
Abstract. Forestry, as a
science, is a process for inves-
tigating nature. It consists of
repeatedly cycling through a
number of steps, including iden-
tifying knowledge gaps, creat-
ing knowledge to fill them, and
organizing, evaluating, and
delivering this knowledge.
Much of this effort is directed
toward creating abstract mod-
els of natural phenomena. The
cognitive techniques of AI, with
their emphasis on knowledge
and thinking, can help scien-
tists create, manipulate, and
evaluate these models. The
steps of the scientific process
can be enhanced with five cog-
nitive techniques from AI:
neural networks, machine
learning, advisory systems,
knowledge management, and
qualitative simulation. For
each technique, we identify the
steps of the scientific process to
which it can be applied, pro-
vide background for the tech-
nique, and identify current or
potential applications in for-
estry.
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S cientific research has been construed as both a problem-solving
activity (Kleiner 1985) and as a process for producing knowledge. One
component of the scientific process is identifying problems and knowl-
edge gaps. However, the distinguishing features of science relate to the
methods it uses to solve the problems and to create the knowledge to fill
the gaps. Mario Bunge ( 1967) asserts that science is distinguished by
its unique goal and its unique method. He claims that the goal of science
is to map patterns of facts and that the scientific method is “a mark of
science . . . no scientific method, no science.” At the very least, the
scientific method is a means of solving problems and creating knowl-
edge that involves proposing solutions or hypotheses and then testing
them for adequacy.

However, the scientific process consists of more than just identifying
and solving problems, creating knowledge, and collecting the results.
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The solutions and created knowledge must be evalu-
ated for consistency and completeness and system-
atically and coherently organized. A usual by-prod-
uct of the evaluations and organization is identifica-
tion of additional problems and knowledge gaps.
There is an additional component in the scientific
process; the knowledge that has been created, evalu-
ated, and organized must also be delivered to end
users. While there is controversy as to whether the
delivery of knowledge is a legitimate activity for
researchers, it is nevertheless a necessary activity.
Thus, we perceive science to be a cyclical process
that includes identifying problems and knowledge
gaps, proposing and testing solutions and hypothe-
ses, evaluating the results, organizing the survivors,
identifying new problems and knowledge gaps, and
delivering the results (Fig. 1). Our intent is to discuss
this process in more detail and to discuss how the
cognitive aspects of artificial intelligence might or
can be applied to enhance the process in forest
science.

The Scientific Process

Knowledge gaps. A problem might be defined as
a situation in which there are two states of knowl-
edge, the present state and the desired state, with the
difference between them representing a knowledge
gap. Knowledge gaps are constructs that depend on
the perspective of the researcher and currently ac-
cepted paradigms, and that exist in the form of
interconnected sets in such a way that change in the
state of one changes the states of the others. One way
to identify knowledge gaps seems to be to attempt to
model the desired state of knowledge. Inevitably,
knowledge gaps become apparent as by-products of
the modeling process. Nevertheless, there is very
little information about how to define knowledge
gaps in an efficient and effective manner.

Knowledge creation. The scientific method is
the primary means of creating knowledge in a scien-
tific discipline. In discussing the components of
scientific method, Hans Reichenbach ( 1938) empha-
sized the distinction between the context of discov-

with a problem or knowledge gap, and ends with one
or more proposed hypotheses, models, or solutions.
Justification begins with the set of hypotheses, models,
or solutions, and ends with justifiable inferences
concerning them. Discovery has traditionally been
considered a creative enterprise for which no logic
could be constructed, while justification has a fairly
well-defined inferential logic.

Numerous strategies have been used to discover
hypotheses, including:

Trial and Error
Systematic Search
Serendipity
Inspiration
Analogy
Derivation
Illumination through Preparation
Induction.

A recent innovation that will be discussed in more
detail later, and which may ultimately lead to a logic
of discovery, involves applying the techniques of AI
to discovering hypotheses. The consensus at this
point, however, is that there are no right or wrong
ways to achieve discovery; in essence, anything
goes!

Figure 1. The cyclical process of science.
ery and the context of justification. Discovery begins
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However discovered, hypotheses must be testable
in the sense of being sensitive to evidence. If false,
it must be possible to obtain contradicting empirical
evidence. If true, it must be possible to obtain
corroborating empirical evidence. For example, it
would be virtually impossible to empirically cor-
roborate a universal hypothesis, such as all swans are
white, and likewise it would be virtually impossible
to empirically contradict an existence hypothesis,
such as there exist signals that travel faster than the
speed of light.

While anything goes in discovery, it is quite
different in justification. There exists a logic of
justification and it is much more rigorous than is the
methodology of discovery. It has not always been so.
It was only in the 17th century that rigor began to be
introduced into science. In his fundamental treatise
on the logic of scientific method, Francis Bacon
(1620) insisted upon a gradual passage from concrete
facts to broad generalizations, and upon the use of
controlled experimentation, not just observation. The
phenomenal successes of Newton, who used and
extended Bacon’s methods, firmly established em-
piricism as a fundamental principle of science.
However, in his exaltation of induction and experi-
ment, Bacon also held that general laws could be
established with complete certainty by using these
almost mechanical processes. It was not until the
18th century that David Hume (1739) debunked the
myth of scientific proof by inductive methods. With
empirical and experimental methods in hand and a
clear understanding of the impossibility of proof by
inductive methods, modern science emerged.

From the time of the emergence of modem sci-
ence until the mid-20th century, corroborating hy-
potheses was the primary strategy for creating new
knowledge. Although scientists acknowledged cor-
roboration was not proof, it was generally conceded
to be the best that could be attained. One of the more
powerful variations of this strategy is called hy-
pothetico-deduction. With this strategy, a hypothe-
sis is discovered by any means available to the
researcher. From the hypothesis, a prediction or
deduction is derived which is then compared to
empirical evidence. If the comparison is favorable,

the evidence is regarded as corroborating the hy-
pothesis.

In the 1930s, Karl Popper (1935) suggested that
the difficulties due to the failure of corroboration
strategies to provide proof could be avoided by
shifting to falsification strategies. Popper argued
that conclusive disproof is possible because it takes
only a single counterexample to disprove a hypothe-
sis. Thus, falsification strategies attempt to gather
the specific kind of evidence that contradicts hy-
potheses. Popper contends that science advances by
disproof because hypotheses are conclusively elimi-
nated from further consideration. The only results
regarded as corroborating evidence for hypotheses
are new and interesting failures to detect counterex-
amples where they would be most expected to occur.

All variations of corroboration and falsification
strategies possess some degree of rigor. For each
strategy, the researchers are obligated to convince
their peers that the data acquisition methods are
legitimate, objective, and untainted, and that the
inference regarding the corroboration or falsification
of the hypothesis is valid. While the method is
irrelevant in discovery, in justification, the method is
critical, must be open to scrutiny, and has consider-
able bearing on whether the inference will be ac-
cepted. For a more complete discussion of research
strategies, see McRoberts (1989).

Knowledge organization. A collection of cor-
roborated hypotheses is not particularly useful until
it has been systematized into a body of knowledge.
Because scientists use the terms hypothesis, law, and
theory ambiguously, we will establish working defi-
nitions for this discussion. A hypothesis is a state-
ment that refers to a pattern of facts and whose truth
is as yet undetermined; a law is a well-corroborated
hypothesis concerning the pattern of an entire class
of facts; and a theory is a system of related hypothe-
ses including some at the law level. Bunge (1967)
includes the following as purposes for constructing
theories: 1) to offer a map or model of a segment of
reality, 2) to systematize knowledge by establishing
logical relations among previously disconnected facts
and hypotheses, and 3) to explain facts by means of
systems of hypotheses from which they may be
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logically deduced. Thus, the search for theories is the
search for systematic frameworks for bodies of
knowledge.

Knowledge evaluation. Knowledge must be
carefully evaluated, not only for empirical corrobo-
ration, but also for conceptual and logical consis-
tency with existing knowledge. First, the concepts in
hypotheses that are candidates for inclusion into a
theory must be consistently defined with respect to
those already included in the theory. Second, candi-
date hypotheses must not contradict hypotheses al-
ready in the theory, and theories augmented by new
hypotheses must not generate mutually contradic-
tory deductions. Third, new hypotheses must be
evaluated for their effects on bridging or creating
additional knowledge gaps within theories. Fourth,
new hypotheses must be evaluated to determine if
including them in a theory makes it possible to
deduce or explain previously anomalous facts.

Knowledge delivery. Historically, scientists have
not agreed as to whether the scientific process should
include the delivery of knowledge to users. Tradi-
tionally, most scientists have been content to deliver
their findings to other scientists via scholarly jour-
nals. The responsibility for ferreting out new knowl-
edge and applying it has typically fallen upon inter-
mediary agents or upon users.

Two recent trends have been influential in begin-
ning to alter this tradition. First is the trend among
some scientific institutions, including USDA Forest
Service Research, to reward scientists for transfer-
ring knowledge to users. Second is the advent of
knowledge-based advisory systems. The latter de-
velopment has opened an entirely new means of
delivering knowledge, has been widely and enthusi-
astically embraced by both creators and users of
knowledge, and seems to hold great promise for
effective and efficient knowledge delivery.

In summary, we view science as a cyclical process
that includes a) identifying knowledge gaps, b)
applying the scientific method to create new knowl-
edge,c) systematically organizing knowledge through
the search for laws and theories, d) evaluating newly
created knowledge for inclusion into existing theo-
ries, and e) delivering knowledge to those who apply

it. With this view in mind, we will now discuss some
of the methods of AI to show how they are or might
be applied to enhance the scientific process.

Cognitive Aspects
of Artificial Intelligence

AI methods have received much attention at all
levels in the computer science community. One of
the first questions usually asked is: “What is AI?” In
keeping with the scientific focus of this manuscript,
we claim that AI is the study of knowledge produc-
tion. This includes defining knowledge, describing
its creation, and understanding how it is used.
Knowledge may refer to academic and technical
subjects or to something as apparently mundane as
how one understands a joke. Knowledge production
refers to a process analogous to what might occur in
manufacturing beginning with an order for some
product. The necessary inventories of component
parts are collected or produced, assembled into a
final product, and then, before delivery, the product
is inspected for its quality. As we better understand
how to create, manipulate, organize, and transmit
knowledge, we become more efficient producers,
distributors, and consumers of knowledge goods.

For purposes of illustrating AI applications to
forestry science, we will focus our discussion on AI
topics that deal with knowledge and thinking. Be-
havioral adaption, sensory interpretation, and physi-
cal interaction topics are also active areas of AI
research. However, they seem less immediately
important to forestry science than are knowledge and
thinking, so we will not pursue those topics here.
Because science is largely a thought process, we will
limit our discussion to those aspects of AI that
address issues of cognition. Cognitive activities are
those that deal with modeling and understanding
mental processes, with little reference to interactions
with the outside world. In very general terms, this
amounts to the creation, manipulation, organization,
and translation of concepts and ideas.

Ideas exist as collections of facts and information
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drawn from the world around us (Hofstadter 1979,
Johnson 1986). Synthesizing ideas from information
produces knowledge (Michie and Johnston 1985,
Rauscher and Schmoldt 1990). Synthesis may in-
volve recognizing patterns, forming concepts, struc-
turing and manipulating information and ideas, and
converting and transmitting ideas and information to
other agents. Epistemologically, if the process of
science is the production of knowledge, the analysis
of its assembly line remains one of the primary goals
of AI.

* * *

We will examine the following AI methods: neu-
ral networks, machine learning, advisory systems,
knowledge management, and simulation. The first
two topics address the discovery of patterns. Advi-
sory systems and knowledge management systems
help structure and organize what is known and also
help elucidate knowledge gaps. Heuristic simula-
tion/quantitative modeling of knowledge aids the
explanation and organization of current knowledge,
thereby creating a stronger paradigm to support fur-
ther scientific investigation. Research efforts in
these areas can have substantial impact on under-
standing human thought processing in general, and
also on how we think and what we know in the
specialty that is forest science.

A number of notions regarding knowledge proc-
essing appear over and over in the literature and are
regarded as fundamentals of AI at this early stage of
its development. These are: knowledge representa-
tion, reasoning, search, and pattern recognition. In
the remainder of this section, we examine those
recurring ideas as preparation for a more detailed
discussion of the previously identified AI methods.

Knowledge representation. Knowledge repre-
sentation continues to be a critical component of any
discussion about knowledge processing. We beg the
question of what exactly constitutes knowledge and
refer the reader to Barr and Feigenbaum (1981),
Dretske (1986), and Giere (1984) for a variety of
interpretations. However, knowledge is often viewed
as an entity more refined than either data or informa-
tion (Rauscher and Schmoldt 1990, Tanimoto 1987).
Stillings et al. (1987) define a knowledge represen-
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tation scheme as a symbol system composed of
formal conventions (syntax) and some method for
interpreting those conventions (semantics). Terms
analogous to those used in linguistics are appropriate
because we are dealing with a knowledge “language”
used to express and communicate thoughts and ideas.
If we want to make anthropomorphic comparisons,
then knowledge representation shall include the ca-
pacities to represent new knowledge in addition to
old, to “memorize” knowledge when encountered, to
“recall” previously memorized knowledge, and to
“think” about knowledge. Luger and Stubblefield
(1989) describe knowledge as active, rather than
passive, containing specifications for its use. Be-
cause there are so many different ways to represent
knowledge (Tanimoto 1987), it is implied that people
possess an extensive ability to represent what they
know in diverse ways. All of the cognitive areas of
AI mentioned above address some aspect of acquir-
ing, retrieving, or reasoning about the knowledge
inherent within a representation scheme.

Reasoning. Often we want to produce new knowl-
edge, and to do so based upon what we already know
or don’t know. Without some capability to reason
about what is or isn’t known, knowledge functions
only like a book, that is, a static account of some
subject. It takes the reasoning abilities and the
understanding of a reader to give it meaning and
functionality. This is the reasoning component of
knowledge representation mentioned above. Rea-
soning also includes control, or navigation, of a
knowledge representation scheme. This meta-level
of knowledge is often referred to as meta-knowl-
edge.

Numerous models of reasoning are used in AI
systems. Probably the most widely used is deductive
reasoning. However, Stillings et al. (1987) note that
there is substantial evidence to suggest that this is not
how many people actually think, and, in fact, most
people are very poor at it. On the surface it seems that
deductive reasoning may bean important part of the
scientific method, although there is much evidence
for other forms of reasoning. Inductive reasoning
was investigated extensively by Langley et al. (1987).
Abductive reasoning (hypothesizing an antecedent
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based upon the truth of a conclusion) has been found
quite common and useful in diagnostic problem-
solving situations (Reggia 1985, Schmoldt and Martin
1989). A variety of reasoning methods have been
developed in the general area of inexact reasoning,
that is, reasoning with incomplete and uncertain
knowledge. Some of these are: fuzzy reasoning
(Zadeh 1965), belief networks based upon Bayes
theorem (Pearl 1986), and the Dempster-Shafer the-
ory of evidence (Shafer 1976). Formal schooling
emphasizes the importance of logical reasoning,
particularly in science. So it seems quite surprising
that some of our most creative and innovative discov-
eries have occurred through thinking processes that
are not based on classical logic (Halpern 1989).
These alogical mechanisms often enhance our crea-
tivity by allowing us to juxtapose seemingly unre-
lated ideas (Halpern 1989).

Analogical reasoning is also a useful thinking
method (Halpern 1989, Stillings et al. 1987). It is
often possible to understand one phenomenon by
comparing it to another phenomenon possessing
some similar characteristics, then additional charac-
teristics of the phenomenon of interest are hypothe-
sized in a homomorphic fashion. Because much
science involves the life and death of theories, we
continually revise our beliefs in light of newly ac-
quired knowledge. This nonmonotonic nature of
scientific belief over time has also been an important
consideration for AI systems: consequently, much
work recently has focused on nonmonotonic reason-
ing (Doyle, 1979, McCarthy 1980, McDermott 1980,
Reiter 1980).

Search. Given that an appropriate representation
of knowledge exists for some subject, we often want
to use it to solve problems. Problem solving can be
viewed as finding a set of facts and hypotheses which
describe a path to some state of affairs with desirable
properties. This path can be found by searching
through some subset of the pertinent knowledge.
Search involves deciding what to do next, or where
to look for a solution. For many small problems,
exhaustive search works very well; it is guaranteed to
find the best solution, if one is represented in the
knowledge. Larger problem spaces often require

more informed, heuristic searches to find a solution
efficiently.

Heuristics are short cuts, good guesses, or tricks
for evaluating alternatives within a problem repre-
sentation. A heuristic may be any doma.in-specific
knowledge that allows one to solve problems more
efficiently in that domain. They generally arise
through experience as a way of quickly and effi-
ciently categorizing large quantities of information.
The price paid for this simplicity is accuracy. By
nature, heuristics are fallible and are not guaranteed
to work correctly in all cases. Heuristics are often
classified as strong or weak. Strong heuristics con-
tain a large amount of subject area knowledge and
hence are only applicable to a limited class of prob-
lems. Weak heuristics are applicable to a wider
variety of problems. Because weak heuristics lack a
narrow focus, they do not search as effectively as the
stronger variety. A large amount of experimental
evidence indicates that much of our problem solving
is heuristic, rather than deductive or some other
formalized method (Stillings et al. 1987). Langley et
al. (1987) created a number of computer programs to
perform scientific discovery using weak heuristics,
so it is certainly not impossible that similar processes
operate when implementing the scientific method.

Pattern recognition. Science seeks to describe
and explain regularities within a changing and com-
plex world. Recognizing these regular pattems helps
with the creation and organization of knowledge.
Hence, pattern recognition surfaces as an important
part of the scientific process. Similarly, AI’s interest
in pattern recognition stems from its importance for
modifying behavior in response to past experience,
i.e., its learning ability. Pattern recognition may
involve creating new categories or classes of regu-
larities that describe a set of observations, or it may
attempt to relate conceptually two sets of patterns
that are related physically, thereby modeling a physi-
cal relationship conceptually. Most AI systems learn
very poorly. Some programs are designed specifi-
cally as learning programs; most others must be
specifically told what knowledge to add and when to
add it to their representation. Until AI systems can
modify themselves, their “intelligence” will always
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seem more encyclopedic than adaptive, despite the
very best knowledge representation schemes, search
methods, and heuristics.

Neural Networks

Many of the models and techniques developed in
AI borrow from naturally occurring models of com-
plex system organization. The human brain is often
used as a model, but cultural/social systems and
biological systems (e.g., an ant colony) have pro-
vided valuable insights for AI. Neural networks, also
referred to as parallel distributed processing (PDP) by
Rumelhart and McClelland (1986), follow this natu-
ral/artificial association quite closely by modeling
brain nerve cells and their interconnections. Despite
some successes, production system models of intel-
ligent behavior have been criticized on theoretical as
well as practical grounds (Allman 1989). The pro-
duction system paradigm represents a top-down
approach to reasoning. This perspective assumes
that reality can be described by abstract symbols that
represent objects and their relationships to one an-
other. Thought is based on symbols. Indeed, human
consciousness is almost synonymous with language,
the mental manipulation of symbols (Smith 1985).

While high-level, abstract thinking can often be
reasonably formulated in this way (e.g., expert sys-
tem knowledge), this symbolic model begins to break
down when applied to sensory level activities such as
speech recognition, vision, and pattern recognition.
In response to the limitations of symbolic process-
ing, some AI researchers have turned to recent ad-
vances in neurophysiology in their search for more
useful models of some aspects of human thought
processing. These models signify a bottom-up de-
scription of thinking. Neural network methodology
and the traditional symbolic AI methods should be
regarded not as rivals but as cooperators. The strengths
of each compensate for the weaknesses of the other.
Neural networks operating at the sensory level, inte-
grated with symbolic AI at the cognitive level, prom-
ise to advance our ability to create artificial intelli-
gence (Narasimhan 1990).

Network architectures. An artificial neuron is

depicted in Figure 2a. In general, a neuron environ-
ment consists of an input vector X = Xl, X2, . . . . Xn, a
weight vector W, a summation block that combines
the inputs and weights, and an activation function f
that transforms the weighted sum into an output
signal. The input and weight vectors are usually
numeric quantities, but need not be so (Rumelhart
and McClelland 1986). The net result of applying the
weights W to the inputs X is the value, NET= XW.
An activation function f, usually a nonlinear function
or a threshold function, is applied to the value NET to
produce an output value, OUT= f(NET). Nonlinear-
ity in the activation function more closely represents
transfer characteristics of biological neuron activa-
tion (Wasserman 1989). Several of these neurons
may be placed within a single layer of a network to
create what is often called a perception (Fig. 2b).
Minsky and Papert (1969) found, however, that
perceptions were extremely limited in representing
some fairly simple operations, e.g., exclusive-or.
When perceptions are organized into multiple-layer
networks (Fig. 2c) and utilize a nonlinear activation
function, they overcome single-layer limitations and
become quite powerful computationally (Wasser-
man 1989).

The last illustration (Fig. 2c) represents the gen-
eral architecture of a multiple-layer neural network.
Many alternative structures have also been devel-
oped for special purposes (Wasserman 1989). For a
network to operate correctly, it must be trained by
adjusting the weight arrays. There are two general
types of training methods: supervised and unsuper-
vised. In supervised training, each input vector is
paired with a target output vector to produce a train-
ing pair. As each input vector is applied to the
network, its output is compared to the target and an
error is calculated. This error is used to adjust the
weights so as to minimize the error. When the errors
for the entire training set are acceptably low, then the
network has been trained. Unsupervised training
requires no target vectors, only input vectors. The
training algorithm modifies weight vectors to pro-
duce output vectors that are consistent. Hence,
similar input vectors are organized into classes des-
ignated by the output patterns. In addition, some
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Figure 2. A single artificial neuron (a) contains inputs, weights, summation function, and activation function to
produce an output, OUT. A number of these processing units can be arranged into a single layer network (b),
termed a perception. More complex and useful networks contain multiple layers (c).
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transformation may need to be applied to convert the
output patterns into intuitively understandable classes.
Just as there are many different architectures for
neural nets, there are also numerous different train-
ing algorithms that can be applied to them.

This diversity in architectures and training meth-
ods permits a rich and varied repertoire of applica-
tions. Neural networks have been applied to pattern
recognition in computer vision (Fukushima 1986),
handwriting recognition (Burr 1987), data compres-
sion (Hecht-Nielsen 1988), analog-to-digital con-
version (Tank and Hopfield 1986), and optimization
(Hopfield and Tank 1985). As new network struc-
tures are created and new algorithms are applied to
them, this list of applications will continue to grow.

Applications to science. Neural networks are
adept at associating one pattern with another or
correlating input with output. As such they are able
to help with the creation of knowledge, even with
noisy data. That is, an input pattern need not be
identical to a previously learned pattern for it to be
recognized and classified correctly. Classifying
patterns is one way of discovering relationships
between objects/events and their properties. This
idea has been exploited previously by using statisti-
cal methods. In fact, White (1989) shows that the
popular, backpropagation learning rule is analogous
to nonlinear least squares regression. In addition to
categorizing different objects/events, one can also
associate one object/event with another by treating
one as an input vector and the other as an output
vector. It may be possible to attach reasonable,
conceptual descriptions (in meaningful terms of the
subject area) to the internal structure of a neural
network. This may be accomplished by identifying
the salient features of an output vector and tracing
back through the network over large positive or
negative weights, eventually returning to particular
features of the input vector (Caudill 1989). Both
pattern classification and pattern association use
information about instances to generalize to a pat-
tern; this is often referred to as induction or empirical
discovery.

Certainly, neural networks, once developed, pro-
vide a mechanism for transferring research results to

end users. Once trained for a particular problem set,
these networks can help people solve problems.
However, they fail to instructor train users because
of the inaccessible nature of the knowledge they
contain.

Forestry applications. Despite some current
work on neural nets for forestry applications (Guan
and Gertner 199 lb), few results have yet appeared in
the literature. Because neural networks can be used
to reformulate empirical mathematical models, it
would not be surprising to see neural nets replace
their mathematical counterparts for certain applica-
tions. Among these applications might be growth
and yield models and their various components (e.g.,
regeneration, mortality, survival, ingrowth). Their
two chief advantages over mathematical models are:
1) through their training/learning phase, they implic-
itly determine the form of the model and estimate its
parameters simultaneously, and 2) they can be easily
tailored to a specific locale/data by retraining with
new, more site-specific data. An obvious criticism of
them, however, is that their internal representation of
the data (in terms of a model) cannot be explicitly
examined, so the model remains hidden.

Because of their ability to perform pattern classi-
fication, neural networks can also be useful for
classification-type problems. Many forestry prob-
lems, in particular many expert system applications
in forestry, can be viewed as the categorization of a
set of data into a generalized class (Schmoldt 1989).
Some examples of classification type problems are:
1) selecting species-site combinations for reforesta-
tion, 2) diagnosing insect and disease problems (in
fact, all diagnostic problems), 3) selecting silvicultu-
ral treatments, and 4) assessing risk. Depending on
the needs of system users and on the environment in
which the system is deployed, neural networks may
be a preferable alternative to expert systems. The
former are much easier and faster to develop, but are
limited by their black-box opacity.

Future work. Because of the aforementioned
advantages, research in neural networks is growing
rapidly. However, a number of difficulties still
require more research. First, modeling lower-level
processes of neurons means that networks must be
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organized into collective groups to represent higher-
level concepts. Second, these higher-level concepts
can only be explicitly associated with symbols through
the incorporation of language elements. And third,
multiple neural nets at varying levels of organization
(perhaps a hierarchy) may be necessary to exhibit
some of the serial thought processing that is common
in high-level reasoning. Hence, some merging of
top-down and bottom-up paradigms may produce
the range of behavior and thinking with which we are
most familiar (Hillman 1990).

Machine Learning

Knowledge of the natural environment exists in
the form of corroborated hypotheses, laws, and theo-
ries which are all representational models of the
natural phenomena we experience. Their status
depends on the current state of knowledge and on the
confidence with which they are regarded by scien-
tists. When new knowledge is produced, the state,
and possibly the form, of these models changes.
Thus, knowledge production constitutes learning
according to the definition of Michalski (1986):
“Learning is constructing or modifying representa-
tions of what is being experienced.”

We claim that AI techniques can be used to
understand and enhance scientific learning or knowl-
edge production. Schank (1987) has stated that,
“learning is . . . the quintessential AI issue,” and
Michalski (1986) claims that “implanting learning
capabilities into machines is one of the central goals
of artificial intelligence.” Developing computa-
tional theories of learning and constructing learning
systems constitute the subject matter of machine
learning. Although current AI systems have very
limited learning abilities, it is nevertheless apparent
from these systems that rudimentary machine learn-
ing capabilities are possible.

Most machine learning research has concentrated
on the discovery component of knowledge creation.
Michalski (1986) suggests that the approaches to
machine learning can be distinguished by the discov-
ery strategies they use to achieve learning. We will
discuss the three major strategies, deduction, anal-

ogy, and induction, although variations of these and
some others also exist. While we are not aware of
specific forestry applications of machine learning,
the time may be ripe to start investigating how
machine learning and other AI methods can help us
in conducting our research (Guan and Gertner 199la).

Discovery by deduction. With this strategy, the
discoverer draws deductive, truth-preserving infer-
ences from the data and stores them as useful conclu-
sions. One of the first computer programs that was
capable of deductively proving theorems, LOGIC-
THEORIST (LT), was reported by Newell et al. (1981).
The program proved some theorems in the proposi-
tional calculus, Principia Mathematical (Whitehead
and Russell 1913), and has been used as the basis for
subsequent systems (0’Rorke 1987). Discovery
systems based on the deductive strategy are typically
equipped with descriptions of target concepts that are
expressed at levels of abstraction too high to be
directly usable. The systems use domain knowledge
to explain, via a formal proof, why a given fact is an
example of a particular concept. Fayyad et al. ( 1989)
have summarized several papers on this topic that
were presented at the Fifth International Conference
on Machine Learning. One by Braverman and Russell
(1989) reports on a system that uses metarules to
control the final concepts learned. Another by Ra-
jamoncy and DeJong (1989) considers problems
with imperfect domain knowledge which may result
in multiple, mutually incompatible explanations.

Discovery by analogy. Discovery by analogy
attempts to match descriptions from different do-
mains in order to determine a common substructure
which can serve as the basis for the analogical corre-
spondence. Analogical discovery is both deductive
and inductive in nature; finding the common sub-
structure involves inductive inference, while per-
forming the analogical mapping is a form of deduc-
tion. Examples of systems capable of learning by
analogy are described by Winston (1980), Carbonell
(1983) and Burstein (1984). Falkenhainer (1987)
discusses the use of the analogical strategy to dis-
cover and refine qualitative models. The discussion
addresses construction of a qualitative theory that
goes beyond the discovery of simple empirical laws.
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Discovery by induction. Induction is a discovery
strategy that draws inferences from the environment.
In contrast to deductive systems, correct inputs to an
inductive system do not guarantee correct infer-
ences. For a given set of inputs, there is, theoreti-
cally, an infinite number of possible inductive infer-
ences. Thus, inductive inference is an undercon-
strained problem for which one needs additional
knowledge to constrain the possibilities and to guide
the inference process toward one or a few most
plausible hypotheses. Holland et al. (1987) contend
that the central problem of discovery via inductive
machine learning is specifying processing constraints
that will ensure that inferences drawn by the system
will be plausible and relevant. Because of the uncer-
tainty of inductive inferences, inductive discovery
systems must permit tentative new hypotheses to be
included while protecting more certain knowledge
from corruption. In realistic situations, logical
combinations of tentative hypotheses and background
knowledge may produce contradictory results. The
system must be able to sort through these contradic-
tory statements, select a coherent subset, and pro-
duce an accurate model of the natural environment.

Brief descriptions of some applications using the
inductive strategy indicate how they might be adapted
to forest science. The symbolic integration system,
LEX (Mitchell et al. 1983), develops a general de-
scription of a target concept by searching for ex-
amples and then including those that are positive,
while excluding those that are negative. Researchers
at Carnegie-Mellon University have developed AI
systems that address several facets of the scientific
discovery process (Langley et al 1986). The BACON

series of systems focuses on the discovery of empiri-
cal laws that summarize numerical data. GLAUBER

discovers laws of qualitative structure, such as hy-
potheses that acids react with alkalis to form salts.
STAHL attempts to determine the components of
substances involved in chemical reactions and has
been used to model reasoning that led to the phlogis-
ton theory. DALTON is concerned with formulating
structural models of chemical reactions. While these
systems are all interesting in their own right, greater
understanding will certainly occur from exploring

relations among them and by combining them into a
single integrated discovery system.

The future for AI applications to the process of
creating knowledge appears bright. Although dis-
covery systems have already been developed, they
typically use only one learning strategy and have
very limited domains of application. Future discov-
ery systems will be equipped with varying amounts
of background knowledge, more or less vague repre-
sentations of concepts, and theories and laws from
other domains. The systems will accept input in the
form of examples or observations and will use mul-
tiple strategies including analogy, deduction, and
induction to generate output in the form of testable
hypotheses. These systems will be capable of ex-
plaining the results they achieve and the strategy they
used to achieve them. In addition, future work will
almost certainly focus on separating and abstracting
the discovery strategies from the background do-
main knowledge so that the strategies can be applied
to many domains.

Justification. AI applications to enhance the just-
ification component of knowledge creation are not
widespread. This component of knowledge creation
deals with actually testing hypotheses that have been
discovered. Because the truth or falsity of a hypothe-
sis is unknown prior to testing, it is important to
consider the kind of evidence necessary for justify-
ing an inference of either kind. In the context of
hypothetico-deduction, a deductive machine learn-
ing strategy could be applied to the background
knowledge with both the hypothesis in question and
its negation. For each case, predictions can be
generated which can then be compared to empirical
evidence. Designing an experiment to simultane-
ously detect with high probabilities corroborating
evidence if the hypothesis is true, and contradicting
evidence if it is false, is difficult and complex.
Statistical design of experiments has not been ig-
nored by AI researchers, but most of the applications
have been in the area of expert systems (Burdick
1987, 1988). While justifying inferences has not
received much attention from the AI community, it
seems that AI techniques maybe capable of consid-
erable contributions in this area also.
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Advisory Systems

Advisory or expert systems are currently among
the most visible products in the field of AI. An expert
system is a computer program capable of simulating
that element of a human specialist’s knowledge and
reasoning that can be formulated into knowledge
chunks so that the computer can approximate the
expert’s ability to solve problems (Bowerman and
Glover 1988). The required knowledge and the
inference or reasoning procedures can be thought of
as models of the problem-solving expertise of human
experts. The ultimate function of advisory systems
is to improve the problem-solving skills of non-
expert humans (Fig. 3). Thus, an advisory system
acts as an organized and accessible repository of the
problem-solving knowledge accumulated by human
experts. If, as claimed by Feigenbaum et al. (1988),
knowledge is the basis of the economic, cultural, and
technological power to change circumstances, then
advisory systems allow us to automate the problem-
solving power of knowledge more effectively.

In the late 1960s and early 1970s, Edward Feigen-
baum and Joshua Lederberg developed first expert
system, DENDRAL , at Stanford University. It helped

Excellent

Poor

determine organic
spectrometer data.

chemical structure using mass
MYCIN, a medical diagnosis and

treatment consultant developed by Edward Short-
liffe and Bruce Buchanan in the late 1970s, also at
Stanford, was another widely publicized expert sys-
tem. During the 1970s, the conceptual and technical
foundations were created for the explosion of expert
systems successes in the 1980s. In the 1980s, thou-
sands of advisory systems across many domains
were developed (Smart and Knudsen 1986, Walker
and Miller 1987). Articles on AI and advisory
systems in natural resource management began to
appear in significant numbers in 1983 (Davis and
Clark 1989). A recent survey article, reporting on 74
projects world-wide (Rauscher and Hacker 1989),
showed an increasing number of prototype systems
nearing completion, and signaled the emergence of
advisory systems as major problem-solving tools in
natural resource management. The power and use-
fulness of advisory systems have now been almost
universally recognized (Suzuki 1988).

Many outstanding books on AI and expert sys-
tems have been published (Parsaye and Chignell
1988, Walters and Nielsen 1988, Giarratano and
Riley 1989, Luger and Stubblefield 1989). Advisory

Percentile groups

Figure 3. An expert system can be used to dramatically improve the performance level of non-expert humans.
Expert performance is represented by the notched column on the left (top 10%). The expertise level of the
advisory system is represented by the dashed line. The expected improvement in performance is the difference
between the hatched columns and the dashed line.
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systems applied to natural resource management
have been discussed by Starfield (1986) and Schmoldt
and Rauscher (in press).

Advisory systems can be used to support the
problem-solving component of scientific research
by automating knowledge delivery and knowledge
organization. They help identify and organize knowl-
edge relevant to the problem domain and then dupli-
cate and distribute this knowledge as widely as
possible. As mentioned earlier, scientists have tradi-
tionally published in journals to reach their peers, to
archive their work, and to accrue academic recogni-
tion. Advisory systems offer an equally powerful
mechanism to reach non-academic users, to deliver
problem-solving tools to users, and to accrue non-
academic recognition from those who ultimately
fund research. They provide researchers and re-
search organizations with away to make knowledge
a tangible product for the using public. Notice an
important change of product here! The research
product is not the knowledge embedded in the mind
of the researcher, and it is not the result of what can
be done with this knowledge, such as a demonstra-
tion forest. Rather it is knowledge as a separate
entity, a product packaged to help someone solve a
problem. This is a new development for forest
science. Advisory systems are also cheaper and
more convenient because they can tutor individuals
at their own locations and at their own pace.

With these advantages, advisory systems are
likely to establish their place as forestry problem-
solving tools in the next decade. They will be used
with increasing frequency by individuals and organi-
zations to distribute knowledge to non-academic
users of research results. As the rewards for develop-
ing advisory systems become more evident, univer-
sity and government forestry knowledge centers may
be established. These knowledge centers would
develop, manage, and expand large, comprehensive
advisory systems for a disciplinary specialty, such as
boreal forest silviculture. The first products of these
centers will likely be small, student-level advisory
systems, but with patience, time, and money, these
entry-level systems will gradually grow in size and
capability until they will form apart of the national

knowledge infrastructure.
An example of such evolutionary improvement

can be found in the developments of computer chess
programs. In 1967, the first computer chess program
was developed in the AI laboratory at MIT. While its
chess-playing abilities were modest, to say the least,
the important thing was that it could play chess,
period. After 22 years of evolutionary development,
in 1989, the latest computer chess program, devel-
oped in the AI laboratory of Carnegie-Mellon Uni-
versity, almost defeated chess grandmaster Anatoly
Karpov, the second-ranked player in the world
(Steinberg 1990). Similarly, early natural resource
expert systems will likely be criticized by human
experts, but their quality will almost certainly im-
prove and may even approach the expertise level of
human experts.

Knowledge Management

Biological researchers have created an immense
body of data and information that is fragmented,
unwieldy, and time-consuming to use (Rauscher
1987). If knowledge is defined as organized, evalu-
ated, and synthesized data and information, then the
biological sciences are clearly “data rich,” but
“knowledge poor.” Massive amounts of unevaluated
and disorganized data and information impede scien-
tific progress and retard cumulative understanding
and progress in theory development (Rauscher and
Schmoldt 1990). A similar condition has been ob-
served in the social sciences and even in some branches
of the physical sciences (Hunter and Schmidt 1990).
Knowledge management concepts have evolved out
of the AI research effort to advance the development
of powerful software tools to cope with this crisis.
The cognitive aspects of AI can be viewed as a
methodology for “thinking about ways of knowing”
(Papert 1988). We are learning to focus explicitly on
the importance of knowledge about knowledge (meta-
level knowledge). Knowing exactly what it is we do
know, determining precisely how we know it, and
identifying precisely what we don’t know are ex-
amples of reasoning about reasoning. A focus on
meta-knowledge is the essence of knowledge man-
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agement systems and is of crucial importance to the
future development of the biological sciences.

Scientific progress and organized knowledge.
The foundation of science rests on the cumulative
growth of knowledge through the application of the
scientific method. There are three necessary steps
that must function well if scientific progress is to be
sustained:

1) primary research studies to test hypotheses;
2) applying meta-analysis tools across primary research stud-

ies to establish the knowledge base of facts;
3) applying knowledge management (meta-synthesis) tools to

organize the knowledge base of facts into coherent theories
of knowledge, thus creating a knowledge base of theory.

For many years, the second step was relatively
unimportant, because the number of studies dealing
with the same problem was small. This is no longer
the case. It is now frequently necessary to resolve
differences among a set of studies that all bear on the
same relationship. The main focus is to distinguish
between variance across studies due to artifacts (such
as sampling error or range restrictions) and variance
across studies due to real differences (Hunter and
Schmidt 1990). The third step has always been
recognized as important and has been accomplished
by publishing review articles in scientific journals
and textbooks. It is now evident that print technology
cannot deal effectively with the current volume of
scientific knowledge (Rauscher 1987, Rauscher and
Schmoldt 1990). The congruence of powerful per-
sonal computers, large compact disk electronic stor-
age, and AI-based knowledge management software
tools offers a technology powerful enough to deal
effectively with the current volume of scientific
knowledge.

Efforts have been underway since at least 1945 to
devise a knowledge management system capable of
managing large masses of information (Parsaye et al.
1989). The basic idea has been to depart from the
sequential, linear storage and retrieval of text to a
random-access, nonlinear method. The dominant
analogue has been the familiar 3 x 5-inch card. The
card represents a chunk or node of text, and the trick
has been to devise systems that can easily and com-

fortably structure knowledge by linking these chunks
together. The links, which represent the knowledge
structure, become as real and as important to the
overall system as the chunks, which represent the
knowledge content. Such systems are called hy-
pertext systems when the chunks are text, and hyper-
media systems when the chunks are graphic images,
voice output, or video sequences. The goal is to
organize information into systems of knowledge that
are intuitive to all users (Larson 1989). Hypertext
software systems, enhanced by AI methods, are
emerging as powerful knowledge management soft-
ware tools.

Advisory systems versus knowledge manage-
ment systems. It is important to recognize the
difference between advisory (expert) systems and
knowledge management (encyclopedia) systems.
According to an essay by Olson et al. (1989), science
(pure or basic science) and engineering (applied
science) may be placed at either end of a continuum.
The essential point to be made is that science is
concerned with advancing knowledge, while engi-
neering is concerned with producing and delivering
solution-oriented goods and services to decision
makers (managers). Engineering may or may not
also create new knowledge, but its production is a by-
product, not the main objective. Furthermore, new
knowledge created as a by-product of the engineer-
ing effort tends to be new problem-solving knowl-
edge. Olson et al. (1989) point out that most advisory
(expert) systems are clearly solution-oriented tools
and, as such, may be labeled more engineering than
science. We agree. On the other hand, knowledge
management (encyclopedia) systems are concerned
with knowledge organization and evaluation in sup-
port of further scientific inquiry. Knowledge man-
agement software focuses on delivering an encyclo-
pedic knowledge base of theories to scientists and
students of science. One typically does not consult
an encyclopedia of knowledge to solve a particular
problem, but rather to enhance one’s understanding.
It is, however, recognized that both science and
engineering struggle with the “need to order large,
complex bodies of information so that rational (sci-
entific and engineering) decisions can be made based
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on them” (Olson et al. 1989).
A survey of knowledge management systems.

Much work has been done to use the power of
computers to organize and manage the facts and
theories that constitute our social knowledge base.
An excellent survey of these efforts, including data-
base systems, bibliographic reference systems, and
knowledge management systems, can be found in
Parsaye et al. (1989). Rauscher and Host (1990)
discuss the intimate connection between hypertext
and AI in knowledge management. A good introduc-
tion to hypertext methods and techniques can be
found in Shneiderman and Kearsley (1989). Rauscher
(in prep.) has used hypertext to develop a knowledge
management system, the encyclopedia of red pine
forest management. An even more ambitious knowl-
edge management project is underway at the Micro-
electronics and Computer Technology Corporation
(MCC). MCC is a consortium of American companies
organized to carry out large, high-risk, high-payoff,
decade-sized research projects in AI. One of these,
called the CYC (encyclopedia) project, hopes to
develop a knowledge management system that will
contain anon-trivial fraction of the millions of things
that we all know as “common sense” and that we
assume everyone else knows also (Lemat and Guha
1990). It is this common sense knowledge that
people use to know when they don’t know and what
to do about it.

Knowledge management systems and forest
science. In the forest science process, knowledge
management systems can be usefully applied to
organize, evaluate, and deliver knowledge for the
purpose of understanding natural phenomena. Or-
ganizing knowledge begins with the explicit identi-
fication of facts, hypotheses and laws, and theories.
These conceptual components make up the content
of the knowledge base. Identifying the same con-
cepts, regardless of the words used to express them,
developing a controlled vocabulary that represents
them; and linking this controlled vocabulary to oc-
currences of each concept is a difficult process. First,
it is necessary to define each concept, declare its
boundaries explicitly, declare its application context
and limits, and define what is specifically not in-

cluded in each concept. Next we need to classify all
concepts in ways that are intuitive for other scientists
to access these concepts. Several different classifi-
cations are usually required in order to access the
content of the knowledge base adequately. Finally,
we must create structure in the knowledge base by
creating links between related concepts. These links
turn a collection of information in the form of facts,
hypotheses and laws, and theories into a systemati-
cally organized body of knowledge. The links may
be of many different types of which the following are
examples: parent-child, is_a, defines, constrains,
contains, special case, example of use. Starting with
similar content, experts create highly efficient and
useful links, whereas novices more often than not
create a mental mess.

Knowledge management systems cannot think
for the developer; they only provide powerful meth-
ods for implementing the developer’s decisions on
how to structure knowledge. But once automated
into a computerized knowledge base, knowledge
management systems allow us to view and evaluate
the content and structure of our knowledge explic-
itly. We can send copies to our peers and debate the
additions, deletions, and modifications to both con-
tent and structure of the knowledge base. We can
identify agreements, as well as disagreements, with
an ease never before possible. The knowledge prin-
ciple from AI states that the secret to intelligent
behavior is to have lots and lots of high quality
knowledge (Feigenbaum et al. 1988, Lenat and Guha
1990). Computerized database management sys-
tems have been accepted as essential aids to the
human mind for decades now. No one would dream
of trying to manage a large forest inventory on paper
or in the minds of humans anymore. Computerized
knowledge base management systems are making it
equally wasteful to manage forest science knowl-
edge in paper journals and books, or in the minds of
our human scientists. The volume is too large and,
thanks to advances in AI, the computer can now
cheaply store and retrieve knowledge as easily as it
can store and retrieve data. What computers cannot
do very well is synthesize knowledge creatively,
recognize patterns and ascribe meaning to these
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patterns, know and understand the world around us,
and be wise in deciding what we should and should
not do to ourselves and our environment.

We are just beginning to explore the power of
computerized knowledge management systems. The
first step is to develop prototype encyclopedia sys-
tems and to discuss their pros and cons. Changes to
the links constituting the knowledge structure will
become as important as changes to the chunks consti-
tuting its content. Forest knowledge management
systems, such as the red pine forest management
encyclopedia system, are likely to be passed among
scientists and re-published each time with improve-
ments. Professional forestry societies may eventu-
ally manage and control these changes, with appro-
priate peer review, and annually issue a revised,
accredited version of the entire system. The goal is
to create organized, synthesized archives of the
cumulative knowledge in forest science that are
readily accessible at low costs in time, trouble, and
money. Access to such knowledge makes all the
difference (Penzias 1989).

Simulation/Modeling

The idea of conserving time and resources by
creating artificial representations of reality on the
computer has been around for some time (Round
1989). Often this reality consists of numerous inter-
acting components as part of a larger system. When
realistic abstractions of reality can be “animated”
with a computer model or simulation, valuable in-
sights into the behavior of its real world counterpart
can sometimes be gained. However, the combined
effect of many components may be difficult to de-
scribe by a single mathematical expression. Hence,
sets of differential or difference equations have been
used in the past to describe the behavior of system
components. System behavior of interest may be
some current state, some optimal state, or some
future state. Certain types of problems, however,
may not have any precise mathematical description
due to limited and incomplete understanding of the
system’s underlying mechanisms and, therefore,
qualitative relationships must be used. A variety of

AI techniques have been applied to these types of
problems. These techniques include knowledge-
based simulation (Langlotz et al. 1987, Lemmon
1986, Loehle 1987, Meyers and Friedland 1984,
Moser 1986, Seliger et al. 1987), common sense
reasoning, e.g., qualitative physics (de Kleer and
Brown 1984, Forbus 1984, Kuipers 1986), qualita-
tive modeling (Karp and Friedland 1987, Schmoldt
1991a), search (Holland et al. 1986, Nilsson 1971,
Pohl 1977), and optimization (Goldberg 1989, Hart
et al. 1968).

Knowledge-based simulation. Because these
methods cover a number of different topics, we will
focus only on knowledge-based simulation and
qualitative modeling. By using knowledge-based
simulation, one attempts to incorporate heuristic
methods into traditional simulation. Here, simula-
tion is used in the sense of a mathematical model of
some process that changes over time. Heuristics are
added as: 1) a front-end component of the simulator,
or 2) an interactive component of the simulator that
deals with qualitative aspects of the model. In the
former, heuristics infuse some “intelligence” into a
simulator by helping the user enter proper input
information or by helping the user interpret any
output from the simulation. Simulation users may
then feel a greater confidence in results, because
limitations and assumptions of the models have been
adhered to and because results have been explained
in a manner more meaningful than tables of numbers.

In the latter case where heuristics appear as an
integral component of the simulator, they can be
useful for estimating values or selecting among alter-
natives. Often, heuristics are applied to tasks for
which no mathematical solution exists or for which
a mathematical solution is expensive or unrealistic.
Rauscher et al.’s (1990) work on forest management
of red pine simulates establishment, growth, and
harvest of red pine stands. Depending on the level at
which model heuristics appear, values may be deter-
mined heuristically and utilized by a mathematical
component, or values may be processed in the re-
verse fashion from mathematical to heuristic. Most
simulations in the past have incorporated qualitative
aspects into their models implicitly. However, these
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judgmental components can now be made explicit
and treated in a more rigorous manner.

Qualitative models. Qualitative models have
properties that are quite analogous to their quantita-
tive counterparts. Both types of models are com-
pletely determined by the values of state variables
and the relationships among those variables. Rather
than propagating numerical values, however, quali-
tative models deal with qualitative descriptions of
the state variables in a model. In many situations, our
understanding of biological processes is incomplete
and not well founded in empirical studies. Hence,
values like “low,”“moderate,”“increasing,” “steady,”
etc. are used instead of actual numerical values and
relationships. Schmoldt (199lb) used this method
for modeling and projecting the combined effects of
ozone and drought on mature ponderosa pines.
Because variables and relationships are expressed
more descriptively, it becomes possible to construct
more readily understandable explanations for sys-
tem behavior. Even in quantitative models, the final
output from a model (numerical values) is not used
per se but, rather, is interpreted as indicating general
relationships or trends (qualitative estimates). Quali-
tative models incorporate this interpretive step as
part of the model specification.

Objects as a modeling paradigm. One of the
broadly applicable ideas that has emerged from AI
simulation is the use of object-oriented methods.
Any process, whether it is a physical process or
something like a computer program, can be repre-
sented as a collection of interacting objects. These
objects interact by communicating with one another
via messages that are requests to perform some
action. If a particular object has the capability to
react to a particular message, it does sousing special-
ized program code that is part of its own description
or that it can legitimately find elsewhere. This
paradigm fits very nicely into the task of developing
simulations, because all the necessary components
of a simulation can be built independently and then
plugged into their proper place in the model. This is
the basis of several simulation development environ-
ments, e.g., Smalltalk (Xerox Learning Research
Group 1981), Simula (Birtwistle et al. 1968), and

SimKit (Stelzner et al. 1987).
Application to science. Creating a simulator to

model some complex process is an integration and
synthesis exercise. It forces one to organize the many
hypotheses that have been proposed for a particular
subject area. Because the hypotheses must fit to-
gether as a working unit, a structure, or theory, is
imposed on this collection of hypotheses and facts.
These hypotheses must talk about the same objects in
the same way and must not contain any contradic-
tions. Contradictions are most likely to be noted as
the simulation is run. In this way, simulation and
modeling help organize knowledge into theories and
help evaluate that knowledge as part of a consistent
framework. The traditional investigative modes of
science, experimentation, and theory previously
represented the only means for hypothesizing new
knowledge. In the last two decades, a third mode, the
computational, has joined the other two, and is rap-
idly approaching the other two in importance. Re-
sults of computational simulation suggest hypothe-
ses beyond the capability of the scientist to generate
otherwise.

As a simulation is run on various input data and
different assumptions, it may be possible to create
new knowledge. Results produced by a model may
imply outcomes or emergent properties of the system
that were not previously considered. To the extent
that these emergent properties are also characteristic
of the real world behind the model, new hypotheses
may be generated. Results consistent with current
understanding might indicate a new hypothesis that
could be formulated and tested experimentally. On
the other hand, if these outcomes are contradictory
with one’s expectations, then we might assume that
one or more hypotheses of the model are incorrect or,
alternatively, the model contains a knowledge gap
that causes it to produce erroneous results. In this
case, models exist as hypotheses, containing compo-
nents, interactions, and assumptions that describe
current scientific understanding. Simulation of a
conceptual model provides justification or negation
of a model by producing corroborations or contradic-
tions.

Often such a model of reality contains information
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that is much different from any publication describ-
ing it. A model embodies the theories and hypothe-
ses from which it was built. As such, it allows one to
engage in exercises that pose questions to the model
and then examine the results for agreement with
intuitive expectations. This creates an alternative
format to publications for delivering knowledge to
other scientists who may then use it to continue the
scientific process.

Forestry applications. Modeling and simulation
have been used. quite extensively in forestry. Growth
and yield models, econometric models, ecological
models, operations research models, and forest
management models have been simulated on com-
puters. They help us perform experiments that would
be prohibitively expensive to actually conduct and
they help us envision things that would otherwise be
impossible to imagine. Models should become more
powerful as heuristic methods extend their flexibility
and qualitative models can be used in situations
where mathematical models were previously limited

concepts and theories so that they make a tangible
and practical contribution to science. The conclu-
sion that has emerged from 40 years of AI research is
this: knowledge, not superior reasoning ability, is at
the root of intelligence. Knowledge can be treated as
a tangible product separate from its storage in the
minds of humans.

Knowledge is as real as any physical object.
Knowledge is also a theme that runs through most
definitions of science as either a body of knowledge
or as the creation of knowledge. It is therefore clear
that AI and the scientific process are closely allied.
Research in AI is calling our attention to the fact that
the study of meta-knowledge (knowledge about
knowledge) should bean important component of all
branches of science. To reiterate: the better we un-
derstand how to create, organize, manage, and deliv-
er knowledge, the more efficient we will be as pro-
ducers, distributors, and consumers of knowledge.

by incomplete and inexact data.
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