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ABSTRACT

Automated image analysis for forestry applications
is becoming increasingly important with the rapid
evolution of satellite and land-based remote imaging
industries. Features derived from line information
play a very important role in analyses of such
images. Many edge and line detection algorithms
have been proposed, but few, if any, comprehensive
studies exist that evaluate performance in a
scientifically meaningful way. In this paper, we
introduce an objective evaluation paradigm. We also
demonstrate, using this paradigm, improved
performance on edge and line detection. We reduced
the detection error rate from 42% to 29% for
159 manually labeled forest images.
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1. INTRODUCTION

For the past several years, we have been developing
an automated image analysis system for forestry
imaging [1][2]. This system extracts straightforward
features such as color, and uses more subtle
measurements such as entropy and line length
distributions, to produce estimates of subjective
measures such as scenic beauty. The system also
performs image segmentation and classifies
segments based on their content (trees, sky, foliage,
etc.). The density of long and short lines in a forest
image are important features for automated forest
image classification and segmentation [1].

To generate such features reliably, these detectors
had to be optimized for the unique character of
forest images. The optimization is difficult for two
reasons. First, we need to quantify the performance
of edge and line detectors. Subjective evaluations
may be reliable, but are inefficient because they
usually involve the use of human subjects and
require tremendous amounts of time. Second, there
is no universally accepted objective metric.
Although some evaluation metrics have been widely
used [3], they all have shortcomings with respect to
our application. For example, the metric proposed
by Kitchen and Rosenfeld [4] only measures the
continuity and thinness of detected edges, while we
are also interested in the mismatch rate and the false
alarms introduced by the detectors.

The first step in our evaluation methodology is to
manually transcribe lines. From this transcription,
we create a set of reference line data which is used
to evaluate detector performance. We can transcribe
lines either from a virtual perspective or from a
physical perspective. Examples with both
perspectives are shown in Figure 1. With the virtual
perspective we use perception of lines to assume
their continuation, e.g., we label outlines of tree
trunks behind shrubs as well as those visible parts.
With the physical perspective, we make no such
assumptions about the continuity of obstructed
lines. Although a virtual perspective is more
consistent with human perception, it requires a
much more intelligent line detection algorithm. The
physical perspective fits the existing state of the art
better, and hence was the criterion chosen for our
study.



2. METRIC DESIGN

To measure the performance of an algorithm, we
need to compare lines detected by the algorithm to
the reference data. This is not trivial since line
orientation and length can differ by small amounts
due to computational issues, and yet perfectly
acceptable from a visual perspective. Hence, some
form of an evaluation metric is required that is
forgiving of such small errors. In our metric, we
evaluated such properties as location, length, and
slope.

We determine the location of a line by finding the
coordinates of its middle point. Suppose the
coordinates of the two end points of a line are
(Xp ¥o) and (X3, Y1) , respectively, then the
length and slope are computed as

Length= A/( )1—yo)2+(X1—Xo)2 (1)

and
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where X1 % Xg .

The evaluation can be described as a two-stage
procedure. In the first stage, we process all reference
lines and find the best match for each reference line
in the set of line segments hypothesized for a given
image. In the second stage of the evaluation, we
tabulate errors by considering the similarity
between the reference line and its best match in the
hypothesized data.

To find the best matches (i.e., the first stage), we
search through all detected lines and compute the
distance from the middle point of each detected line
to a reference line. The minimum of this distance is
the best match for that reference line. We count all
detected lines without matches in the reference data
asinsertion errors.

To evaluate the best matches (i.e., the second stage),
we need to handle four situations. First, the best
match and the associated reference line are close
parallel lines of approximately the same length.
This is considered a correct detection. Second, we
can have close parallel lines of unequal lengths. It is
a correct detection if the difference in lengths is
within 25% of the length of the reference line.

Third, we can have close non-parallel lines of
approximately the same length. These are
considered a correct detection if the angle between
the two lines is less than 20 degrees. Finally, non-
parallel lines of unequal lengths are considered a
correct detection if the angle between the two lines
is less than 20 degrees and the length difference is
within 25% of the length of the reference line.

The notion of proximity must be determined
empirically using a threshold. To determine if a
detected line is close to the associated reference
line, we compute the distance from the middle point
of the former to the latter. If that distance is within

5 pixels, then we consider these lines as close. We
then apply the criteria described above to determine
the nature of the match.

Using these criteria, we will have two types of
errors: insertion and detection. Insertion errors were
described previously. Detection errors represent all
errors for which the reference line and the best
match do not pass the criteria described above
(location, length and slope).

3. ALGORITHMS

We now describe the specific edge and line
detection algorithms used in this study. Canny
proposed several criteria for edge detector design
and derived corresponding optimal operators by
numerical methods [5]. He also introduced a novel
edge detection scheme on the basis of these optimal
operators.

3.1. Edge Detection

Canny’s edge detection algorithm works in the
following way. First, a symmetric two-dimensional
Gaussian mask is convolved with the original image
to smooth out noise present in the source. We used a
3x3 Gaussian mask:
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Second, differentiations in both horizontal and



vertical directions are performed. The
corresponding masks are:

Horizontal: Vertical:
-10 -1-1-1
-10 0 0O (4)
-10 111

Third, gradient values are calculated on the basis of
both differentiations at each pixel of the image.

ient= (0df,dc?
Gradient = EUXD+EUyD . 5)

An edge pixel is defined to be a local maximum of
the gradient values.

The final step in edge detection is to suppress non-
maximal gradient values. To accomplish this last
step, an adaptive thresholding technique known as
“hysteresis” is used. First set two threshold values.
If the gradient value of a pixel is greater than the
higher threshold, then the pixel is treated as an edge
pixel. If a pixel is less than the higher threshold,
greater than the lower threshold, and connected to a
previously identified edge, then the pixel is
subsequently treated as an edge pixel. Otherwise, it
is a non-edge pixel. Hysteresis greatly reduces
broken edge contours.

3.2. Line Detection

Our approach to line detection is simple. We
postprocess the output of the edge detector and
compare edge lengths with a threshold parameter.
For an edge to be a line, its length must be above the
line threshold. In this initial effort, we are only
interested in those vertical lines which represent tree
stems, shrubs and grasses. Therefore, we do not
detect lines in the horizontal direction.

4. OPTIMIZATION EXPERIMENTS

Our optimization paradigm is summarized as
follows. First, we create a set of reference data by
manually transcribing “significant” lines in images
from a physical perspective. A line is considered
significant if it is easily distinguished from the
surrounding scene. Typically, these lines are located
at places where there is a great discontinuity in
intensity. Next, we use our objective metric for

performance evaluation. We sweep through ranges
of parameter values searching for the combinations
that give us the best overall performance.

We prepared two data sets for experimentation. Data
set 1 contained 165 images randomly chosen from
the training set 01 of USFS Pre-phase 01 image
data. Data set 2 consisted of 159 images randomly
chosen from the test set 01 of Pre-Phase 01 [6].

We experimented with key parameters for both the
edge and the line detectors. These parameters
included the Gaussian standard deviation (  in the
Gaussian mask function), the low and high edge
thresholds for edge detection [5], and the line
threshold for line detection.

Detector performance was assessed using a
combination of two resulting values. First, we
considered the error rate, which is the ratio of
detection errors to the total number of reference
lines. Second, we considered the insertion rate,
which is the total number of insertion errors. Both
errors have been described previously in the metric
design. A system which achieves a low error rate
and a low insertion rate simultaneously is desirable.
However, one interesting phenomenon we noticed
from the experiments was that, when we lowered
the thresholds and the Gaussian standard deviation,
the error rate tended to decrease, and the insertion
rate increased. The reason for this trade-off is that
lower thresholds result in more lines, which
simultaneously increases the chance for both correct
matches and undesirable insertions. Fegar- 6
illustrate the results with various experimental
conditions.

An optimal parameter set is one well balanced
between the error rate and the insertion rate. By
visual inspection of the error rate curves and the
insertion rate curves, we found that with the
following settings of parameters, we achieved a
good balance between both the error rate and the
insertion rate: 2.0 for the Gaussian standard
deviation, 60 for the high edge threshold, 30 for the
low edge threshold, and 40 for the line threshold.
The error rate achieved with these settings was 29%
on data set 2.

The corresponding insertion rate was 272,073 lines
for all 159 images, as shown in Figure 2. Given that
we had transcribed only significant lines (not all

existing lines) as reference data, some of the



Parameters Performance
Optimization o High Edge Low Edge Line Error Rate Insertion
Threshold Threshold Threshold Rate
Without 2.0 180 60 15 42% 701,877
With 2.0 60 30 40 29% 272,073

Table 1: A comparison of parameters and performance between the optimized system and the previous system.

inserted lines might actually be correct detection.
Hence such an insertion rate seemed acceptable. A
comparison of parameters and performance between
the optimized system and the previous system is
shown in Table 1.

5. SUMMARY AND INSIGHT

In this paper, we designed an objective metric to

evaluate the performance of edge and line detectors,
and then optimized the performance of our image

analysis system using this metric. Our best system
resulted in an error rate of 29%, and had an

acceptable insertion rate.

Tree density and tree stem appearance are critically
important to forest resource measurements, but
forest users who value scenery indicate that the
variety of natural features are also very
important [7]. In our analysis, we observed that
many of the inserted lines without matches to our
vertical reference lines also occurred as edges of
horizontal and other irregularly-shaped features,
such as boundaries between sun-drenched and
shadowed areas on the forest floor. We speculate
that drawing polygon boundaries from detected
lines could be a logical next step in quantifying
multi-dimensional polygon features. To evaluate
these features, one might manually transcribe and
label polygon areas, and then compare them with
polygon areas bounded by detected line boundaries.
Scene features could then be assessed for density,
diversity, orientation, and juxtaposition - attributes
that likely play a role in scenic beauty, vegetation
diversity, and other subjective, labor-intensive forest
resource evaluations.
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Figure 1: Example transcriptions with the two perspectives. The image on the left was transcribed from the physical perspec-
tive - only existing lines were labeled. The image on the right was transcribed from the virtual perspective, where obstructed
lines, such as outlines of tree trunks behind shrubs, were also labeled. The white lines are the transcriptions.

Figure 2: Example detection results with the optimal parameter setting. The image on the left is a manually transcribed image
from data set 2, where the white lines are the transcriptions. The image on the right is the corresponding detection image under
the optimal conditions (the detected lines are black). Note the inserted lines and the match lines.
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Figure 3: Results from optimization experiments with the Gaussian standard deviation involved in Canny edge detection algo-
rithm. Data set 1 contained 165 images randomly chosen from the training set 01 of USFS Pre-phase 01 image data. Data
set 2 consisted of 159 images randomly chosen from the test set 01 of Pre-Phase 01. The high edge threshold was 180; the
low edge threshold was 60; and the line threshold was 15.
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Figure 4: Results from optimization experiments with the high edge threshold involved in Canny edge detection algorithm.
Data sets were the same as those in Figure 3. The Gaussian standard deviation was 2.0; the low edge threshold was set half
of the high edge threshold as suggested in Canny’s paper; and the line threshold was 25.
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Figure 5: Results from optimization experiments with the low edge threshold involved in Canny edge detection algorithm. Data
sets were the same as those in Figure 3 and 4. The Gaussian standard deviation was 2.0; the high edge threshold was 100;
and the line threshold was 25.
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Figure 6: Results from optimization experiments with the line threshold involved in the line detection algorithm. Data sets were
the same as those in Figure 3, 4 and 5. The Gaussian standard deviation was 2.0; the high edge threshold was 60; and the
low edge threshold was 30.
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