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Abstract

Wildfires create damages in the wildland–urban interface (WUI) that total hundreds of millions of dollars annually in the

United States. Understanding how fires are produced in built-up areas near and within fire prone landscapes requires evaluating

and quantifying the roles that humans play in fire regimes. We outline a typology of wildfire production functions (WPFs) and

empirically estimate three broad classes of WPFs: fire event (ignitions), fire aggregate extent, and a combination function of fire

effect and aggregate extent (an intensity-weighted aggregate extent model). Our case study is Florida, which contains an

abundance of both wildland and human populations. We find that socio-economic variables play statistically significant roles in

all three estimated production functions. At the county level, we find that population and poverty are usually positively related

to annual wildfire area and intensity-weighted fire area, while unemployment is negatively related to ignitions, area, and

intensity-weighted wildfire area. Poverty is found to be negatively related to wildfire ignitions, while the number of police are

correlated with fewer ignitions. These results suggest that managers and decision makers should be aware of socio-economic

variables and consider them in their wildland fire management decisions in the wildland–urban interface. Our results also

emphasize the importance of including such variables in statistical models of wildfire risk in the WUI.
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1. Introduction

Expenditures by federal, state and local govern-

ments on wildfire prevention, control, and suppression

have expanded rapidly over the past 10 years (Mutch,

2002). A chief cause of these increased expenditures
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has been the rapid population growth in the wildland–

urban interface (WUI), which has placed more

citizens and property at risk of wildfire and prompted

wildfire managers and policymakers to expend all

resources necessary to protect them when wildfire

breaks out (Aplet and Wilmer, 2003; The White

House, 2002; United States Department of Agriculture

(USDA) Forest Service, 2000, 2004). Indeed, wildfire

is one of the most daunting, urgent, and visible

problems forest managers face in the WUI (Duryea

and Hermansen, 2002). Consequently, federal, state,
ics 7 (2005) 782–795
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and local governments have initiated plans, studies,

and initiatives to reduce the impacts of wildfire in the

WUI by identifying, quantifying, and prioritizing

communities at risk (e.g., Glickman and Babbitt,

2001; Governor’s Wildfire Response and Mitigation

Review Committee, 1998; Steelman and Kunkel,

2004; USDA Forest Service, 2000, 2004). These

efforts have had mixed results. While significant

progress has been made in assessing wildfire risks at

fine spatial scales (e.g., the Florida Fire Risk Assess-

ment System (McLellan and Brenner, 2003)), most

risk assessments have paid scant attention to social

and economic factors influencing wildfire risk. Solv-

ing the WUI wildfire problem requires research to

identify linkages among ecological, social, and

physical factors affecting wildfire and develop a better

understanding of how social policies and socioeco-

nomic conditions alter those linkages at different

spatial and temporal scales (Zipperer, 2002).

Recent research suggests that wildfire patterns are

linked to human activities and land use, including

vegetation management (Prestemon et al., 2002). For

example, many wildfire ignitions (e.g. arson, acci-

dents, those relating to transportation) are human

caused. To the degree that human activities are

statistically related to wildfire, a portion of wildfire

variability may be explained using socioeconomic

variables. From a statistical perspective, failure to

account for the effects of socioeconomic variables on

wildfire activity may lead to biases and inconsisten-

cies in model estimation. Inclusion of these factors

can help managers and decision makers better under-

stand why wildfire activity varies across space and

time. Models that include socio-economic variables

can help in the design of more effective and efficient

wildland fire management and public policy.

A central problem facing managers, policy makers,

and economists is measuring the effects of wildfire

management interventions at different spatial and

temporal scales. Wildfire production functions

(WPFs) (Rideout and Omi, 1990; Prestemon et al.,

2002) are a way of revealing these effects, in addition

to the effects of non-management variables. WPFs are

quantitative models that explain the spatial and

temporal variability in wildfire activity, given differ-

ent ecological, social, and economic conditions and

management inputs. Thus, wildfire production func-

tion modeling allows empirical analysis of the relative
impacts of human and non-human factors on wildfire

in a unified framework. An estimated wildfire

production function can provide a rigorous means

for evaluating trade-offs among alternative wildfire

intervention programs and policies and for forecasting

risks. In this context, wildfire production functions are

closely patterned after production functions in classi-

cal economic analysis (Rideout and Omi, 1990).

Depending on the empirical specification, WPFs can

provide critical information for allocating resources

across the full suite of inputs to wildfire management:

wildfire awareness programs, fuel treatments, prepar-

edness (pre-suppression), and suppression. They can

also serve to predict the spatial and temporal spill-

overs from wildland fire management across owner-

ships and ecosystems. Finally, wildfire production

modeling can also be used to develop actuarial tables

for property or economic losses in wildland settings.

Nevertheless, we have found nothing in the literature

that provides a typology of WPFs or outlines the

diverse set of empirical methods available for

estimating them.

Therefore, our objectives for this paper are to: (1)

review and compare WPFs; (2) describe some

published examples and report our own empirical

examples of WPFs; and (3) assess the impact of WUI

variables on wildfire risk. We illustrate empirical

approaches appropriate to WPF analyses in the WUI,

using data from Florida as a case study. We contend

that wildfire production analysis will promote our

ability to answer questions such as: (a) Where in the

WUI are wildfires most likely to occur?; (b) What is

the distribution of the extent and intensity of wildfires

within the WUI?; (c) What are the characteristics

(ecological, economic, demographic, and social) of

the WUI that are more likely to be associated with

wildfire?; (d) How can we predict which communities

in the WUI are most at risk? In this paper, we provide

examples of answers for some of these four questions.

Additional WPF analysis would be required to

develop answers for the full suite of questions for

different ecologic and socio-economic conditions.
2. Wildfire production functions

Wildfire production functions (WPFs) are quan-

titative models that explain the variability in wild-
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fire activity across spatial and/or temporal units of

analysis. WPFs are usually represented as para-

metric relationships between wildfire output and a

set of inputs. The inputs or covariates include: (1)

ecological variables such as weather, climate,

ecosystem type and characteristics; (2) management

variables such as fuels management, pre-suppression

and suppression activities; and (3) socioeconomic

variables such as housing density, income, and

employment. Time series, cross-sectional, and panel

data sets can be used to statistically relate a variety

of measures of wildfire output to these covariates.

We classify WPFs into four general categories: fire

event, individual fire extent, aggregate fire extent, and

fire effects models. Combining WPFs to incorporate

elements of at least two of the four listed categories is

also possible. Table 1 presents an overview of our

typology of wildfire production function models,

including references to published studies. Each type

of model is discussed below.

2.1. Event models

The most common wildfire event models analyze

ignitions as counts or occurrences within discrete

units of time and/or space. When described as point

processes, ignitions can be related to conditions

surrounding the ignition point. Using covariates and

events arranged in spatial–temporal units, event

models can incorporate spatially dependent or spa-

tially autoregressive relationships with other events

that occur in regular patterns. Counts of events can

additionally be related to counts in previous time

periods, incorporating temporally autoregressive pat-

terns that characterize contagion over time.

Wildfire ignition processes can be modeled in

several ways. Most common are the Poisson

approaches (Poisson, negative binomial, etc.), which

relate the observed counts of ignitions to a set of

covariates based on a Poisson process (Greene, 1997).

Point process models relate individual events to

spatially arranged covariates. The advantage of the

point process model is its explicit joint use of local and

non-local covariate information, which can improve

the statistical efficiency of some parameter estimates

and increase the explanatory power of the event model,

compared to available non-spatial alternatives. Point

process models, which shrink the size of the wildfire to
a specific point and then relate the occurrence to

spatially arranged variables, may be useful for identi-

fying times and places of high wildfire ignition risks,

thereby aiding in raising initial attack success rates

through prepositioning of suppression resources.

Nonparametric methods for modeling counts have

not been widely applied in wildfire research and are

ripe for future research. Survival models relate a set of

covariates to the length of time until an event occurs.

Common in epidemiology and actuarial science, an

example is the Cox Proportional Hazards Model (Cox,

1972), which relates the covariates associated with

one spatial–temporal unit to the probability of an

event occurring in that unit relative to some baseline

probability of the event.

Event models are useful when ignitions are

important in economic optimization models involving

wildfire. For example, if wildfire suppression costs

include a cost associated with ignitions in addition to

costs that vary with the extent and intensity of

wildfires, then the occurrence of an ignition or rate

of ignitions in a spatial–temporal aggregate is of

economic interest. In arson modeling, the occurrence

is the criminal act, while the damages from the fire are

the measure of its effect. Both occurrence and damage

(or area burned) might be described separately. The

likelihood of ignition can be related to law enforce-

ment and to wildfire awareness and prevention

campaigns (Donoghue and Main, 1985).

Gill et al. (1987) estimated models of two kinds of

wildfire ignitions in Australia, lightning and dpeopleT,
relating them to indices of wildfire danger and a set of

dummy variables that accounted for systematic differ-

ences in ignition rates according to day of the week,

public holidays, and calendar months, all of which

were found to correlate significantly with the daily

count of ignitions. A logit model estimated by Vega

Garcia et al. (1995) to model human-ignited wildfires

in Canada is another example of the use of daily

information on wildfire conditions. This model was

structured in a manner similar to the modeling from

Australia, except that wildfire occurrence in Canada

was indexed as a binary event.

2.2. Individual fire extent models

Individual fire extent models relate the area or

change in area per unit time for a single wildfire to



Table 1

Typology of wildfire production function models

Model Dependent

variable(s)

Common types Advantages Disadvantages Examples

Fire event

models

Ignitions Statistical:

Probit/logit

Poisson

1. Can incorporate spatially

and temporally dependent or

autoregressive relationships.

1. Low statistical power.

2. Underdeveloped

statistical methods.

1. Cox (1972)

2. Donoghue

and Main (1985)

Negative binomial

Point process

Non-parametric

2. Useful when suppression

includes costs associated

with ignitions.

3. Gill et al.

(1987)

4. Vega Garcia

Survival models 3. Can identify time and

location of high wildfire risk.

et al. (1995)

5. Pye et al.

(2003)

Individual

fire extent

Area burned

or not burned

by a single fire

FARSITE

BEHAVE

Statistical:

Distance function

(multi-output)

Least squares

(single output)

1. Useful for evaluating

influence of suppression

resources, fuels levels, and

weather on burned area.

1. May be unsuitable for

statistical analyses.

2. Often ignore spatial

and temporal spillovers

of resource decisions.

1. Davis and

Cooper (1963)

2. Finney

(1998)

3. Andrews and

Bevins (1999)

4. Finney and

Andrews (1999)

Aggregate

fire extent

Area burned or

not burned by

multiple fires

Statistical:

Principal

components

Canonical

correlation

Least squares

1. Can be a collective

risk model.

2. Useful for evaluating

impact of large-scale

management on wildfire.

3. Can be used to quantify

pre-suppression

resource needs.

1. Not applicable for

economic optimization

models at fine spatial

or temporal scales.

1. Barnett and

Brenner (1992)

2. Armstrong

(1999)

3. Westerling

et al. (2002a,b)

4. Prestemon

et al. (2002)

Fire effects Intensity

Damage

Fuel consumed

Severity

Statistical:

Ordered

logit/probit

Least squares

1. Most useful when

combined with other

model types.

2. Can statistically relate

fire intensity to area burned.

3. Can create total damage

or aggregate heat output

functions.

1. Discrete nature of

some measured effects

leads to low powered

statistical models.

1. Rideout and

Omi (1990)

Combination

models

Wildfire area

given successful

ignition

Statistical:

Heckman

Tobit

Extreme value

Pareto

distributions

Least squares

1. Able to combine event

and extent models.

2. Useful for size-frequency

distribution analysis.

3. Useful for forecasting

wildfire extent for

spatial–temporal units.

4. Provides more complete

characterization of aggregate

wildfire activity.

1. Large data

requirements.

2. May be difficult to

identify influences.

3. Spatio–temporal

population of fires may

be difficult to identify.

1. Strauss

et al. (1989)

2. Malamud

et al. (1998)

3. Li et al.

(1999)

4. Keeley

et al. (1999)

5. Holmes

et al. (2004)

6. Cumming

(2001)
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hypothesized covariates. These models either relate the

total extent of the fire to a set of hypothesized

explanatory variables or relate the area burned or not

burned within a temporal unit (e.g., a day) to variables

expected to affect the rate of wildfire spread.
Individual fire extent models are useful for

evaluating the influences of suppression resources,

weather, and fuels on realized wildfire or area

unburned. These models are best suited for

identifying the effectiveness of wildfire suppression
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resources and fuel conditions on wildfire extent. As

such, they complement aggregate fire extent models

(described below), whose imprecise description of

suppression resources means that wildfire output

and wildfire suppression inputs are often highly

positively correlated. The individual extent models

may be further complicated by multiple production

aspects. Suppression resources are applied to

protect resources (e.g., timber and habitat), prop-

erty, and people. Because efforts to protect resour-

ces, property and people can be substitutes or

complements, models need to account for the

multiple effects of wildfire suppression on individ-

ual fire extent. The multi-output feature of wildfire

can be an important barrier to properly identifying

wildfire production functions. However, methods

(such as distance functions) exist that could enable

their identification (Färe and Grosskopf, 1990;

Grosskopf et al., 1995).

One way to model individual fire extent would be

to statistically relate the daily change in wildfire area

burned (or saved from burning) to available sup-

pression resources, weather, fuels, and other cova-

riates. Specifying a distance function, two outputs of

wildfire production–e.g., the area burned and the

structures destroyed–would be related simultaneously

to the inputs. Parameters from this analysis could

inform analysts using larger-scale modeling frame-

works (e.g., estimating aggregate extent models) on

the effects of suppression and the relationships

between suppression, vegetation management, and

non-purchased inputs such as weather. It could also

support optimization modeling of wildfire suppres-

sion at the individual fire level (Donovan and

Rideout, 2003).

The FARSIGHT Fire Area Simulator (Finney,

1998; Finney and Andrews, 1999) and BEHAVE

(Andrews and Bevins, 1999) are examples of simu-

lation models that provide insights and predictions

into how factors such as fuel, wind, topography, and

moisture affect fire behavior. These models have

enabled a deep understanding of fire behavior and

have been useful in tactical applications, evaluating

the effects of suppression inputs and nonpurchased

inputs (weather, fuels, landscape features) on the

spread of individual fires. Fire risk (defined as the

probability that a particular location will burn during a

discrete time period) is related to many of the same
factors used in models such as FARSITE and

BEHAVE. However, these simulation models are

necessarily very short run and are not amenable to

identifying the broad spatial and long temporal scale

dynamic effects of fire, fire suppression, vegetation

management, weather patterns, and socio-economic

modulators of fire occurrence. As an economic tool,

FARSIGHT and BEHAVE are difficult to employ in

economic analyses concerned with large spatial and

long temporal scales.

2.3. Aggregate extent models

The aggregate extent WPF generalizes the individ-

ual fire model, utilizing many of the same factors

expected to affect the extent of the individual fire.

These can include measures of aggregate quantities of

suppression resources, weather and climate, ecolog-

ical conditions, and fuels. When expressed relative to

the size of the spatial unit, a fire extent model

becomes a collective risk model.

Collective wildfire risk and aggregate extent

models are useful for evaluating how large-scale

management activities affect observed amounts of

wildfire. Such models can potentially measure the

tradeoffs across different kinds of wildfire interven-

tions. Backward-looking models or those that include

forecastable covariates can be used to predict collec-

tive risk or aggregate extent. Such forecasts can be

used for preparedness planning and firefighting

resource allocation decision making.

Westerling et al. (2002a,b) outlined a U.S. West-

wide model of aggregate wildfire area for the fire

season for one-degree grid cells, as related to the

Palmer Drought Severity Index (PDSI). These

authors used principal components and canonical

correlation analysis to relate wildfire area in each

cell to the PDSI’s across all cells. Prestemon et al.

(2002) estimated models relating the amount of

wildfire per unit of forest area (collective risk), to

prescribed fire, lagged wildfire, a measure of the El

Niño-Southern Oscillation, small diameter timber

removals, and housing density. Four kinds of

models were estimated, one for each of three kinds

of ignitions (arson, lightning, and accidents [all

others]), and one for all ignition sources combined.

These were estimated separately, using panel data

methods.
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2.4. Effects models

WPF effects models relate non-extent descriptions

of wildfire, such as intensity, damage, fuel consumed,

severity, or ecological benefit, to covariates. Dividing

by time allows the models to relate measured rates of

output to covariates. A potential example of these

statistical versions of effects models would relate the

average observed flame length of a fire (e.g., 0.5, 1.0,

2.0 m, etc.) to hypothesized explanatory variables.

Given a sample of individual wildfires and an effect

measured in discrete classes, probit, logit, or ordered

versions of these could be used as estimation frame-

works for effects models. An effect measured as a

continuous variable could be modeled using general-

ized least squares techniques.

Because effects models as described here would be

limited in spatial and temporal scope, they have many

of the same inferential limitations as individual fire

effects models. For this reason, effects models are

probably most useful in combination with other kinds

of WPFs. For example, wildfire effects can be

aggregated across large spatial and temporal scales

and related to similarly aggregated explanatory

variables.

2.5. Combination models

Combination wildfire production models incorpo-

rate elements of at least two of the four categories of

wildfire production listed above. For example, a

wildfire spread model describes the size of a

wildfire, given a successful ignition or start. These

models combine an event model with an individual

fire extent model. Econometric frameworks for these

models include the Heckman and Tobit models.

Another approach uses information on the sizes and

the counts of all wildfires within a spatial–temporal

aggregate, to create a probability density function

(pdf) of fire sizes (size-frequency distributions and

extreme value functions) within the aggregate. If

replicated across many spatial–temporal units, the

estimated parameters of the size-frequency distribu-

tion (slope and intercepts) or the extreme value

function, at least in principle, could be compared

quantitatively or statistically related in an auxiliary

regression to covariates, using multivariate statistical

techniques.
Individual or collective wildfire damage extent

models are also combination models, incorporating

elements of wildfire character and extent. These

models can be estimated for individual fires or for

large spatial–temporal units, relating the amount of

damage to a set of hypothesized covariates.

In Section 3, we provide an example of one

approach for combining effects (fire intensity) and

aggregate extent (wildfire area) models. Intensity,

developed from a flame height measure for each fire,

is multiplied by the size of the fire, and the bintensity-
acresQ measure is then aggregated across all fires. This

aggregation is defined as an expression of aggregate

damage in the spatial–temporal unit of interest (a

county over a year). Wildfire intensity-acres per unit

of forest area are then related to covariates. This kind

of ddamageT model is akin to one described by

Rideout and Omi (1990).

The main uses of combination models include

forecasting aggregate wildfire extent or expected

damages for particular spatial–temporal units. Models

of intensity-area, damage-area, or models of the

parameters of size-frequency distributions or extreme

values can also be used to more completely character-

ize aggregate wildfire activity. The distribution

function models provide estimates of how covariates

affect both the amount of non-extreme (low damage)

and extreme (high-damage) fire. These models fit well

within the Rideout and Omi (1990) or Donovan and

Rideout (2003) frameworks.

One example of this type is by Holmes et al. (2004)

plotted wildfires in Florida in nearly log–linear size

class–frequency space. The Holmes et al. (2004) study

estimated the slope and intercepts of smoothed

functions relating size class to frequency of fires in

each size class. Observed kinks in the distribution for

fires beyond certain size classes (i.e., the function had

a different slope and intercept), revealed potential

regime changes beyond a threshold.
3. Wildfire production in the Florida

wildland–urban interface

In this section, we use a Florida case study to

provide examples of applying production functions to

wildfire risk analysis and assess the impacts of WUI

variables on wildfire activity. We estimated three
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wildfire production functions: (1) a fire event model

of wildfire ignitions, (2) an aggregate fire extent

model, and (3) a combined fire effect and aggregate

extent WPF. Each model was estimated with a cross-

sectional time series panel data set with the cross-

sections defined by counties in Florida and the time

series running from 1995 to 2001. Model estimates

provide insights into how physical, managerial, and

socioeconomic factors affect fire occurrence, area

burned, and damages across broad spatial and

temporal scales.

The fire event model relates total wildfire

ignitions per county per year to 10 years of previous

wildfire extent, weather variables (the sea surface

temperature anomalies El Niño and North Atlantic

Oscillation), three years of past prescribed burns, and

WUI-related socioeconomic measures (population,

poverty rates, unemployment, housing density, and

number of police). Justification for inclusion of these

variables is provided by wildfire ignition models of

human-ignited wildfires estimated by Donoghue and

Main (1985), Gill et al. (1987), Vega Garcia et al.

(1995); by aggregate wildfire extent research pub-

lished by Prestemon et al. (2002); and by research

from the criminology literature that relates crime

patterns to socioeconomic variables (e.g., Arthur,

1991; Corman and Mocan, 2000; Gould et al., 2002;

Burdett et al., 2003). The fire event model is

estimated with a conditional fixed effects Poisson

panel model. Mathematically the fire event (ignition)

model is described as:

Fire event model

Sit ¼
XI
i¼1

aidi þ
XJ
j¼1

bj

�
Wi;t�j

Fi

�
þ

XK
k¼0

ck ln

�
Bi;t�k

Fi

�

þ e1Et þ e2E1998 þ f Gt þ gHi;t þ hUit þ lPit

þ mOit þ xi;t ð1Þ

Sit is the count of the number of ignitions in county

i in fire year t; Wit�j is the areal extent (acres) of

wildfire in county i in fire year t� j; Fi is the area of

forest (acres) in the county; the di’s are dummies for

the various counties (which control for temporally

static but spatially variable un-modeled factors);

Bi,t�k is the total area (acres) of prescribed burning

permits issued in county i in year t�k; Et is the Niño-

3 sea surface temperature (Niño-3 SST) anomaly
(departure from a long-run moving average) in

degrees centigrade (see Brenner, 1991; Barnett and

Brenner, 1992); E1998 is a dummy variable corre-

sponding to 1998 to allow the effect of the Niño-3

SST anomaly for 1998 (given its extreme, dSuper El
NiñoT, characteristics) to be different from other years;

Gt is the sea surface temperature anomaly in degrees

centigrade for the North Atlantic Oscillation (NAO);

Hi,t, Ui,t, Pi,t, Oi,t are the housing density, unemploy-

ment rate, poverty rate, and number of police officers,

respectively, in county i in year t; and xi,t is a

randomly distributed error term.

The fire extent and aggregate fire effect models

only differ in the definition of the dependent variable.

Following Prestemon et al. (2002), both utilize a

general least squares, fixed effects panel approach

assuming heteroscedastic errors to estimate log–log

production functions. The basic structures are:

Fire extent model:

ln

�
Wi;t

Fi

�
¼

XI
i¼1

aidi þ
XJ
j¼1

bjln

�
Wi;t�j

Fi

�

þ
XK
k¼0

ck ln

�
Bi;t�k

Fi

�
þ e1Et þ e2E1998

þ f GtþgHi;tþhUitþ lPitþmOit þ xi;t

ð2Þ

Fire effect model:

ln

�
Xi;t

Fi

�
¼

XI
i¼1

aidi þ
XJ
j¼1

bjln

�
Wi;t�j

Fi

�

þ
XK
k¼0

ck ln

�
Bi;t�k

Fi

�
þ e1Et þ e2E1998

þ f GtþgHi;t þ hUit þ lPit þ mOitþxi;t

ð3Þ

Independent variables are defined as in the ignition

model (1) except that the natural log operator (ln) is

applied to the past wildfire extent (Wi,t�j /Fi) and

prescribed burning (Bi,t�k /Fi) variables. For the fire

extent model, the dependent variable is the natural log

of the acreage of wildfire in county i in year t as a

proportion of the total forest area. The dependent

variable in the fire effect model is the natural log of

wildfire intensity-acres (Xit) as a proportion of the
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total forested area in the county. The intensity-acres

variable was constructed by multiplying the number

of acres burned at different fireline intensities by those

intensity levels, summing these, and then dividing by

the total forest area in county i in year t. Fireline

intensity is defined as the rate of heat energy released

per unit time per unit length of the fire front (Kennard,

2004). Fireline intensity is one of the best descriptors

of fire behavior and correlates well with expected

temperatures at different heights above surface fires,

crown damage, and lethal scorch height. Fireline

intensity is often used to compare fires and assess the

effects of prescribed burns (Kennard, 2004).
4. Data

Data for this study were collected from several

sources. The Florida Division of Forestry (FDF)

provided detailed records for all wildland fires on all

non-Federal lands reported to the FDF between 1981

and 2001 and included location of the fire (cadastral

section and county of origin), date the fire was first

reported, dominant fuel type, flame length, and total

area burned. Fires whose dominant fuel type was

bgrassyQ were dropped from the data set, as we were

strictly interested in forest fires. We obtained data on

wildland fires on federal lands from the USDA Forest
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Fig. 1. Area burned by wildfire and area of permitted prescribed fire in Fl
Service, US Fish and Wildlife Service, and the US

Park Service. Data were unavailable for Department

of Defense (DOD) and NASA lands; so counties

containing DOD or NASA lands were dropped from

the analysis.

We used areal extent and flame length data for each

fire to calculate the wildfire intensity-acres variable.

The Florida Division of Forestry assigned each fire an

average flame length category. Flame length catego-

ries were: 0–2, 3–4, 5–8, 9–10 ft, and greater than 10

ft in height. There were also a large number of fires in

which the flame length was not reported; we used a

weighted average of acres of fires with different flame

lengths for each county and each year to account for

missing observations. To calculate an intensity meas-

ure from the flame length data, we first summed the

acres of fire for each flame length category (using the

average flame length for each category and 15 ft as the

average for the greater than 10 ft category) for each

county. We then applied the following equation to

convert flame length to Byram’s fireline intensity

(Kennard, 2004): I =259.833 (L)2.174, where I is

fireline intensity (kW/m) and L is flame length in

meters. Finally, we calculated the variable bintensity-
acresQ for each county for each year by summing the

product of the annual number of acres burned in each

intensity class times the average intensity for that class

for each county.
1995 2000 2005

 prescribed burn area

orida, 1982–2001 (prescribed fire data not available prior to 1994).
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Data on silvicultural burn permits issued by the

State of Florida were also obtained from the FDF

and covered all ownerships. The permit database

consists of one observation for each permit and

includes the date, purpose, total permitted burn area,

and the location (cadastral section and county) of at

least one portion of the treated area. We assumed all

burns were completed as described in the permit

database. Burns for agricultural and rangeland
Table 2

Maximum likelihood estimates of three wildfire production/risk functions

Independent variables Event (ignitions)

Coefficient P-value

Wildfire lag 1 �0.386 0.00

ln wildfire lag 1

Wildfire lag 2 �0.500 0.01

ln wildfire lag 2

Wildfire lag 3 �0.990 0.25

ln wildfire lag 3

Wildfire lag 4 �0.804 0.74

ln wildfire Lag 4

Wildfire lag 5 �2.448 �0.37

ln wildfire lag 5

Wildfire lag 6 �7.234 0.00

ln wildfire lag 6

Wildfire lag 7 �1.954 0.17

ln wildfire lag 7

Wildfire lag 8 2.589 0.12

ln wildfire lag 8

Wildfire lag 9 �2.054 0.17

ln wildfire lag 9

Wildfire lag 10 1.392 0.17

ln wildfire lag 10

Pres. burn current �1.515 0.00

ln pres. burn current

Pres. burn lag 1 �0.644 0.01

ln pres. burn lag 1

Pres. burn lag 2 �0.247 0.23

ln pres. burn lag 2

Housing density (dwellings/for. ac) �1022.68 0.05

Unemployment rate (%) �7.103 0.00

Poverty rate (%) �2.122 0.00

Population 7.953 0.01

Police �1.795 0.01

Niño-3 SST anomaly (8C) �0.334 0.00

NAO anomaly (8C) 0.294 0.00

1998 dummy 0.979 0.00

Log-likelihood �1359.79

Observations 297

Wald test statistic 1800.82

Wald significance 0.00

Statistically significant results are in bold type.
purposes were not included in our analysis.

Although some counties have permit data beginning

in 1989, full statewide coverage was not available

until 1994.

Plots of statewide wildfire acreage (1982–2001)

and permitted prescribed burn acreage (1994–2001)

illustrate their temporal variability (Fig. 1). Total

wildfire ranged from a low of about 20,000 acres in

1983 and 1995 to a high of 429,000 acres in 1998.
(Event, Area, and Effect)

Area (ln area) Effect (ln intensity)

Coefficient P-value Coefficient P-value

�0.282 0.00 �0.336 0.00

�0.266 0.00 �0.230 0.00

�0.201 0.00 �0.227 0.01

�0.217 0.00 �0.254 0.01

�0.213 0.00 �0.153 0.08

�0.199 0.00 �0.308 0.00

0.165 0.77 0.176 0.04

0.103 0.11 0.144 0.13

�0.132 0.04 �0.096 0.28

�0.136 0.02 �0.205 0.01

�0.199 0.03 �0.389 0.00

�0.102 0.356 �0.217 0.17

�0.509 0.00 �0.658 0.00

�7224.31 0.00 �6006.95 0.03

�9.937 0.06 �29.032 0.00

3.654 0.07 4.640 0.10

33.639 0.00 5.166 0.70

�1.89 0.41 6.978 0.10

�0.310 0.01 �0.658 0.00

0.883 0.00 1.149 0.01

2.200 0.00 3.753 0.00

�275.62 �387.72

289 289

2611.98 1261.7

0.00 0.00
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Several years of relatively low wildfire activity were

typically followed by high wildfire years (e.g. 1985,

1989, 1998). Except for 1998, permitted area of

prescribed burning was higher than the observed area

of wildfire. From 1994–1997, permitted prescribed

fire area was 12–29 times the annual area of wildfire

in Florida. During the catastrophic 1998 wildfire

season, permitted prescribed fire and wildfire

accounted for about the same acreages, (453,359

and 429,427 acres, respectively). Immediately follow-

ing the 1998 season, permitted prescribed fire area

jumped to 667,307 acres.

Climate data (the Niño-3 SST anomaly and the

NAO) were obtained from the National Oceanic and

Atmospheric Administration (2003a,b). These two

measures were our proxies for annual variation in fire

climate. Data for annual housing counts and popula-

tion for the estimation period were provided by the

Florida Bureau of Economic and Business Research

(2002). Poverty data were provided by the United

States Department of Commerce, Bureau of the

Census (2002). Data on police in each county were

provided by the Florida Department of Law Enforce-

ment (2002). Unemployment data were provided by

the United States Department of Labor and Bureau of

Labor Statistics (2002).
Table 3

Direction of impact of wildland–urban interface variables on

wildfire ignitions, acreage, and intensity

Wildfire

ignitions

Wildfire area Wildfire

intensity-area

Population + + + (insignificant)

Poverty � + +

Unemployment � � �
Housing density � � �
Police � � (insignificant) +
5. Results

The parameter estimates for the ignitions, area and

intensity production functions in Table 2 reveal that

each of the three models are broadly significant, with

most parameter estimates different from zero at 1%

significance and most signs in the expected directions.

The size of the coefficients are not directly compara-

ble for the three models because the area and intensity

models are specified as log–log while the Poisson

ignition model is by necessity a linear in parameters

model. The wildfire area model predicts the size and

direction of effects of the independent variables based

strictly on the areal extent of wildfire, while the

intensity model’s dependent variable captures the

combined impact on both areal extent and fireline

intensity. Thus, with a few exceptions, the intensity

model’s parameter values tend to be slightly larger

(i.e., more negative or more positive) than the strictly

areal model.
Results are slightly different for the three esti-

mated production/risk functions. However, all mod-

els generally confirm results from previous studies

(e.g., Prestemon et al., 2002). Our models suggest

that the impacts of prescribed burning and wildfire

are similar, at least for the first few years. We faced

a trade-off between information (long series) and the

potential for model misspecification and hence

statistical inconsistency with respect to the number

of included lags of prescribed burning variables.

Adding more lags in these fixed-effects panel models

would have had the effect of shortening the time

series and reducing information. Hence, our choice

of allowing only 2 years of prescribed burning

variables limited our ability to fully evaluate whether

the risk reduction impacts of wildfire and prescribed

fire operate over similarly long time scales. Preste-

mon et al. (2002) showed that prescribed fire

impacts are modest, compared to wildfire. Past

wildfire seems to have had a long lasting effect in

our models, especially on wildfire acreage and

intensity, less so on ignitions. Past wildfire appears

to reduce current ignitions for only 5 years while

wildfire acreage and intensity are reduced for 10

years.

WUI variables included population, poverty,

unemployment, housing density, and police, almost

all of which were highly significant in each of the

three models. Table 3 compares the direction of the

impacts of the WUI variables for each model.

Unemployment, housing density, and population

have similar results in all three models. Lower

unemployment and housing density are consistently

associated with statistically significant lower risks

of ignition and areal extent and intensity of

wildfire.
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Increased population had a statistically significant

and strongly positive impact on the risk of ignition

and areal extent of wildfire. Although positive,

population was not significant in the intensity model.

Poverty rates and number of police in the county

produce opposite impacts on ignitions and wildfire

area and intensity. The higher the poverty rate in the

county the lower the probability of ignition, but once

ignited the resulting wildfires appear to be larger and

more intense in counties with higher population.
6. Discussion

At first glance some of the results from our

analysis may seem contradictory. For example,

although unemployment, housing density, and pop-

ulation are related to the dependent variables in the

same direction in all three models, poverty has a

negative impact on the number of ignitions but a

positive impact on wildfire acreage and intensity. The

number of police in a county was correlated with

reduced ignitions, but the resulting wildfires in those

counties were more intense and therefore, perhaps

more damaging. Statistical relations in these cases are

more likely to be correlative rather than causal.

Butry et al. (2002) used Geographic Information

Systems (GIS) overlay and correlation techniques to

characterize and compare fire-affected zones in

Florida by population demographics, road density,

forest stand attributes, forest fragmentation and

sources and frequency of wildfire ignition. They

found that areas that had more prescribed burning

and lower amounts of wildfire tended to be

characterized by younger, less educated, and lower

income populations. These areas occurred predom-

inately in more rural areas with predominately slash

pine forest stands managed relatively intensively for

timber production by federal and state agencies in

the north central and panhandle regions of Florida.

In contrast, regions of Florida with less prescribed

burning and more wildfire tended to be dominated

by privately owned, highly fragmented bald cypress–

water tupelo forests located on more valuable

properties near water dominated by older, wealthier

populations and higher housing prices, i.e., the WUI.

These less managed forests tend to provide more

amenity benefits, greater forest access, and more
bnaturalQ undisturbed conditions than their highly

managed and less risky slash pine counterparts.

Indeed, 75% of all wildfires in Florida occur in

these WUI areas where there has been no recorded

prescribed burning in recent decades.

In this context, our results can be more easily

interpreted. Unemployment in the county may be

serving as a proxy for economic activity. All three of

our models predict that areas with high unemployment

and lower economic activity experience fewer wildfire

ignitions and lower amounts of area burned at lower

intensities by wildfire. These tend to be in the rural

areas of the Panhandle and North Central Florida

dominated by forests managed for timber production

undergoing high rates of prescribed burning. In

contrast, areas with lower unemployment and higher

economic activity, corresponding more closely with

the WUI, tend to have more wildfire and less

prescribed burning. These WUI areas also tend to

have higher populations, which our models also

suggest are correlated with more ignitions, wildfire

acreage, and more intense wildfire. Increased housing

density was correlated with fewer ignitions and fewer

wildfires with lower intensities, which reflects the fact

that densely populated urban areas (as opposed to the

less densely populated WUI areas) tend to have less

risk of wildfire.

Our analysis suggests that, the more poverty in a

county the lower the rate of wildfire ignitions but the

larger the subsequent area of wildfire once ignition

occurs (intensity was statistically insignificant). The

lower ignition rate is consistent with the findings of

Butry et al. (2002). The higher acreage burned once

ignition occurs is likely due to fewer fire fighting

resources being available for initial attack in poorer

counties. The number of police in a county was

correlated with fewer ignitions for perhaps two

reasons. First, counties with large cities and urban

populations, such as Miami-Dade, will tend to have

more police and also less wildfire. Second, in the

WUI, police have a negative impact on arson related

wildfire ignitions (Donoghue and Main, 1985), a

common cause of wildfire ignition in Florida (Florida

Protection Bureau, 2004). However, the WUI areas of

Florida described in Butry et al. (2002) have less

prescribed burning. Therefore, once an ignition

occurs, the resulting wildfire may tend to be more

intense because of greater fuel accumulations.
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7. Conclusions

We have described the principal categories of

wildfire production functions and illustrated their

estimation with a case study of the Florida WUI.

Our results suggests that, in addition to the ecological

and climate variables that are typically used in

wildfire risk analysis, the socioeconomic conditions

of communities included in fire prone landscapes also

influence wildfire risk. Disregarding these variables in

wildfire risk analysis may result in inefficient alloca-

tion of wildfire management resources.

Our empirical estimates of wildfire production

functions that include WUI variables, placed in the

context of the analysis by Butry et al. (2002), suggest

that the more rural end of the WUI had fewer wildfire

ignitions and lower aggregate wildfire extent. This is

probably because the more rural portions of the WUI

in Florida occur in areas of more highly managed

forests, where prescribed burning is common and

where other managerial inputs to production forestry

tend to lower risks of catastrophic wildfire. Moving

along the WUI continuum to more densely populated

areas with more valuable properties located near water

resources, the forests are less intensively managed.

There, prescribed burning is rare, and the number of

ignitions and the area burned per unit of space and

time are higher. Prescribed burning rates may be lower

because of a combination of population resistance to

smoke impacts and the public’s desire to have more

dnaturalT forests. Rates are also lower because the

forests are more likely to be bald cypress–water tupelo

ecosystems, which are difficult to prescribe burn but

are highly flammable in extreme drought years.

One overall implication of our research is that

wildfire production models that are estimated for

regions with high populations and varying economic

indicators are improved by including socioeconomic

factors in addition to physical variables. Omissions of

such variables can lead to mischaracterizations of the

factors underlying wildfire production, especially

when attempting to explain wildfire production varia-

tions across time and space. Because management

factors are linked to observed fire patterns, it makes

sense that policy makers evaluate wildland manage-

ment solutions to lowering the costs and losses

attributable to wildfire. Likewise, fire managers and

decision makers should recognize the critical role that
humans play in affecting wildfire risk aside from forest

management. Humans set fires, put out fires, construct

barriers to fire spread (e.g., roads), and socioeconomic

variables related to economic conditions affect the

degree to which these kinds of intentional and

unintentional interventions into fire regimes are

manifested. Unemployment and poverty are indicators

of the resources available for fire suppression and

perhaps directly related to the effectiveness of fire

awareness programs, the frequency of arson, and

economic activities that might be linked to accidental

ignitions (e.g., rail and automotive traffic). Policy

makers seeking ways to minimize damages and restore

ecosystems in places where people live should be

aware of these effects and seek solutions that account

for the many ways that people affect wildfire risk.
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