the knowledge of the different treatment
types built Into the edltor. For example, in a clearcut none of the parameters can be altered
However, for an dctual thinnlng based on tree dlameter (dbh), the user \xould be able to
determine the mrnlmurn and maximum dbh for removal, the species to remote, and other
parameters tor the treatment

When the u\er hds finl\hed build~ng a treatments knobledge base, it can be saved under
any hle name The primary d~fference between the default treatments knowledge base and
u w s ' treatments knowledge bases 1s that the pledicatc def_treatment\ 1s used In the default
knowledge ba\e while the predicate treatments 1s used In il\er treatments knowledge bacei
Once \abed, a ~15er.c; treatments knowledge bare i \ dvailclble to u\e In many NED-?.
project5 as they want\, and they can share the~r treatment5 knowledge bare wlth other user<

Next we built a treatments dehnlttons agent that ~ncludes all the code for the treatments
editor plus additional Prolog code needed to integrate t h ~ r agent wlth the rest of NED-2
S~nce the user must now cledte or \elect a treatment5 knowledge ba\e before developing
treatment plans. we added a funct~on to the treatment\ dehn~t~on \ agent to do t h i ~ In NED-2
vervon 0 2, there wa\ a stat~c [Treatmentsl table in every NED-2 worktng file that told the
C++ planning module which treatments were available to use in plans T b ~ s table 1s now
dynamlc When the user \elects a treatments knowledge base, the treatment? agent bu~lds the
[Tre'itments] table m the current NED--? work~ng hle. Thi, tdble ~ncludes treatment names.

~co t~s , user descripttons, and tl pes. It aiw includes the simulation model for each dehned
treatment It does not contain any infolrnatron about key~ords used to control the s~mulator
or treatment prvameters since the planning module will neLer use thls ~nformatlon.

6, Adding a regeneration model to XED-2

REGEX (Boucugnani et dl., 2003) is an implementation of a regeneration model based
on Loftis' work (Loftis. 1989, 1990). The model uses data for both the understory and
overstorj of a stand preceding the regeneration-triggering event to predict regeneration. A
REGEN knowledge base contains functions used to compute the competitive ranking of both
stump sprouts and seedlings for different species, and these rankings are used stochastically
to select the winners during the regeneration process. Different knowledge bases can be
developed by regeneration experts to represent different geographical or ecological regions.
The regeneration model was implemented as a Proiog inference engine with an Excel user
interface. Our goal was to integrate the REGEN inference engine into NED-2.

V\r, expanded the functionality of the NED-2 simulation agent to Incorporate RECEN.
The simulation agent knows how to use two variants of the Forest Vegetation Simulator
(FVS). These are independent programs that read two input files, one containing stand
invent09 data and the other containing a script that controls the simulation. As the simulation
programs sun, they output files containing simulated tree data and cut lists for treatments.
Regeneration models are included in the FVS variants. If the user decides to use the Loftis
regeneration model instead of the regeneration model built into one of the FVS lariants,
then the simulation agent must interleave the growth model it is using (an FVS variant)
with the Loftis regeneration model.

The NED-2 C++ planning module was modified so that the user can specify for each
plan which growth model and which regeneration model should be used for each 5tand.
To use REGEN, the user must select one of the REGEN species competition knowledge
bases. When the simulation agent identifies a treatment that will trigger regeneration for
a stand where the user has selected REGEN as the regeneration model, it passes to the
REGEN inference engine the snapshot number for the real or simulated tree data preceding
the treatment, the REGEN knouledge base to be used in the simulation, and a snapshot
number where the results of the simulation are to be written. After REGEN completes the
simulated regeneration, the simulation agent continues with any further simulation tasks.
The entire process is illustrated in Fig. 2.

7, Adding a fire risk analysis model to NED-2

The fire risk analysis model for NED-2 is based upon separate wildlands (Hemel, 2003)
and urban interface (Long, 2003) models. The first step was to determine what variables
were needed to support these models and then add these to the NED-2 internal data model.
We added a new dialog to the C+c inventory module to collect and store the information
we needed about structures on the management unit, and a [Buildings] table to the NED-2
working file the store the new information. We also added a variable for litter depth to

Snapshots in

2030 Grow

Fig. 2, Interaction of the growth md regeneration models during plan simuiation.

the understory observations section of the NED-?, working file. We made corresponding
changes in the NED Variables database and ran the program we use to generate the mera-
knowledge bases the NED-2 blackboard handler uses to integrate the Prolog and Access
parts of the blackboard. Next, we developed rules to determine the fire risk analysis for a
stand based upon our models. (There are interesting issues in knowledge acquisition we
could discuss here, but they exceed the scope of this paper.)

A NED-:! fire risk agent was de~eloped. This agent responds to reque5ts for fire risk
analysis by calling the appropriate NED-2 inference engine with a set of goals that includes
information about which snapshots (representing actual inventory, the baseline year, or a
specific year in a treatment plan the user has created) are to be analy~ed. The results of this
analysis are placed on the blackboard by the inference engine. If the user has requested a set
of reports that includes a fire risk analysis, the fire risk agent reads the results of the analysis
from the blackboard, writes the report as an HTML file, removes the results of the analysis
from the blackboard, and puts the name of the fire risk analysis report on the blackboard
where it can later be found by another agent that creates a top-level HTML file for the set
of reports and sends it to the default Web browser. If the user has requested that the results

I). ,Vufe et ni. / Cornputerr uird E(ec,til-ini~.s br Agricuirurc~ 39 (2ii(jii 44-49 55

of the analysis be displayed on a map of the management unit, the fire risk agent leaves the
results on the blackboard where the GIS agent described below can fine them.

8. Adding GIS to NED-2

The NED-2 slmulation agent prepares input files for an external slmulation program.
and then executes that program. The NED-2 GIs agent works much the same way except
that the external simulation program is replaced by an ArcMap project.

We wanted to be able to paint a map of the management unit to show the values of
different variables for each stand. For example. we might display forest type, basal area, or
percentage of overstory coverage. We also wanted to be able to color a map to show which
stands satisfy some goal. Furthermore, we wanted our map to have layers representing
different years for the same plan or different plans for the same year.

The first step was to design a database that would contain the information an ArcMap
project would need to accomplish our goal. Since NED-2 already uses an Access database as
the NED-2 working file, we decided to store this information in a separate Access database
with a name determined by the user. (This would allow the user to access the data in ArcMap
later without first starting LIP NED-2.) Then we created code in the Visual Basic Application
language (VBA) that told our ArcMap project what to do when it was executed. The VBA
code looks to see if a temporary file with a special name exists. If it does, then the code
reads this file to get a name of an Access database and an ArcMap shape file. It merges the
data in these two files to create the data file that will be used to drive the Archlap displays.
(If the ArcMap project does not find a file containing the names of an Access database and
a shape file, it prompts the user for the database and the shape file.) Finally, we included
VBA code that allows the user to select the variable or goal to be used to color the maps.
While ArcMap is running, the user can switch between any of the variables or goals that
are included in the database. The user can also switch between layers in the usual way to
change the year or the treatment plan the map represents.

Once we had designed the Archlap project and the database that would drive it, we
developed the NED-2 agent that mould create the database for the ArcMap display and
then execute the ArcMap project. This CIS agent performs the final step in a series of steps
that are planned by a special NED-2 planning agent. When the user requests a CIS display,
this planning agent responds to the request and asks whether the user wants to display
information for real inventory. for the baseline year, for all the years included in a treatment
plan, or for a11 treatment plans for a specific year. The user is also asked which variables
and goals he wants to display. The planning agent prepares a list of requests corresponding
to the user's answers and puts them on the blackboard. The different goal analysis agents
perform the goal analysis and put the results on the blackboard. Then the GIS agent takes
the results of the goal analysis off the blackboard and puts these, together with the values for
the variables the user selected, into the special Access database. It then writes the command
file contaming the name of the Access database and the name of the shape file the user
has entered previously as part of the management unit information. Finally, the GTS agent
executes the NED-2/ArcMap project. The NED-:! interface agent re-activates the NED-2
C++ interface, and the user can switch between NED-:! and the ArcMap display.

9. Activating the new NED-2 functions

The final step in adding any new function to NED-2 is to make a few changes to the
NED-:! interface agent. First. we add the names of any new files that contain the code for
any new agents or utilities to the list of files that NED-2 loads at stast-up. Next. we modify
the user interface so the user can access the new function. The primary %ED-2 interface is
a full-screen window that is divided into several window 'panes'. The A-pane is a region
in the upper left corner of the screen that always displays an outline of the NED-2 decision
process. At stxt-up, Prolog loads all of the Dynamic Link Libraries (DLLs) that make up the
C++ user interface. It actives one of these, the home module for the NED-2 user interface,
and gives it the information it needs to build the contents of the A-pane. Whenever a user
clicks on an item in the A-pane, the currently active C++ interface module sends the Prolog
interface agent a message that tells it which item was selected. The interface agent then
consults a knowledge base to determine what action to take. To activate a new function
to NED-2, we must also modify this knowledge base. As an example, we added 'Define
Treatment Sets' and 'Select Treatment Set' under 'Planning' in the outline displayed in the
A-pane. Then we added two rules to the knowledge base for the interface agent: one telling
the interface agent to add a treatments-edit request to the blackboard when the user clicks
'Define Treatment Sets' and another telling the interface agent to add a treatments-select
request to the blackboard when the user clicks 'Select Treatment Set'.

10. NED-2 expandability

Integrating several decision support tools into a single DSS like NED-2 has been chal-
lenging. The two foundations for this integration are the rich NED-2 ontologj and internal
data model, and the distributed control using autonomous agents and a blackboard architec-
ture. The ontology and data model make it possible to develop semantics for the data formats
and control structures of external models. Programmers developing different NED-2 agents
can also depend on a stable model for the information those agents will use in performing
their tasks.

The expandability of NED-2 was not really tested in developing NED-2 version 0.2 (Nute
et al., 2002). The initial functions included in NED-2 uere integrated into this version all at
the same time. Subsequent versions leading up to and including the current NED-2 version
0.6 have required us to add new agents and new models to an already existing, stable
system. The capability to build knowledge bases representing different sets of treatment
parameters, the fire risk analysis model, and the GIs capability were all added by building
new NED-2 agents. X new regeneration model was added by expanding the scope of the
already existing NED-:! simulation agent. These additions also required us to enhance the
NED-2 data model and the modular C++ interface. In each case, the new components were
developed and the changes nere made in a few existing components without destabilizing
the overall system. The blackboard system continued to pro\iide communication between
the new and old components. When it nas necessilly to enhance the NED-2 data model.
already existing auxiliary programs were used to regenerate the meta-knowledge about the
structure of the NED-2 working file that the blackboard system needs to integrate the Prolog

