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Preface

Jesse A. Logan! and Fred P. Hain2

Recent advances in applied mathematical analysis have uncovered a fascinating and unexpected
dynamical richness that underlies behavior of even the simplest non-linear mathematical models.
Due to the complexity of solutions to these non-linear equations, a new mathematical term, chaos,
has been coined to describe the resulting dynamics. This term captures the notion that in spite of
the fact that these equations are purely deterministic, the resulting time dynamics are for all
practical purposes indistinguishable from a purely random or stochastic process. A unique aspect
to this new revolution in the esoteric arena of non-linear mathematics is the fact that it has
captured the imagination of the public at large, and is even the subject of a New York Times
leading best seller (James Gleik, Chaos: Making a New Science). The popular interest in chaos is
at least in part due to the fact that solution sets are often represented as fractals, resulting in
complex and strangely beautiful geometric patterns (fractals are, themselves, the subject of
numerous popular books). Although the subject of chaos has its lighter side, it has also formed
the basis of serious science.

Since the accidental discovery of chaos in a simple atmospheric weather model by Edward
Lorenz in 1963, chaotic dynamics have been found to be pervasive in all of physics. Chaos has
been observed in phenomena ranging from the sub-atomic level of organization to cosmic
questions such as the orbit of planets in the solar system. The application of non-linear dynamics
in physiology has resulted in an impact similar to that in physics. Chaotic dynamics have been
found to underlie even those physiological processes that were previously thought to be strictly
periodic (e.g., the heart rhythm). Results, primarily from applications in the areas of physics and
physiology, have led to prominent review series in the major scientific journals, such as Science
(1989) and New Scientist (1989), and to numerous international conferences. As a result of
investigations in physics and physiology, the general characteristics of systems that promote
chaotic dynamics are well known.

Ecological systems typically exhibit characteristics that lead to chaos. Non-linearity is the
basis of chaotic dynamics. Very few unequivocal statements can be made in science; however, one
of the few is that ecological relationships are non-linear. Non-linearity in ecology is a result of
fundamental thermodynamics. Malthus recognized this fact in 1826 when he stated, in the sixth
edition of his famous essay, that, "... the power of the earth to produce subsistence is certainly not
unlimited...." Any system that is based on a finite rate of energy input must at some time become
bounded by non-linear feedback. High order dimensionality is another characteristic that
predisposes systems to chaotic dynamics. One of the hallmarks of ecological structure is the large
number of interactions found in natural ecological associations. In fact, high order dimensionality

1 Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia, 24061.
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has been proposed to be the most significant difference between physics and physical systems, and
ecology and ecological systems. Time-lags are notoriously de-stabilizing in mathematical models:
The simplest non-linear difference equation (quadratic) produces well-known chaotic dynamics.
Once again, time-lags are a fundamental characteristic of ecological organization. One has to look
no further than reproductive time-delays to be convinced of the ubiquitous nature of time-lags in
ecology. The final common characteristic that predisposes systems to chaotic dynamics is periodic
forcing. The natural world abounds in cyclical patterns that act as periodic forcing variables to
ecological systems. Daily cycles function within seasonal cycles that are themselves embedded in
solar cycles. In summary, the attributes that lead to chaos are to be found everywhere in the
natural ecological world.

If the characteristics of chaotic systems are so ubiquitous in nature, why hasn't chaos been
recognized as a fundamental property of ecological structure? Well, in fact, the potential for chaos
has been demonstrated in almost all realistic models of ecological organization. However,
empirically demonstrating the existence and/or importance of chaos in ecology is quite another
story. The reason that this has been such a hard question to answer is the difficulty in empirically
differentiating chaotic dynamics from random dynamics. To convincingly separate the two, it is
necessary to have literally thousands of datum points. Such data are relatively easy to generate in
physics and physiology, but almost impossible for most ecological systems. Therefore, to date,
the debate has largely been waged on theoretical or hypothetical grounds. Convincing theoretical
arguments suggest that chaos should not be exhibited in surviving ecological associations.
Coincidentally, this conjecture does not mean that chaos is not important in ecology, just that it
should not be commonly found. Either way the debate is finally resolved, the answer will be
interesting and will have important ramifications.

Recognizing the importance of resolving the questions of where and how chaos fits into
ecological organization, a symposium was organized by F. P. Hain, North Carolina State
University, and J. A. Logan, Virginia Polytechnic Institute and State University, at the 1990
International Congress of the International Union of Forestry Research Organizations in Montreal,
Canada. The topics discussed in this symposium, titled Does Chaos Exist in Ecological Systems,
address some of the most important issues facing ecology today. At this symposium, Logan
introduced the concept of chaos and described questions that are at issue in determining the
importance of chaos in ecology. Turchin and Ellner discussed the problems associated with
demonstrating chans in ecological data, and both offered new and novel approaches 1o detecting
chaos from ecological time series. Berryman presented the case against chaps being commaonly
exhibited in naturally occurring ecological systems. He further discussed the consequences of
ecological disturbance, through intentional management or unintentional disruption, within the
context of chaos theory. Stone presented exciting new results from a model based on individual
prey and predator behavior in a spatially diffuse system. The results from this experiment suggest
that chaos should be expected in simple prey/predator systems, and that tightly bounded chans
could easily be mistaken for "white noise” in populations that are controlled by natural enemies.

The topics of this symposium are timely and have important ramifications for the major
ecological issues of today. The major problems of the current "ecological crises,” such as climate
change, are largely being addressed in chemical or physical erms (g.g., g]nha] climate models or
the atmospheric chemistry of anthropogenic pollutants). However, they are being expressed




primarily in biological-ecological terms.  An improved understanding of chaos and chaotic
dynamics will clearly play an important role in predicting the biological consequences of, and in
formulating responses to, these ecological perils, 'We sincerely hope that publication of an
cinternational forum, such as that presenied in the Montreal IUFRO conference, will have a positive
impact on both the future direction of ecological research and the societal response to that research,

Summer 1990
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Logan, J. A, and F. P. Hain 1991. Preface, p. v-vii. [In Chaos and Insect
Ecology, ed. J. A. Logan and F. P. Hain. Virginia Experiment Station
Information Series 91-3. Blacksburg: Virginia Polytechnic Institute and State
University.




Plate 1. (a) Gypsy moth defoliation in Shenandoah National Park, Virginia, USA (photo
courtesy M. Carter). Extensive defoliation caused by the advancing wave front of gypsy moth
populations. Significant tree mortality has occurred as the gypsy moth extends its range to the
south. (b) Southern pine beetle spot, Sam Houston National Forest, Texas, USA (photo courtesy
R. Billings). The red top and faded trees are all victims of the southern pine beetle. (c) Mortality
from mountain pine beetle, Targhee National Forest, Idaho, USA (photo courtesy G. Amman).
The extensive potential for tree mortality from attacks of aggressive bark beetles is well
demonstrated in this aerial photograph. (d) A "windrow" of range caterpillars, shortgrass steppe,
East of Raton, New Mexico, USA (photo courtesy New Mexico State University). The total
standing crop biomass is essentially eliminated by the advancing caterpillars.
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Plate 2. (a) A toris viewed from above. The dynamics of the system result from the sysiem's
variables winding around the surface of the toris. This particular toris results from periodic forcing
(seasonality) acting on a herbivore/plant interaction (see Schaffer et al., 1988, pp 1.41 for a
detailed description). The system is not phase locked for the chosen parameter values. Therefore,
the resulting dynamics are quasiperiodic, and the winding action on the toris will eventually cover
the entire surface of the attractor. (b) A time series of the complex periodicity that results from the
dynamics of a phased-locked system. Note the complex expression of cycles-within-cycles. This
system results from a model of a host/pathogen system with seasonal transmission (see Allen
1989). (c) The phase space plot of the toris that resulted in the time series shown in Plate 2B. (i)
e strange attractor in the three-dimensional phase space formed by a modeled interaction between
one predator and two prey species (Gilpin 1979). Chaotic dynamics result from movement of the
system on the surface of the attractor (see text for further discussion).




Plate 3. (a) A time trace of two state variables from solutions of Lorenz's famous weather
model. The two plots were initialized with a difference in initial state variable values of only
0.001. The small difference in initial condition is magnified at an exponential rate, a characteristic
of chaotic systems. (b) The phase-space of the two state variables plotted in A. Note that even
though the time trace traces are dramatically different, the phase plots are essentially the same,




Plate 4. A portion of the famous Mandelbrot set. The mathematics of this fractal are related @
the Ricker equation shown in Fig. 4. The patern arises from assinging different colors L
dynamical characteristics of a solution set associated with various combination of parameters,
fractal nature of solutions are well illustrated in this Plate,




Chaos: Much Ado About Something
J. A. Loganl

Introduction

The discovery of complex "chaotic” dynamics in simple mathematical models has resulted in
widespread interest from a diversity of scientific disciplines. These complex dynamics have been
observed in many real world systems, primarily in physics and physiology. As stated in the
Preface to this volume, and also indicated by this symposium title, the role that chaotic dynamics
may play in real-world ecological systems is less certain. A legitimate question is then, what is
the principal motivation for interest in chaos from an ecological point of view, and in particular
from that of a Forest Entomologist? The answer to this question, in my opinion, lies in the basic
nature of pest management problems in natural resource systems. In a previous publication
(Logan 1987), I contrasted the attributes of pest management in rangeland systems to those in
intensive agricultural systems. Most of the salient features of this characterization are true for
natural resource systems in general, and carry-over (o insect pest management in forest systems.
The most important attribute with respect to chaos is the time frame of interest. In crop systems
management patterns are typically based on a annual rotation. The time frame of interest is
therefore short-term, and the important population dynamics of insect pests and their associated
biological control agents are of a proximate nature. The contrast to forest pest management is
obvious, and the necessity for adopting a long-term view is self apparent. Long-term dynamics
associated with forest insect pests are typically complex (see Fig. 1). Several attributes are
apparent from the time series shown in Fig. 1, the most obvious of which is the magnitude of
differences between endemic or latent phase and the outbreak or eruptive phase. Phase differences
for outbreak species of forest pests may be several orders of magnitude; in other words, outbreak
densities may be greater than one-million times those of latent phases. Another attribute of the
time-traces of Fig. 1 is the lack of true periodicity. The time series is temporally complex.

In addition to the complex nature of temporal patterns, outbreaks of insect pests in natural
resource systems are often spectacular events (Plate 1). Outbreaks are both intensive (i.e., greater
than 80% mortality with some bark beetles and virtual total defoliation with many lepidopterans)
and extensive (thousands of contiguous hc. can be affected). Due to these characteristics, patterns
of density and outbreak are both dramatic and enigmatic.

Additional attributes of pest management in forest systems are based in economic rather than
ecological terms. Due to the lower per-unit monetary return from natural resource systems, the
management options available to Forest Entomologists are more restrictive than those that are
available to Crop Protection Entomologists. In many cases, Forest Pest Management must rely
on the augmentation of natural forces rather than the more simplistic approach of direct
intervention. Monetary constraints on the viability of heavy-handed control tactics necessitate that
managers have a more in-depth understanding of the system to be managed, and the nature of forest

1 Department of Entomology and Department of Forestry, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, 24061.
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rotation necessitates that this understanding include long-term population dynamics. The attributes
of pest management in natural resource systems undoubtedly poses a challenge to development of
effective management strategies and tactics, but it also provides for significant scientific
opportunities. The requirement for understanding basic ecological relationships combined with the
intrinsic and extrinsic value of forest systems provides both the motivation and the resources to
undertake ambitious scientific enterprise. Forest entomologists have a long and rich history of
contribution to basic insect ecology. Many of these contributions have been of a quantitative
nature. For reasons of necessity (time frames of interest that rival or exceed the professional life of
a scientist), economy, and intellectual return, mathematical reasoning and modeling have played a
prominent role in the scientific contributions of Forest Entomologists.

Application of computer modeling technology began to have a major impact on Forest
Entomology during the mid 1960s. Forest pests, in particular bark beetles, were one component
of the famous Huffaker Project. This historically important research project was part of an even
more ambitious2 research program, the International Biological Program (IBP). The central
unifying theme of the IBP was development of detailed computer models that faithfully simulated
entire ecosystems or even biomes. The strong commitment to computer simulation models carried
through to the Huffaker Project; of twelve specific objectives, seven were directly related to
development of simulation models (Stone 1989). The Huffaker Project was largely responsible for
formulating the philosophy of pest management in North America as it continued to evolve during
the 1970s and 1980s. This philosophical basis continued to have a strong computer modeling
component, as illustrated by the central role of computer models in the "Big Bug" projects funded
by the U.S. Forest Service. The U.S. Forest Service during the past 20 years has provided
resources for accelerated research on several important North American forest insect pests,
including tussock moth, southern pine beetle, spruce budworm, and gypsy moth. The central role
of modeling in these efforts has fulfilled expectations with respect to research organization and
synthesis (Brookes, et al. 1978, 1987), but has not resulted in improved power to predict outbreaks
(e.g. Berryman 1991).

In general terms, prediction of insect pest outbreaks in natural resource systems remains an
elusive goal. This statement is true in spite of efforts by some of the most talented entomologists
(including C.V. Riley, the "founding father” of Applied Entomology in North America),
expenditure of substantial dollars, and application of the most advanced computer technologies.
What is going on here? Perhaps the reason for our lack of predictive power lies in the prevailing
modeling paradigms, as suggested by Berryman (1991). However, it may also be due to
something much more basic. New mathematical discoveries in non-linear dynamics indicate that
this situation may not be entirely due to the maladroitness of those asking the questions, but rather
may result from the very nature of the problem itself. Results indicate the characteristics of
ecological organization and structure predispose these systems to the complex dynamics that have
become known as deterministic chaos. The continuing frustration in lack of predictive power,
then, is the reason for my interest in non-linear dynamics and chaos. The inability to predict
outbreaks in even seemingly straightforward systems has prevailed throughout my personal work
in natural resource systems, experience that includes grasshoppers in the short grass steppe, bark

2 Total U.S. funding for the IBP was in excess of $55 million in 1970s US dollars; personal
communication, J. T. Callahan, Associate Director, NSF Ecosystems Studies
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beetles in the coniferous forests of the West, and gypsy moth in the deciduous forests of the East.
The chance that innate properties of Forest/Pest interactions negate prediction of outbreaks is
simply too important to ignore.

In the remainder of this Chapter, I will first attempt to introduce the somewhat esoteric notion
of deterministic chaos. Then I describe more fully the characteristics of chaotic systems, provide a
review of the search for chaos in insect population dynamics, and discuss contributions that other
authors in this volume make toward a more complete understanding of chaos in insect population
systems.

Non-linear dynamics and Chaos - What is Chaos?

Several recent reviews introduce the concept of chaos (Crutchfield et al. 1986, Gleick 1987,
Holden 1986, Jensen 1987, Krasner 1990, Stewart 1989). Treatment of the subject in these
articles and books ranges from a popular New York Times best seller (Gleick 1987) to rigorous
mathematical developments (Devaney 1986). The approach T will take is o provide more rigor
than the popular accounts, but remain comprehensible to an interested insect ecologist. Webster's
New World Dictionary, College Edition, defines chaos as" any greal confusion or great disorder,”
and chaotic as, "in a complete confused or disordered condition.” As with many common words
that have been appropriated by mathematicians, the mathematical meaning of chaos is only
obliquely related to the standard usage of the term. In the mathematical sense, chaos does not
imply "eompletely disordered” but instead refers (0 a very special and complex type of ordenng.
Perhaps the best way to gain an appreciation for the mathematical meaning of chaos is through a
series of progressively more complex dynamics, leading to what Schaffer and Kot {1985b) have
termed a "taxonomy of motion."

Before I proceed with a "taxonomy of motion” for dynamical systems, it is [irst necessary o
introduce the notion of a "phase space." Phase space is a graphical way of representing the
dynamical properties of a system that may at first be confusing to ecologists, but is valuable for
characterization of a system’s long-term dynamics. Ecologisis have traditionally thought in terms
of the time series as a way to represent population dynamics (Fig. 2a). Although conceptually
straightforward, a time series plot is often of limited value for representing long-lerm dynamics,
and may in fact not provide much insight into the dynamical structure of the system. As an
alternative to a time series, mathematicians typically plot concurrent values of state variables on
independent axes (see Fig. 2b). The state-variable space generated by this process is called phase
space, and the graph of state variables in phase space is termed a phase plot. Plotling system
dynamics in phase space as opposed o a lime serics has the distinct advantage of collapsing the
systems dynamics along the time axis, thereby solving the logistic problem of plotting long-term
behavior. More important, structure that is opaque in a time-dimensioned plot may become
obvious in a phase plot. For this important reason, ploting long-term dynamics of a system in
phase space is an essential step in dynamical systems analysis. Adopting the phase spact
prospective also facilitates thinking of ecological systems in qualilative lerms, a perspective that is
essential for assessing the impact of complex non-linear dynamics on ecological structure.
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Figure 2. (a) Time series for a typical prey-predator interaction. (b) The phase-space plot of the
time serics shown in 2a. Each point in A maps o a corresponding point in B, Symbols (open for
predator, closed for prey) in A indicate points that map to points on B that are indicated by the
same symbol. Time progresses from the circle symbols, to the square symbols, and fnally ends at
the diamond symbals,
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The simplest dynamics in our classification scheme is that of a stable system. The dynamical
requirement for such a system is the existence of a steady-state that acts as an attractor, The
ecological concept of a steady-state 15 identical o the mathematical term of a fixed-point, both of
which refer (o a combination of siate-variable values that result inoa statie, ime-invariant dynamic,
The system will remain at steady-state indefinitely unless perturbed by an external force. The
eoncept of an atractor réfers (o the ime behavior of the sysiem once it is moved or perturbed from
steady state. If a steady-siate is an attractor, then the resulting trajectory of the periurbed sysiem
will always be back towards the steady-state value. The way in which the perturbed system retums
to steady-state may be either directly without cycling or as a damped cycle, the imporiant point
being that the system always returns to its steady-state value. Such behavior is illustrated in Fig,
2, which represents a stable prey-predator system. The existence of stability is implicit 10 many
of the basic tenets of ecology, such as Clementsian succession, and is reflected in the popular
concept of the "balance of nature” (Ellis et al. 1991).

The next, more complex dynamical behavior is that in which the steady state no longer i5
itself an attractor but rather serves as a focus for an attracting cycle. ln these dynamice, g steady-
state still exists, and if the system is initiated exactly at steady-state, then it will remain there
indefinitely. However, even the slightest disturbance will result in a trajectory away from the
steady-state. After deflection from steady-state, the trajectory will eventually be capiured by an
attracting cycle. The cycle, instead of the steady-state, acts as the auractor for points in phase-
space that are outside the cycle as well as for those that are inside the cycle (Fig. 3). The
mathematical terminology for such dynamics is a stable limit cycle. Stahle limit cycle behavior
has been the subject of substantial ecological interest, in both theoretical (e.g. Volierra 1926, May
1981) and applied terms (Noy-Meir 1975). Dynamics that cycle without damping, but that art
none-the-less honnded, are intuitively appealing and, ar least qualitatively, appear 10 be common i
the natural ecological world (e.g. prey-predator cycles). Suble limit cycle behavior is a result of
non-linearity and, in fact, requires non-linearity to be expressed. Non-linearity, in tuen, refers (i
the effects of a state-variable upon a system that is non-proportional.

Dynamics that are similar, but potentially more complex, than limit cycle behavior are thos
that result from motion on a toris. A toris is g geometric figure that resplis from the interaction
of at least three forces, and has been described as a doughnut-like surface (Plate 2a). In ecological
systems, a toris often results from periodic forces acting on an already cyclical interaction, or from
the natural resonance of three (or more) trophic interactions. A system’s dynamics result [rom
points in phase-space being attracted to, and winding around, the surface of the toris. Dynamics
resulting from motion on a toris can range from relatively simple to exceedingly comples,
depending on the relationship between the forcing variable and state-variables or that between the
state variables themselves. For example, if the trmjectory in phase-space winds around the tonsan
integer number of times while winding around the axis another integer number of times, then the
system is said 1o be phase-locked and the resulting dynamics are truly periodic, although the perid
can be lengthy and complex (Plates 2b and 2c). Conversely, il the ratio of the two periods cannol
be expressed as a ratio of two integers, then the resulting dynamics will never close upon itself and

become periodic. The dynamics in this latter case are said to be quasiperiodic (Plate 2a).

Toridal flow does not always result in simple doughnut-shaped figures, but can produce
complex and beautiful attractors such as that shown in Plate 2c. [ikewise. the dynamics thal
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The phase-space plot of the time series shown in 3a. Note that points from within the cycle spiral
outward (dashed line, dark arrow), and those from outside the cycle spiral inward (dotted line, light
arrow). The limit cycle trajectory is shown as the heavy, solid line.




result from motion on a toris are highly variable; in fact, perhaps all dynamics short of chaos may
be described as some manifestation of motion on a toris. The ecological implications are clear. It
has often been the case that population time-series superficially appear to be periodic, but upon
closer inspection are found to lack true periodicity. As an example, Uvavrov, in his classical
Locusts and Grasshoppers (1928) stated, "The first idea of most authors was to discover a definite
pericdicity, or the existence of definite cycles of years, coinciding with the decrease or increase of
locust numbers . ... On the contrary, everything seems to indicate that we should be better justified
in spenking not of a regular periodicity but of irregular fluruations of numbers of a given species
in a country.” The emphasis, by the way, is Uvavrov's. The existence of furzy or messy time
series is usually attributed to the effects of stochastic variation. Recognizing that complex,
quasiperiodic dynamics can result from strictly deterministic interactions (endogenous rather than
exogenous effects) should be more widely appreciated by ecologists.

As with the preceding examples, chaos also results from points in phase-space being attracted
to a surface hut in this case the geometry of the surface eannot easily be categorized by some
simple shape such as a doughnut. Due to its geometric complexity, the name strange attractor has
been attached to the attracting surface of chaotic systems (Plate 2d). One description of chaos is
"the dynamics that result from motion on the surface of a strange attractor,” although not all
strange attractors result in chaos. An impartant aspect of Plate 2d is the bending and folding that
occurs on the surface of the attractor. The complex dynamics that characterize chaos are a direct
consequence of this bending and folding. These dynamics are so complex that they are virtually
indistinguishable from those of a random or stochastic process. Anather characteristic that results
from the eonvoluted snrface of the strange attractor in Plate 2d is that points that are initially close
together soon diverge, and in fact do so at an exponential rate. The characteristics that are
embaodied by a chaotic strange attractor are therefore: (1) the long-term dynamics of the system are
bounded by motion on the surface of the attractor; (2) even though the dynamics are strictly
deterministic (i.e. given the exact state of the system at any point in time. the state at any future
point in time can be uniquely determined), the resulting time series is apparently random or
stochastic; (3) points that are initially close together rapidly diverge. The combination of these
factors results in the paradox of regularity existing in the midst of apparently random behavior.

The classification scheme of the preceding paragraphs is not inclusive; there are other, more
subtle dynamical consequences of non-linearity that have not been described. In fact, there is every
reason to believe that undiscovered dynamical passibilities nnderlic many reasonable ecological
models. It is also clear that I have characterized, but not defined, chaos. Although there are severl
possible rignorons definitions of chaos, they are formulated in the esoteric language of topology or
ergodic theory, and are therefore incomprehensible to most ecologists. While lacking rigr,
presenting familiar examples from the ecological literature that progress from simple (o complex
dynamics is intended to provide an appreciation for the concept of chaos. This progression is also
intended to demonstrate that chaos is a natural consequence of modeling approaches thal have been
used for over a century to describe ecological associations (Verhulst 1845, Lotka 1925, Volter:
1926). In the natural evolution of theoretical ecology, it has been necessary to include
nonlinearity, time delays, periodic forcing, etc. to more realistically represent ecological structure.
With each additional increase in ecological realism, there has been a concurrent increase in the
potential for dynamical complexity. Chaos is simply the most recent addition o the dynamical
possibilities of ecologically motivated models.




Characteristics of Chaotic Systems

In the previous section, the basic characteristics of chaotic systems were described. In this
section the consequences of those characteristics will be discussed in greater detail. Since chaos
results from motion on an attracting surface, chaotic systems are bounded by the limits of the
attractor in phase space. Boundedness within ecologically reasonable limits is required for a
feasible ecological model. This ecological constraint may or may not be violated by chaotic
systems, depending on the characteristics of the particular attractor in question. Therefore, the
ecological necessity of remaining within reasonable limits, i.e. neither growing without bounds
nor decaying to zero, is neither necessarily violated nor satisfied by chaotic systems.

The rapid divergence of points that are initially close together is illustrated by the two time
series that are plotted in Plate 3a. The time series in this figure are the result of numerical
solution to Lorenz's3 (1963) famous weather model. The two different numerical solutions were
obtained from initial starting values that differed by only 0.001. As is apparent in Plate 3a, the
time series are indistinguishable for a short period of time, but once they begin to diverge they
rapidly become totally out of synchrony, and in fact do so at an exponential rate. The exponential
magnification of small differences is one of the most characteristic attributes of chaotic systems,
and is directly responsible for the lack of long-range predictive power. A measure of the rate at
which close points diverge is known as the Lyapunov exponent. For a n-dimensional system,
there will be n Lyapunov exponents, only one of which needs to be greater than zero for the
system to be chaotic. The condition of at least one positive Lyapunov is, therefore, necessary (but
not sufficient) for chaos. For a defined system of equations the complete Lyapunov spectrum can
be obtained. Techniques are also available for estimating the largest Lyapunov exponent from an
empirical time series, although the typical sparsity of ecological time-series data is a significant
limitation to the application of these techniques.

Motion that is restricted to the surface of a chaotic attractor is responsible for the order that
lies at the heart of "chaotic” randomness. Plate 3b offers an excellent example of the nature of this
order. Even though the two time series in Plate 3a are completely out of synchrony and appear to
be unrelated, the plots that result from their 2-dimensional projections in phase-space are
essentially indistinguishable. This is an important result for ecologists, because it clearly
illustrates that the "classical” way of viewing dynamical properties of a system result in an
misleading plot (Plate 3a), while viewing the dynamics in 3 somewhat different light (the phase-
space of Plate 3b) result in the emergence of an underlying order.

Another attribute underlying deterministic chaos is the existence of a non-integer fracal
dimension. The statement that chaotic systems have fractal (or fractional) dimension is confusing
because of the standard use of the term dimension to describe the number of state-variables that

3 Lorenz's classical experiment with a simple weather model dates the beginning of the modern
(computer- assisted analysis) era of nonlinear dynamics. Through a series of simulation experiments
with a simple, non-linear model of the weather, Lorenz discovered never-repeating, aperiodic cycles in
which long-term prediction was not possible due to an exponential growth of initial error. An excellent
popular account of Lorenz's work can be found in Gleick (1987) and a mathematical account in Sparrow
(1982).
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define a system. For example, a prey-predator system has dimension 2, and a prey-predator-
pathogen system has dimension 3. Used in this sense, dimension corresponds to the order of the
system or, equivalently, the Euclidian dimension of the system. Other concepts of dimension,
such as fractal dimensions, defy such simple description. The consequences that result from a non-
integer fractal dimension are, however, comprehensible. Self-similarity is one characteristic of
systems with a non-integer fractal dimension, and refers to complexity that is not necessarily
related to the scale by which the system is observed (Gordon and Greenspan 1988). For example,
Fig. 4 was obtained by plotting the dynamics of a chaotic system at progressively higher levels of
resolution. Although the scale in the last frame in Fig. 4 is over 5 orders of magnitude smaller
than that of the first, there has not been a concurrent reduction in the complexity of the dynamics.
The fractal nature of chaotic systems also leads to complex and beautiful geometric patterns. The
complexity and beauty of plots such us Plate 4 have been responsible for much of the popular
attraction of chaos (i.e. Gleick 1987). Since a non-integer fractal dimension i2 one hallmark of
chaos, calculation of the fractal dimension provides a diagnostic tool for evidence of chaos in
empirical time series. Additionally, for the ecologist, the fact that the complexity of chaotic
systems is imedicible with respect to seale may have important consequences regarding attempts in
determine an "appropriate” scale to view various ecological phenomena.

Although I have yet to formally define chaos, the characieristics of chaotic systems (bounded-
aperiodic behavior, sensitivity to initial conditions, positive Lyapunov exponents, non-integer
fractal dimension) provide criteria to evaluate the likelihood of chaos in a purticular system.
Demonstrating chaos is more often a case of accumulating evidence for or against chaotic dynamics:
rather than obtaining unequivocal "proof” of chaos. This statement is particularly true for
empirical systems. Establishing the existence and/or importance of complex non-linear dynamics
in empirical ecological associations neécessitates the accumulation of gqualitative (evaluation of the
particular ecological attributes of the assnciation in question) as well as quantitative information

(Ellner, these proceedings).

Chaos and Insect Population Ecology

May's (1974) discovery of chaotic dynamics in one of the simplest and most and widely
applied ccological models motivated numerous suhsequent articles that explored existing ecological
models for evidence of chaotic dynamics [see Logan and Allen (1992) for a recent review]. The
result of this work was that the potential for chaos existed in almost every case. In Berryman’s
words (these proceedings), "the seeds for chaos underlie all reasonable ecological models.” Thesz
results have provided fertile grounds for both active empirical investigation and theoretical
conjecture.

The first, and until recently one of the few, empirical studies that attempted o examine field
datn on insect temporal abundance patierns for indications of complex nonlinear dynamics was by
Hassell et al. (1976). Lo this historically important paper, they reviewed time-series ficld-collected
data for 24 insect species. Through the use of a simple single-species population model (a discret
analog of the logistic model), they estimated popuolation growth and density dependent feedback
parameters for each species. They then classified the dynamical characteristics for each species, and
found that almost all fell within a region of stability. In fact, only one gave indications of
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complex nonlinear behavior (a stable limit cycle) and none fell within the region of chaos.
Subsequent work (Bellows 1981, Thomas et al. 1980), which generally replicated Hassell et al.'s
approach, served to reinforce their results. Although Hassell et al. were careful to point out the
limits of their analysis, their results have been widely cited in support of the view that complex
dynamics, and in particular chaos, are seldom expressed in nature (e.g. Berryman and Millstein
1989).

The major limitation to Hassell et al.'s work, as they were careful to point out, was that their
model explicitly excluded trophic interactions with other populations. Naturally occurring
populations are invariably embedded within a matrix of nonlinear interactions with other
populations. It has long been recognized that analysis of a complex ecological system in reduced
dimensionality and a single time lag will tend to obscure complex dynamics (Guckenheimer et al.
1977). The problem, of course, is that it is typically difficult enough to accurately sample one
insect population, much less the complete community within which it is embedded. Fortunately,
due to a theorem of Takens (1981), which confirmed a previous conjecture by Packard et al.
(1980), the dynamic behavior of a complex system is often identical to that of the time-lagged
series in one of its state variables. Takens' theorem has been routinely applied in the analysis of
physical systems (Argoul et al. 1987, Roux et al. 1983). Schaffer and coworkers (1984, 1985a,
1985b, 1986) were the first to recognize the implications of Takens' results to ecological systems,
although the analysis of time-lag structure per-se has a long tradition in population ecology
(Berryman 1978, Hutchinson 1948, Moran 1953, Royama 1977). Graphical analysis (by Poincaré
section) of the lagged time series, in view of Takens’ theorem, has resulted in the discovery of
probable complex nonlinear dynamics underlying the behavior of insect systems that had
previously been thought to be random (Schaffer and Kot 1985b). Other graphical procedures have
also been used (Sugihara and May 1990) to demonstrate the existence of low-dimensional attractors
(chaos) in ecological data. Ellner, in these proceedings, reviews the validity of these techniques for
analysis of ecological time series.

In recent work, Turchin (1990, this volume) applied a time-lagged methodology (Turchin and
Taylor 1991) to analyze the time series of 13 forest insect pests. This work, which is reviewed
and expanded upon in these proceedings, resulted in the following breakdown of dynamics: no
regulation, 1 case; exponentially stable, 2 cases; damped oscillations, 6 cases; limit cycles, 3
cases; chaos, 1 case. Turchin's results are in marked contrast with Hassell et al.'s (1976) earlier
conclusions, indicating the general importance of complex nonlinear dynamics in forest insect
populations. In particular, Turchin suggested that complex dynamics resulting from density-
dependence may in fact underlie population fluctuations that had previously been attributed to
stochastic and/or exogenous effects.

Analysis of empirical insect population data for the signature of chaos presents a significant
dilemma. On the one hand, the "standard" techniques of mathematical analysis are unrealistically
data intensive. Although development of new methodology for detecting chaos in small data sets
is currently an active area of research in mathematical analysis, there are potential problems in
ecological application of this work, as illustrated by a recent quote from this literature. Ramsey
and Yuan (1989) provide an optimistic statement that, ". . . one should be able to get a reasonably
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Figure 4. (a) A Bifurcation plot of the Ricker equation. This type of plot is generated by
iterating a model for enough time steps to allow convergence of the system to its long-term
dynamics. The long-term dynamics are then plotted for a large number of iterations. The value of
one parameler in the model is then increased by a small amount and the same procedure is repeated,
This methnd allows examination of the effects of varying a parameter on the long term dynamical
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Figure 4. (continued) into more complex dynamics are called "bifurcation points," hence the
name bifurcation plot. Chaos results in a "smear" of points. As the parameter for population
growth rate is increased, the dynamics become increasingly complex. Note that in chaotic regions,
some population values are very close to zero (extinction), and that low population levels become
increasingly close to zero as the critical parameter is increased (see Berryman and Millstein 1989).
(b) An enlargement of the region contained in the box of A. (c) An enlargement of the region
contained in the box of B. (d) An enlargement of the region contained in the box of C. See text
for further discussion.
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clear idea of whether one has an attractor or not with only a few thousand observations... ."
Obviously, the concept of "small data set" is relative. Ecologists feel lucky to measure data in
terms of tens rather than thousands!

On the other hand of the dilemma are problems inherent in estmating parameters [or single
species populaton models from empirical daw, and then determining if the parameterized model is
chaotic (e.g. Schaffer et al. 1990) The problem ol deciding which generally accepted model (o use
further complicates the serious difficulty of accounting for high order dlmensmnahty Through
analysis of insect life-table studies, Morris (1990) has recently demonstrated that the choice of

mosdel, and the method used o parameterize the model selected, can both have significant effects on
the conclusions that are drawn. These effects can span the full range of dynamical behavior (from
stable equilibrium through chaos) for the same data set.

One alternative 1o the dilemma presented by empirical analysis of time series data 15 to use
process level simulation models to generate data that are then subjected to quantitative analysis. ln
this approach, data from a vahdated simulation model can be used in several ways. First, time
series data from such models can be used directly for estimation of parameters that are characteristic
of chaotic systems (i.e fractal dimension, positive Lyapunov exponents, etc.). Since the tals
result from simulation, the large data requirements for such analysis no longer pose constraints
Stone (1990; this volume) has used such an approach 1o analyze a spatially distributed, insect prey:
predator system. This work involved analysis of a deterministic version of a previously published
stochasue model describing the interaction between Campoletis sonorensis preying on the tobacco
budworm, Heliothis virescens (Makela et al. 1988). Stone [urther elabomies on this work in thes:
proceedings.

Another application of validated simulation models has been therr use for parameter estimation
in more analytically tractable models. The analytic model is then subjected lo mathematical
analysis designed to provide insights into dynamical properties. A modeling paradigm that unlizes
a systematic process of developing progressively more analytically tractable models [rom
simulation models is the development of composite models (Logan 1982, 1959; Plant and Mangel
1987). This approach has been successfully applied for #nalysis of the outhreak dynamics of
several important insect pests (Logan 1982, Ludwig et al. 1978, Wollkind et al. |95d),
Application of the composite modeling paradigm for analysis of a spider mitc-Phytoseiid

| Tetram i ey medantell MeGrepor and Meraseiulus occidentalis \\.HE"I[Hl interaction resulted in the
dlscovery of complex dynam1cs underlying a simple prey-predator interaction, including the
existence of sub-critical stability in a model that had previously been thought 10 have a more
restricted dynamical behavior (Collins et al. 1990, Logan 1982, Wollkind et al. 1988). Further
analyses that have included the elfecis of temperatare cycles on model parameters uncovered even
more complex aperiodic cycles that appear to be chaotic (J. A. Logan, unpublished).
significance of this work was that the complex dynamics resulted as an emergent property from
ecological analysis. There was no a prion goal o building a chaotuc maodel; rather the goal was (g
elucidate the role of temperature on the prey-predator interaction and the resulting biologica
control of T. mcdanieli (Logan 1976).

Several general pr ingiples have emerged from dynamical analysis of insect populaton models
First and foremost is that specific modeling constructs and estimated parameter values should be
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based on real life interactions. As indicated in the previous section, the potential for chaos is
ubiquitous in the generally accepted ecological models. Therefore, demonstration of chaos in a real
system through use of a model is credible only if the model is a reasonable representation of the
system and if parameter values are in a realistic range. In any case, due to the difficulties I have
discussed with empirical data analysis, simulation-generated data will continue to play an
important role in analysis of insect population dynamics.

Since neither empirical data analysis nor model results have definitively demonstrated the
importance of chaos in insect population dynamics, the issue provides fertile grounds for
theoretical debate and conceptual conjecture. On one side lies the evidence that ecological structure
abounds in characteristics that lead to complex dynamics and chaos, and on the other side is the
historical tradition that stability (consistency) is a desirable (i.e. has positive selection value)
ecological trait (Berryman and Millstein 1989). The arguments against chaos (and by implication
complex nonlinear dynamics) being expressed in extant ecological associations are based on the
assumption that chaos would lead to population extinction. This assumption is based on the
observation that for some models oscillations in the chaotic parameter region lead to a high
probability of extinction (Berryman and Millstein 1989, Thomas et al. 1980). The counter to this
argument is that the behavior of one class of equations does not generalize to all ecological models
(Rogers 1984). In particular, systems of equations, including simple prey-predator equations, can
exhibit chaotic behavior that is tightly bounded (Stone, these Proceedings). In fact, for some
ecological models the dynamics of populations in chaotic regions are more closely bounded than
those in nearby non-chaotic regions (Allen 1989). Examples from laboratory (Pimentel and Al-
Hafidh 1965, Pimentel and Stone 1968) and field experiences (Fenner and Myers 1978) can be cited
to support the view of selection for stability. Conversely, the body of literature on the dynamics
of "outbreak" insects (e.g. Barbosa and Schultz 1987) provide numerous examples of populations
with violent density fluctuations that are none-the-less persistent.

In summary, the empirical search for chaos in ecological systems has involved three
approaches: (1) use of time series data to estimate parameters in simple population models, (2)
phenomenological construction of a multidimensional attractor from time-lagged data, and (3) the
construction of statistical models (RSM technology) from time-lagged data. All three approaches
are limited by large data requirements or potential inconclusiveness of results. Related to these
purely empirical approaches has been the use of validated simulation models to generate data that
are then subjected to dynamical systems analysis. Although data sets generated from simulation
models are not restricted by the constraints of real-world time frames, results from these studies are
subject to the limitations and criticisms of simulation studies in general. Therefore, much of the
evidence for or against chaos and complex dynamics has a basis in conceptual or theoretical
arguments. Once again a convincing case (using selected examples) can be made either for or
against chaos. From this diffuse information, however, one consistent pattern does emerge: and
that is, the deeper one looks into the dynamics of insect populations, the more likely one is to find
evidence for complex nonlinear effects.
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Important Issues

The difficulty in empirically demonstrating chaos in ecological data leaves the imporian
question of the existence of chaos in ecological systems unresolved. Resolution of this question
important for reasons both philosophical and practical. The remaining chapiers in this proceedings
address both the conceptual and the practical issues relating to chaos in ecology.

In this chapter, I have noted that those characteristics which predispose sysiems (o chaotic
dynamics are commonly found in ecological structure. | anticipate that as the ramilications of
deterministic chaos become more fully understood, chaos will be found to be an importan
component of many ecological associations. This expectation is by no means universal. A1
underlying theme of natural history since antiquity has been the "balance of nature” (Egerion
1973), which has led to a strong equilibrium-based paradigm for population ecology. This
paradigm is implicit to some of the most basic ecological concepts such as Clementsian
succession and Darwinian selection (Ellis et al. 1991). Muny ecologists have found chaos 1o be
incompatible with the prevailing equilibrium paradigm. Thomas et al. (1980), for example, state:
"We argue that chaos and stable limit cycle behavior are maladaptive ... ' or Berryman in these
proceedings: " ... ecological systems evolve naturally into ordered, stable structures... . I the
next chapter of this volume, Berryman presents the case for the equilibrium viewpaint that holds
chaos to be maladaptive. He further elucidates the management wactics that are de-stabilizing o
equilibrium systems.

The practical issues of chaos revolve primarily around prediction, and in particular what may
be termed the paradox of prediction that results from chaotic dynamics. As we have seen, insect
population phenomena such as outbreaks of forest pests have been notoriously difficult to predict
Lack of predictive power has historically been attributed o stochastic noise or other chance events
that are truly unpredictable. If, however, this "noise” results from deterministic chaos, then it s
possible to predict short term events if the strange attractor can be reconstructed (Farmer and
Sidorowich 1987, Schaffer and Kot 1985b), or from time series data alone (Casdagh 1989, Farmer
and Sidorowich 1987). As summarized by Schaffer and Kot (1986), "-.. one could thus predict the
severity and timing of the next irruption from knowledge of the last ... ." For many outbreak
insects this would indeed be a significant advance in predictive power. The paradox 15 thil
prediction in the classical sense is more futile than we had previously thought but, conversely,
variation that was previously thought to result from unpredictable stochastic effects may in fact be
predictable if the system is viewed from an appropriate perspective. Belore the perspective that
allows prediction in the face of uncertainty can be utilized, however, it is necessary to differentiate
between time series that are chaotic from those that are simply noisy.

Two chapters in these proceedings address the problems of inferring the dynamical properties
of a system from its time séﬁes_ Turchin begins his paper with a brief discussion of the polemic
that has historically surrounded the topic of population regulation. The conclusion of this revies
is that complex, nonlinear dynamics are counter to the prevailing view of regulation around a
stable equilibrium, the "equilibrium” argument. He further notes the influence that Hassell eral’s
(1976) work has had on this controversy. Turchin points out that a major eakness in Hassell el
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al.'s work was the a priori assumption of a single species model4. He then proposes a
multidimensional, time-lag-based model and applies this model to time series from several
important forest insect pests. Turchin concludes that complex dynamics are more common that
has previously been recognized. Following Turchin's contribution, Ellner provides a thorough
review of some of the dangers of looking for chaos in short time-frame data sets that are
characteristic of ecological studies. In particular, he demonstrates that many of the characteristics
of chaotic systems can also arise from simple, non-chaotic stochastic models. Ellner's work serves
to emphasize the necessity of placing the analysis of ecological time series within the ecological
context of the system under examination. In other words, what are the plausible controlling
mechanisms of the system under consideration and are they consistent with (or counter to0) chaos as
an explanation for the observed time-series? Ellner concludes his contribution by noting that
significant progress has been made toward development of analytic tools for distinguishing chaos
from random noise in the types of data sets typical to ecology, but that the task is by no means
completed. His paper is an eloquent plea for further development of such techniques.

The papers of Turchin and Ellner serve to point out the challenges of empirically
demonstrating chaos in ecological systems. Their contributions provide motivation for the
empirical analysis of time series that result from well considered ecological models in which the
underlying governing rules are uniquely defined. Due to the accessibility of powerful personal
computers, it is now possible to construct models of ecological associations that are far more
detailed than has previously been reasonable. In the final chapter of these proceedings, Stone takes
a novel approach to simulation of prey-predator dynamics. He departs from traditional modeling
approaches by developing an object-oriented programming simulation of the behaviors of
individuals that comprise the population. Through this approach, Stone is able to examine the
dynamics of the prey-predator interaction at an unprecedented level of resolution. In a further
departure from previous individual-based simulations, Stone bases behavior entirely on if-then
rules that contain no random or stochastic elements. This latter point is particularly germane to
the topic of this symposium since any dynamics that emerge from the model could be attributed
solely to deterministic forces. Since the model was not cast in the traditional difference or
differential equation model, analysis of model results can follow approaches similar to those used
for the analysis of real ecological data. However, since large, long-term data sets can be easily
generated through computer simulation, the typical constraints of ecological data are avoided. In
other words, through simulation, results from Stone's work meet the conditions in Ellner's paper
for reliable detection of chaos (i.e. (1) abundant data, (2) small (nil) measurement error, and (3) data
result from a purely deterministic system). Stone's work identifies a chaotic strange attractor that
is an emergent property from his simulated prey-predator system. Stone further notes that
dynamics resulting from motion on this strange attractor would be diagnosed as resulting from
stochastic forces acting on non-chaotic, logistic growth. The basic result from Stone's paper is,
therefore, in some sense the mirror-image to that of Ellner's; it is also quite easy to misclassify
chaotic behavior as stable.

4 Hassell et al. acknowledged that real-world population dynamics result from complex trophic
interactions and that their results should be viewed with caution for this reason. This caveat has largely
been ignored in subsequent work that has cited the Hassell et al. paper.
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In this paper I have tried to provide motvation for interest in chaos from a forest
entomologist's point of view. 1 have also attempied to provide a basic deseription of the concepts:
of chaos and chaotic dynamics, and 0 review the entomological status of chaos research 1o daie,
The remaining chapters in these proceedings advance the state of current knowledge, particularly
with respect o assessing the importance of chaos in insect ecology.
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Chaos in Ecology and Resource Management:
What Causes It and How To Avoid It

Alan A. Berryman!

Nowadays, as Logan notes in the first chapter of this volume, there is "much ado about
chaos.” Articles regularly appear in the major journals, books are published in profusion, chaos is
hailed as a "new science” (Gleick 1987), ranking in importance to "relativity and quantum
mechanics” (Fisher 1985). Despite all this excitement, however, chaos remains mysterious to
many people. The purpose of this paper is to provide ecologists and resource managers with an
elementary understanding of the phenomenon called chaos. In the first section I describe chaotic
motion and explain what causes it. Then I address three important questions about chaos in
ecology and resource management - Does chaos occur naturally in ecological systems? Can human
actions cause chaos? How can chaos be avoided in managed ecosystems?

What is Chaos?

In the book Chaos: Making a New Science, Gleick (1987) cites several definitions of chaos,
e.g., "complicated, aperiodic, attracting orbits of certain dynamical systems; a kind of order
without order; apparently random recurrent behavior; irregular, unpredictable behavior of
deterministic, non-linear dynamical systems."

Most experts would probably agree that chaos is a type of behavior that emerges from
dynamic (time-varying) systems containing non-linear relationships (as most biological systems
do). Classical dynamics recognizes two major types of deterministic (non-random) behavior —
equilibrium points or point attractors (Fig. 1a), and periodic orbits or cyclic attractors (Fig. 1b). 1
should explain that attractors are regions in the phase-space of two or more variables (the inserts in
Fig. 1) that attract nearby trajectories; i.¢., a magnet is a point attractor to an iron nail, Chaos is a
third kind of behavior in which the trajectories are not drawn towards a single point or orbit but
rather to a definable region of phase-space called a "strange attractor” (Fig. 1c). Because orbits on a
strange attractor do not repeat themselves, or repeat only after long time intervals, they sometimes
appear to have random motion. In fact, if we take a system that has a cyclic attractor (Fig. 1b) and
place it in a noisy (variable) environment, we obtain behavior that is difficult to distinguish from
chaos (Fig. 1d). A major problem, therefore, is to separate chaos from non-chaotic noisy
trajectories (see Ellner's contribution in this volume).

1 Departments of Entomology and Natural Resource Sciences, Washington State University,
Pullman, WA , 99164-6432.
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What Causes Chaos?

Perhaps the best formal definition of chaos arises from the observation that chaotic rajectories
are extremely sensitive to their initial, or starting, conditions. [n Lact, il we starl two trajec lores
very close together on a strange attractor, their positions relative to one another will diverge
exponentially over time.

Deviation amplification is a well-known phenomenon in systems science. [l is created by
systems engineers, or caused naturally in ecosystems, by positive feedback (autocalalyiic)
processes. For example, the "population explosion” is 4 positive feedback growth process, as i
economic growth, the "arms race," organic evolution, and so on, Because positive feedback causes
deviation amplification, it can also be an ingredient of chaos (see Box I). Furthermore, since all
ecological systems contain positive feedback loops, if only in the reproductive capacities of thel
constitutive species, then the "seeds of chaos" must lurk everywhere in nature (Berryman and
Millstein 1989a). Positive feadback loops can also be creawed when individuals or species help one
another (cooperation and mutualism) and when species harm each other (inter-specific competition)

(Berryman 1981).

In contrast to positive feedback, which gives rise to ecological instability and deviation
amplification, negative feedback usually induces stability by ironing out deviations from ih
steady-state (deviation attenuation) (Berryman 1981, 1989). In fact, it 15 negative feedback tha
defines the attractor onto which dynamic trajectories converge. In ecological systems, neative
feedbacks are created by competition between individuals for food or territories (intra-specilic
competition), consumer-resource (predator-prey) interactions, and other processes that oppost
population growth in a "density-dependent” manner.

The type of attractor that emerges from a dynamic system depends, to a large extent, o L
lags in the dominant negalive feedback loops and the strength or intensity of the feedback respons:
Time-lags can be caused by discrete life-cycle events, like synchronized breeding periods and
overwintering stages, and by feedbacks that involve maore than one species, such as predator-prey
interactions, nutrient cycling, and so on. In general, the more species that are invalved in i
feedback loop, the longer is the lag in the feedback response. The strength of the ncgative
feedback, on the other hand, depends more on the opposing force that is applied, with violeni
counter-action often being termed overcompensatory feedback. Overcompensatory negilive
feedback can also lead to deviation amplification, the trademark of chaos (see Box I).

When the controlling negative feedback in a dynamic system acts instaniancously (1
time-lag), a point attractor is always created, irrespective of the force applied. 1T time-lags cxistin
the negauve leedback loops, as we would expect in most ecological systems, then point attracion
limit-cycle attractors, or strange attractors can arise under different parametric conditions, Given s
time-lag greater than zero, a stable point attractor can change (or bifurcate) into a cyclic altracton i
certain parameters reach critical values, and then the cyclic attractor can itscll bifurcawe ino 2
strange attractor at other critical values of the same parameters (Fig. 2). Dynamic systems it
particularly sensitive to their positive feedback
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Box |. Chaos, Deviation Amplification, and Feedback

In chaotic systems, small differences in initial conditions, Ag,
diverge exponentially so that Ay = A; exp{ht) at time t, provided that the Lyapunov
exponent h > 0. This phenomenon, however, is also present in positive
feedback ampilifiers, of the form

Xp=HXpq ,H>1 (1)
a difference equation with the general solution
X=X, explht) , h =In(H). (2)

It is easy to see that small ditferences in initial conditions diverge exponentially
with time when the Lyapunov exponent h = 0; i.e.,

Ay = Ay exp(ht) (3)
where Ag = Xq0- Xzp and &y = Xqp - X21: X = position on Irajectory | al time 1,

Thus, positive feedback growth processes give rise lo what engineers
call "exponential instability.” It is perhaps not so obvious that initial deviations are
also amplified in systems containing overcompensatory negative feedback.

Consider the simple negative feedback operator
Xy=1-HX. (4)

which produces an equilibrium (X = X¢1) @t 1/(1 + H). If the parameter H < 1, then
oscillations about the equilibrium point die out, while if H > 1 they grow in size, a
condition that we have termed overcompensatory negative feedback, Now it is
fairly simple to show that deviations of two trajeclories starting close to each other
near equilibrium are also described by equation {3). In this case, however, we
have what is called oscillatory instability, where oscillations due to
overcompensatory negative feedback amplify over time. Thus, the two amplitying
properties, growth through replication and overcompensatory regulation, provide
the driving forces for chaotic motion.
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growth parameters as well as to parameters determining the strength and inertia of the feedback
response, both of which create the deviation-amplifying requirements for chaotic motion.

In summary, it is possible for ecological systems to exhibit the major types of equilibrium
behavior — point equilibria, periodic cycles, and aperiodic chaotic motion. The behavior around
equilibrium becomes more irregular and unpredictable (more chaotic) as time-lags get larger and as
the intensity or strength of the negative feedback reactions increase and, of course, as the positive
feedback growth parameters become large.

Does Chaos Occur Naturally in Ecological Systems?

Following May's (1974) observation of chaos in simple ecological models, an obvious
question was: "Do ecological systems display this complex and unpredictable deterministic
behavior?” In other words, is the irregular and apparently random behavior observed in many
natural populations (Fig. 3) due to chaos (Fig. Ic), or to random disturbances of non-chaotic
trajectories (e.g., Fig. 1d)? For a number of technical reasons, the usual methods of attractor
reconstruction cannot be applied to most ecological data (e.g. see, Ellner's contribution in this
volume and the discussions by Nisbet et al. 1989 and Berryman and Millstein 1989b).

An alternative approach is to fit theoretically reasonable ecological models to the data and then
determine if the parameters fall into the chaotic domain. When this approach is applied to data
from natural and laboratory populations, chaotic parameters are rarely encountered (see Hassell et
al. 1976, Thomas et al. 1980, and Turchin's contribution in this volume). I have analyzed
numerous sets of field data in a similar way and have only once found parameter values in the
chaotic domain. For example, when the data in Figure 3 are fit to a theoretical two-species model,
the estimated parameters give rise to point attractors (Fig. 4, left), even though the model, with
different parameters, is capable of producing chaotic motion (Fig. 1c). However, the trajectories
are very similar to the observed dynamics when the models are run in a variable environment [c.f.
Figs. 3 (left) and 4 (right)]. Thus, although some see chaos in ecological data (e.g., Schaffer and
Kot 1986), the empirical evidence suggests that ecosystems are usually quite stable and that the
irregular fluctuations often observed are due to external random perturbations rather than to internal
chaotic motion.

Besides the empirical evidence, there are strong evolutionary reasons why ecosystems should
not behave chaotically. First, chaotic population trajectories often spend considerable time far
from their equilibrium points, sometimes declining to extremely low densities where extinction is
likely (Thomas et al. 1980, Berryman and Millstein 1989a). Conventional wisdom argues that
species should evolve parameter values that minimize the likelihood of extinction; i.e.,
non-chaotic parameters. This viewpoint is supported by modeling exercises (Nisbet et al. 1989,
Mani 1989), and by laboratory and field experiments. For example, Pimentel and his associates
grew populations of houseflies and parasitic wasps in the laboratory and observed that the
amplitude of population fluctuations decreased significantly over time (Pimentel and Al-Hafidh
1965, Pimentel and Stone 1968). Examples of evolving stability can also be found in the
biological control of pest organisms. One of the best documented cases is the biological control
of rabbits in Australia by the myxoma virus (Fenner and Myers 1978). Shortly after introduction
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of the virus a virulent strain generated an epizootic that killed most of the rabbits. Aftcr (his
high-amplitude oscillation, however, less virulent strains (and more resistant rabbits) began
predominate and the populations settled into a muchmore stable condition. Selection for less
virulent virus strains seems to have occurred because the virulent strains killed their hosts (00
quickly for effective transmission in sparse rabbit populations. These studies demonstrate thar
unstable populations (perhaps even chaotic ones) will evolve over time inio more dynamically
stable systems through the modification of species- specific parameters such as fecundity, feeding
efficiency, resistance to attack, virulence, competitiveness and intra-specific aggression. Th
evidence, both empirical and theoreueal, 15 that ecological systems evolve natrally nio ordered
stable structures, and that any irregular behavior is usually due o |_n||rru_.-._-|L{.-.I|I|.- external forces thal
continuously disturb them from their steady states.

Can Human Actions Cause Ecological Chaos?

Although most natural co-evolved ecological systems do not seem to behave chaotically, the
fact remains that all ecosystems contain the "seeds of chaos” in their feedback structures and,
therefore, it is always possible to push them into their chaotic domains (Berryman and Millstein
1989a, Allen 1990} Instability can be introduced nto any system containing positive and negative
feedbacks by increasing the time lags in the negatlve feedback loops or by changing
certain parameters, particularly the birth and death rates. For example I have argued lhl
instability in Dungeness crab populations in the tceans off Northern California could have been
induced by delayed feedback between the crab population and the economic system (Berrymun
1991); i.e., the abundance of crabs affects harvest success, which in twm affects profits, which are
then used to purchase new boats and gear, which then impact crab abundance in the following
fishing season (= time lag) (Fig. 5). Many more examples of human actions that could induc
delayed negative feedback on future populations could be cited, including global warming, orone
depletion, destruction of tropical forests, and buildup of radioactive waste. Feedbacks such i
these, which may not have an impact for a long time, should be cxpected w decrease the stabilin
of ecological systems, and could create an environment in which chaos reigns (see Box II).

Instability can also be introduced by modifying certain ecological parameters. For cxample,

species-specific growth rates can have very strong effects on stability, with large reproductive raes
giving rise to greater instability (Fig. 2). Growth rates can be increased by improving growing
conditions for the species in question (habitat improvement) or by breeding fasier-growing or more

fecund strains (genetic improvement and biotechnology) (Berryman and Mlllstem IYa5a)
Instability can also be induced by increasing the strength of the interactions between [ !
Box II), i.e., increasing the efficiency or virulence of predators, parasites and g::tlll-".'.t'-'lr-. of
increasing the degree of competition or cooperation (mutualism) between species Thus, the

engineering of more efficient or virulent pathogens can induce ccological instability and, perhaps
even chaos. This message should not be lost to blotechnologlsts who are currently Cnginearing
more virulent viruses for use in insect pest control.
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Figure 5. Hypothesized delayed negative feedback between the northern California Dungeness
crab population and the economics of the fishery (after Berryman 1991),

How Can We Avoid Chaos?

The lessons for the resource manager about chaos and chaos avoidance are fairly obvious from

the preceding discussion, avoid long time-lags, large growth rates, and highly efficient predators
and parasites. Some specific suggestions that immediately come 1o mind are;

1.

6.

Minimize the time-lag between management decisions and their implementation (reduce
time-lags in the control loops involving stand treatments, pest control, etc.),

Try not 1o create new feedback loops with sirong interactions with other sysiem componentis;
e.g., don't insert new pollutants, pesticides, or strong economic incentives into the system
(see Box I1).

Refrain from disturbing populations far from equilibrium where chaos-producing positive
feedback growth can take over; e.g., use pesticides 1o obtain optimal rather than maximal kill
(Berryman 1986).

Be cautous about introducing organisms into habitats that are very favorable for thei
reproduction and survival, thereby increasing their positive feedback growth parameters; e.g.,
introducing pests into exotic habitals or creating monocultures of susceptible plants,

Avoud creating harsh or violent interactions between syslem components, say by
bioengineering more virulent pathogens with high reproductive rates.

Avoid over-reacting 1o changes in the system that can result in harsh, overcompensatory
feedback. In other words, react quickly but gently to changes that you observe in the
ecosyslems you are managing.
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Box Il. Time Lags, Dimension, and Instabliity

The neighborhood or local stability of an equilibrium point depends on
the time-lag in the stabilizing negative feedback loop, T, and the strength of the
negalive feedback parameter H, so that the system is unstable i

HT>1.

Time-lags are actually representations of the dimension of the system,
where dimension means the number of mutually interacling parts of the system,
i.e., components (species) that are part of the feedback structure or that
contribute to feedback loops in the system. In general, systems with more
dimensions (interacling species) are less stable because long feedback loops
with correspondingly longer time-lags are more likely to occur. In addition,
systems with higher connectance (more connections between species) are also
likely to be less stable for the same reasons. May (1972) shows that instability will
almost certainly result i

H{MC)172 > 1

where M is the number of components (species), C is the conneclance, or the
probability that any pair of components will interact, and H is the mean interactlion
strength. Obviously, human aclivities can increase connectance and decrease
stability by interacting with more species or by having “too many fingers in the
pie."
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Nonlinear Modeling of Time-Series Data: Limit Cycles
and Chaos in Forest Insects, Voles, and Epidemics

Peter Turchin!

Although the emphasis of this conference is on chaotic population dynamics, in this paper I
will address the broader issue of complex dynamical behaviors in ecosystems. " Simple" refers to
dynamics whose endogenous (density-dependent) component is characterized by a stable-point
equilibrium. In such systems fluctuations around the equilibrium point are primarily, or entirely,
due to exogenous (density-independent) factors. Thus, ““complex” dynamics are bounded,
endogenously-driven fluctuations that do not settle to a stable-point equilibrium. Examples
include limit cycles, quasiperiodic dynamics, and chaos. It is important to consider limit cycles
and chaos together because both dynamical behaviors have the same implications for the
population-regulation debate (more on this later). Another source of complexity is the interaction
between the nonlinear endogenous component and the environmental noise. My main argument
will be that both ecologists and forest managers need to pay more attention to the possibility of
complex dynamical behaviors in natural ecosystems.

The current debate about complex population dynamics revolves around the issue of whether
or not such dynamical behaviors are found in nature. A small, but vocal, group of ecologists
(notably W.M. Schaffer and coworkers) have argued that complex dynamics, and chaos in
particular, are commonly found in nature. On the other hand, many ecologists appear to subscribe
to the view that if populations are regulated at all, they are characterized by stable-point equilibria,
and complex dynamics are no more than a mathematical curiosity. This view has been expressed
by both experimentalists, e.g. “the rarity with which populations fluctuate cyclically in nature..."
(Hairston 1989, p. 6), and theoreticians, e.g. ~“deterministic stability is the rule rather than
exception, at least with insect populations” (Nisbet and Gurney 1982, p. 55).

Whether or not complex dynamics are common in nature has a bearing on one of the central
issues in population ecology: the perennial debate about population regulation. Willingness to
ignore the possibility of complex dynamics leads to a certain mind set with which many ecologists
view the debate, which I will call “the one-dimensional paradigm of population regulation."
According to this view, all natural populations lie within the spectrum ranging from completely
unregulated populations at one extreme to tightly regulated populations at the other extreme.
Since “‘regulation” is usually limited to “‘regulation around a stable-point equilibrium,” any
population fluctuations around the mean must be due to lack of regulation, in other words, to
exogenous (density-independent) perturbations. Clearly, complex dynamical behaviors do not fit
within this framework; thus violently fluctuating populations, even if the fluctuations are caused
by endogenous (density-dependent) factors, are by default classified as poorly regulated.

If complex dynamics were rare or absent in nature, then there would be no need to modify the
one-dimensional paradigm. The most frequently cited empirical evidence for rarity of complex
population behaviors comes from the paper by Hassell, Lawton, and May (1976). Hassell et al.

1 Southern Forest Experiment Station, USDA-Forest Service, Pineville, Louisiana, 71360, USA.
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(1976) used a simple one-species model to assess the frequency of various dynamical behaviors
among 24 natural insect populations. They concluded that all but one population were stable (22
cases of exponential and 1 case of oscillatory damping). There was only one case of a limit cycle,
and no cases of chaos.

A major flaw in the Hassell et al. (1976) analysis is that they used a single-species model
without delayed density dependence. Using such a simple model biases the results in favor of
stability, since complex dynamics are much more likely in higher-dimensional systems, and
mistakingly analyzing such systems in fewer dimensions will tend to hide this complexity
(Guckenheimer et al. 1977, Schaffer and Kot 1985a). Natural populations are multidimensional
systems, since any given population typically affects, and is in turn affected by, other populations
in the community (i.e. resources, competitors, and natural enemies). Additional dimensionality
may arise as a result of population structure (e.g. age-structure). Hassell et al. ( 1976)
acknowledged this problem, but lacked the tools for dealing with it. Despite this caveat, the
results of Hassell et al. (1976) are still being used as evidence against complex dynamics and, in
particular, chaos (Berryman and Millstein 1989; Berryman, this volume).

Nonlinear modeling of time-series data

The above discussion highlights a major difficulty associated with assessing the type of
dynamics in natural populations. In order to understand and predict population change, we need
information about the abundances of interacting species. The problem is, usually data are available
only for the target population, and we never have the complete data for all species in the
community. It turns out, however, that actions of other species in the community can be detected
by considering the influence of lagged (past) population densities on the current rate of population
change. To illustrate this idea, consider a very simple community consisting of a single predator
and a single prey species, both species having one generation per year (see Fig. 1). The
population density of the next generation of prey, Ny, 1 , will be influenced directly by the current
density of prey, N;. This influence will consist of the effect of reproduction, and any direct density-
dependent effects such as intraspecific competition. In addition, there is going to be an indirect
effect of the lagged density N,.; mediated by the predator population. If N,.; was high, then

— —
N Ny / Nijt
PN, P*—p,
t 1
Figure 1. Delayed density regulation in a predator-prey system.
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predators at generation -1 had plentiful prey, and predator numbers have increased between -1 and
t, negatively impacting the prey population at t+1. Alternatively, if N,.; was low, then predator

population has been decreasing, which will have a positive effect on Ny41. Thus, the system of
two equations describing the dependence of Ny, and P, (predator) on N, and P, can be rewritten
as a single equation describing the dependence of N;,; on Ny and Ny _1:

Niy1 =F (Ni, Npoy).

In general, if there are p interacting species in a community, then N,,; will depend on p
previous lags (Royama 1977). In addition to species interactions, lags can arise as a result of age
structure, maternal effects, and other kinds of population structure. Fortunately, in practice a few
lags (2 or 3) may be sufficient in many situations (Schaffer and Kot 1985a). Analyzing lag
structure of population regulation is a venerable tradition in population ecology (Hutchinson 1948,
Moran 1953, Royama 1977, 1981, Berryman 1978, 1986, Turchin 1990).

The method of reconstruction with lags provides the basis for recapturing the dynamics of a
multivariate system when only a univariate time series is available. I will call this approach,
described below, *“the nonlinear time-series modeling” of data. Nonlinear time-series modeling of
ecological data was independently proposed by Ellner and coworkers (Ellner, this volume; see also
Ellner et al. 1991, McCaffrey et al. 1991, Nychka et al. 1991), and by Turchin and Taylor (1992;
see also Turchin 1991, 1992). This approach is similar to the methods of Eckmann and Ruelle
(1985, Eckmann et al. 1986) and Farmer and Sidorowich (1987, 1988) that were proposed for
physical applications. Its major departure from the physical methods is its explicit treatment of
noise (the exogenous component) as an integral part of dynamics.

The general model underlying the approach is:

Ny=F N;1,N¢t-2,---N¢p,&y)

where g is the exogenous component, or the noise term. Note that I have changed the subscripts

to reflect the fact that we are fitting a model to the observed change for the year ¢ as a function of
previous lags ¢-1, t-2, and so on. The basic idea of the approach is to use the time-series data to
approximate F. If F has been accurately approximated, then the dynamics of the studied system
can be characterized by simply iterating F on the computer, or more formally by calculating the
dominant eigenvalue and the dominant Lyapunov exponent. The function F can be approximated
in a variety of ways. One approach that seems to work well is the response surface methodology
(RSM) of Box and Draper (1987). RSM is similar to fitting polynomials to data, but both the
response (dependent) and predictor (independent) variables are transformed using the Box-Cox
transformation (Box and Cox 1964). For biological and technical reasons (see Turchin and Taylor
1992) it is better to use the realized per capita rate of population change r; = In(N,/N,.) as the

predictor variable. This variable was fitted with a quadratic surface using the first two lags:

rt=ao+a1X+a2Y+a11X2+a22Y2 +a12XY + &, )
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where X =N, _ 11 andY=N, -% are transformed lagged densities, and the parameters of the Box-

Cox transformation 6 are estimated from data (for more details see Turchin and Taylor 1992). I
emphasize that nonlinear modeling is a phenomenological approach, since parameters g; have no
biological meaning apart from defining a response surface. The goal is to develop an objective
method for extracting endogenous dynamics from data, rather than gain understanding into the
mechanisms that generate fluctuations. Nevertheless, visually examing an estimated response
surface, as well as calculating the dynamical quantities described below, provides a useful
diagnostic tool that may suggest possible mechanisms for subsequent study (for an example see
Turchin et al. 1991).

Once the shape of F has been approximated (by fitting r, ), we can characterize its dynamical

behavior with two numbers: the dominant eigenvalue of the Jacobian of F evaluated at the
equilibrium, A, and the dominant Lyapunov exponent, A. The dominant eigenvalue characterizes
the stability of the endogenous component of dynamics when the level of noise is set to zero: if its
magnitude JA| < 1 then the point equilibrium is stable; otherwise it is unstable (see Edelstein-
Keshet 1988 for a readable introduction to the stability analysis). The Lyapunov exponent is a
generalization of A for dynamics that do not settle on a stable point attractor. It measures the
““sensitive dependence on initial conditions," so that a system with bounded fluctuations and A > 0
is chaotic. The definition of the Lyapunov exponent can be extended to cover noisy systems
(McCaffrey et al. 1991, and Ellner, this volume). I calculated A numerically, using a modified
method of Wolf et al. (1985). The Wolf et al. [1985) method estimates A as the raw of trajectory
divergence averaged over all points on the attractor (in practice, one needs only to follow one
trajectory long enough to ““sample” the attractor). This method assumes thar data were gencrated

by a deterministic system without noise (there can be observation errors, but no dynamical noise),
Including an exogenous component, however, affects the amount of time the system spends in
various regions of the phase space. In other wards, the shape of the attractor is changed, and the
rate of trajectory divergence will need to be averaged over a different set of points compared o the

attractor of the deterministic system. To measure A of a stochastic system, [ modilicd the Walf ¢
al. (1985) method by adding noise to the equation for generating trajectories. In the madilic
method, A is the average rate of divergence between two nearhy trajectories generated by the model
(1) with a random but identical sequence of errors {&;}. When defined this way, A mcasures

trajectory divergence due only to the endogenous component of dynamics. That is, in sysicms

with positive A, trajectories diverge both as a result of and endogenous and exogenous dynamics,
In systems with negative A, endogenous dynamics will cause trajectories to converge, this
tendency being counteracted by divergence due to noise. In order to estimate A nsing (his method
in addition to an estimate of the endogenous component one also needs an estimaie of noise.

modelled the exogenous component as a Gaussian random variable with mean zero, and the
variance estimated by the variance of the residuals from fitting the model (1) to data. Euch
estimate of A was an average of three values obtained by starting with random initial conditions,
discarding the first 100 iterations, and then measuring divergence/convergence rate for the nesl
1000 iterations. The units of A are binary bits per iteration, and the numerical scheme measured A
with a standard error of approximately 0.01 bit/iteration.

In the following section I will discuss the analysis of population ume sernes i three data sels,
First, I will discuss time series data for 13 tree and forest insects (this is largely a subset of 1
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data analyzed in Turchin and Taylor 1992). Nonlinear modeling of these data leads to a conclusion
very different from that reached by Hassell et al. (1976). Next, I will analyze two other data sets,
for which the evidence indicates chaotic fluctuations: small rodents in the Arctic, and measles in
American and European cities.

Forest insects

Unlike the results of Hassell et al. (1976), our analysis revealed a complete spectrum of
dynamical behaviors in the forest insect data set, ranging from stability to chaos. Of the 13 forest
insect cases, only 2 were classified as exponentially stable (Table 1). Six cases were classified as
damped oscillations. However, in one of these cases, Bupalus piniarius , increasing the number of
lags from two to three indicated quasiperiodicity, suggesting that this case may be characterized by
higher-dimensional dynamics, that were misclassified by the two-lag response surface. Another
case, Dendroctonus frontalis , exhibited oscillations of increased amplitude that appear to become
chaotic during the second half of the series (see below). There were one limit cycle and three cases
of quasiperiodic dynamics (these are similar to limit cycles, but have an irrational period, so that
the solution never repeats itself; see Schaffer and Kot 1985a for a classification of various
dynamical behaviors). Finally, one case was classified as chaos. In sum, almost half of the cases
exhibited evidence of complex dynamics. I will now examine several selected cases in greater
detail with the goal of checking on how plausible these results are.

Choristoneura fumiferana (spruce budworm) is the only case for which the extracted dynamics
(exponential stability) did not resemble the observed dynamics (Fig. 2). It has been suggested that
this population undergoes periodic outbreaks as a result of some delayed density-dependent process
(Royama 1977, 1984). However, a regression analysis did not detect any signs of density-
dependent regulation, either direct or delayed (Turchin and Taylor 1992). One alternative to
Royama's hypothesis of endogenously generated cycles is that the population may be tracking a
long-term periodic trend in its food base (Turchin and Taylor 1992). Itis too early to attempt to
distinguish between these two (or any other) explanations, since the quantitative data are available
for only one outbreak.

In another case, the population of Dendroctonus frontalis (southern pine beetle) in East Texas,
there is a well-documented environmental trend. During the last 30 years this beetle's food base
has grown several-fold (Turchin et al. 1991). Itis possible that such a resource enrichment led to
an increased instability in the southern pine beetle populations in the South. Note that during the
recorded history of SPB outbreaks the mean population density did not change much, while the
amplitude of outbreaks has increased, with the peaks getting progressively higher and the troughs
progressively lower (Fig. 3). Since the environmental conditions have changed over the observed
period, fitting the response-surface model to these data directly may have led to overestimating the
degree of stability in this population (non-stationarity tends to bias response-surface results in
favor of stability; see Turchin and Taylor 1992). Fitting a response surface to the first and second
halves of the series separately, we obtained diverging oscillations and chaos, respectively. This
result is consistent with the idea that the SPB population is becoming progressively more
unstable as its environment changes.
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Table 1. Results of fitting two-lag quadratic response surfaces (equation 1) o the insect data,

Species (reference) Lengelh  |A|  Dypamics' A

Choristenenra fumiferana

(Hoyama 1981) 28y 071 ES -00.24
Panolis flarmmen
[Schwerdtfeger 1041) 60 y 058 ES -0.01
Dendrolimuy pom
(Varley 1949) 60y 069 O3 0,11
Hyloteuws minastn
(Schwerdefeger 1041) 0y 0.6 03 <042
Lymaniria monocha
[Bajer 1958) 42y D78 05 -0
Hyphanitre cunea
(Morris 1964) 22y 087 05 -0.06
Bupalus piniaring
[Sehwerdtfoger 1941) G0y 0.73 Qs 024
i 1
ﬂl .i” ||| Dendroctonus frontelis
a1 (Turchin et al. 1991) aly 094 05 013
Drepanssiphum platansidia
« [Dixon 1990) Wy 1.3 Lo -0.30
seRpll ey
| YL |

Operophtera brumate
[Varley et ol. 1974) 19y 101 ap -0.07

Lymuontria dispar
[Montgomery and Wallner 1985} Ay 103 ar 0,01

Hetraphere dintann

{Baltensweiler and Fischlin 1988) 38y 107 Q7 -0.10

Phyllaphts foge
{ Dixon 1000) 19y 140 Chaos 0.20

I Diynamics obtained by iterating maode] (1) without noise.

Data were detrended prior to fitting where deing so resulted in 2 substantial increase in the
degree of fit. "Length” column gives the length of the lime serics in years, Columns labeled
“lAl" and A" list the estimated dominant cigenvalue and Lyapunov exponent, respectively, The
type of dynamics exhibited by the estimated response surface without noise (oblained by iterating
cquation (1) with £ = 0) is listed in the column labeled " Dynamics”. ES = cxponential stability,
035 = oscillatory stability, LC = limit eycle, QP = quasiperiodicily.
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Figure 3. Population Muctuations in Dendroctonus frontalis .
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The populations of Drepanosiphum platanoidis (sycamore aphid) and Zeiraphera diniana (larch
budmoth) provide arguably the best examples of periodic dynamics among insects (Fig. 4 and 5).
Both visual examination and more formal analyses (e.g. estimating the autocorrelation functions;
see Turchin and Taylor 1992) suggest that these two populations are characterized by complex
periodic dynamics. Such cyclic populations provide an opportunity to test the ability of nonlinear
modeling to accurately reconstruct complex dynamics from time series of real insect populations.
The logic here is that if the method is not capable of reconstructing limit cycles and
quasiperiodicity from data, than there is little hope that we can use it to detect chaos. If, on the
other hand, we can accurately reconstruct complex dynamics such as limit cycles and
quasiperiodicity, then confidence in our ability to reconstruct another kind, chaos, is
correspondingly enhanced. Thus it is encouraging that the method accurately classified both
populations (Fig. 4 and 5). Moreover, the extracted dynamics were very similar to the observed
time series. First, RSM correctly indicated the period of dynamics: 2 years for sycamore aphid,
and = 8 years (observed: = 9 years) for larch budmoth. Second, the relative amplitude of the
oscillation was also accurately represented, especially when a stochastic exogenous component is
included (Fig. 4 and 5).

The final case is that of Phyllaphis fagi (beech aphid), which was classified as chaotic. As in
the case of limit cycles, the pattern of extracted dynamics has many features resembling the actual

time series. Extracied dynamics were characienzed by exponential growth for 3-4 years followe
by crashes, interspersed by periods of rapid oscillations (Fig. 6). The observed series exhibited 4
similar pattern. However, the data did not exhibit a rigid regulatory ceiling that characterized the
response surface simulations. W¢ conclude that while the response-surface results are suggestive
the case for chaos in the beech aphid population is yet far from proven. Clearly, more yars of
observations, and possibly manipulative experiments, will be necessary before this guestion can be
settled.

Voles in the Arctic

Violent fluctuations in microtine population density have long attracted atiention of anin
ecologists (e.g. Elton 1942). Subarctic and arctic voles and lemmings seem to be particularly
prone to such ““boom and bust" dynamics (for example, cyclicity indices [or vole populations in
Fennoscandia increase from south to north; see Hansson and Henttonen 1985). There is f1iuch
controversy surrounding the mechanistic causes of cycles in arctic rodents (Krebs and Myers 1%/74,
Stenseth 1985, Hansson and Henttonen 1988). Some have even disputed the reality of microtine
cycles (e.g. Getz et al. 1987). Thus the question of whether the endogenous dynamics of northes
voles are stable, periodic, or possibly even chaotic remains unresolved.

Several long-term trapping programs have now generated time-series data of sufficient length
for the analysis of population fluctuations in northern microtines. I analyzed time series [1om
three localities: Kola Peninsula (Koshkina 1966), Alaska (Pitelka 1976), and Finnish Lapland
(Henttonen et al. 1984, and Henttonen, personal communication). ‘The last twao data sets measured
vole abundances twice a year: in the spring and in the fall. Having two observations jier v
creates two problems for ume-series modeling of these data: (1) the data are not taken at equal time

intervals, and (2) the population change reflects within-year seasonal fluctuations in abundance;
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Figure 4. Drepanosiphum platanoides : observed time series (a), and trajectories predicied by the
model (1) without noise (b}, and with noise (¢} (& is normally distributed with mean zero and the
standard deviation o= 0.2).
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Figure 5. Zeiraphera dinigna: observed ume serics (a), and rajectories predicted by the model
(1} without noise (b), and with nose (¢} (g 18 normally distributed with mean zero and the standard
deviation = (1,2,
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that is, the process is non-stationary. In order 10 avoid these problems, 1 analyzed the spring and
the fall series separately. This procedure also resulted in an increased number of time series for
analysis, although fall and spring series are, of course, not true replicates.

Results of fitting response surfaces to these data suggest that population fluctuations of arctic
voles may have a chaotic endogenous component. Out of five estimated Lyapunov exponents,
three were positive (Table 2). Interestingly, in one case with positive A, the data from Kola
Peninsula, the deterministic dynamics without noise settled onto a quasiperiodic atiractor, This
result suggests that environmental noise may force the population density 1o spend more time in
those areas of the phase space where nearby (rajectories diverge, and less where rajectories
converge, resulling in overall divergence when averaged, If this explanation is correct, then the
Kola population provides an interesting example of how nonlinear but non-chaotic endogenous
dynamics may interact with exagenous stochasticity o produce chaos.

One troubling aspect of these results, however, is that analyzing spring and fall series in the

Alaska and Lapland data sets yields opposite signs of the estimated A. One possible explanation

of this discrepancy is that the nonlinear modeling resulls may be conservative with respect (o

detecting chaos. For example, non-stationarity of the process that generates data, or insufficient

flexibility of response surface resulting in lack of fit, will bias the results in favor of stability

(Turchin and Taylor 1992). 1 have already discussed how investigating multi-dimensional systems

with low-dimensional models will result in mistakingly classifying complex dynamics as stable.

This problem may well apply to the results of the two-lag response surface if the dimensionality

[l of vole dynamics is three or higher, Moreover, noise also can mask chaotic dynamics, as was
i suggested by Ning response surfaces o simulated data sets generated by a predator-prey model in’
| the chaotic regime (Turchin 1992}, Increasing the level of dynamical nosse decreased the proporion

i

£

il ]

Table 2. Fitting response surfaces to the vole data, (Columns as in Table 1.)

Source of data and species Length  |A] Dynamics’ A
Kola Peninsula (Koshkina 1966) 25y
Clethrionomys spp, 1.06 QP 0.29
Alaska (Pitelka 1976) 18 y
Lemrmuas Spring 1.36 Chaos 0.55
Lemmus Fall 0.61 05 -(.48
Finnish Lapland (Henttonen ef al. 1884) 25y
All species Spring 0.86 05 (.16
All species Fall 107  Chaos 0.03

! Dynamics obtained by iterating model (1) wihtout noise. 0OS = oscillatory stable, QF
quadsiperiodic,
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of simulated data sets that were correctly classified as chaotic from 80% to 30%. By contrast,
increasing noise level in the generating model with stable endogenous dynamics did not increase
the proportion of data sets that were misclassified as chaotic; this proportion stayed below 1%. In
short, it appears that any mechanism that increases the scatter of data points around the response
surface will bias the results in favor of stability. Thus finding two of the five real-world data
series classified as stable is perhaps not surprising.

A close examination of one of the data series, the fall numbers of voles in Finnish Lapland,
provides further insights into the nature of vole population fluctuations. Between 1964 and 1986
the population underwent four well-defined outbreaks (Fig. 7a). However, the outbreak duration
varied from three to six years (Fig. 7a). The autocorrelation function rapidly decays to zero,
indicating that periodicity is not very strong (Fig. 7a). A two-lag quadratic response surface fits
the data very well (Fig. 8), suggesting that a large proportion of variation in population change is
explained by the action of endogenous factors (R 2 = 0.81). The intrinsic rate of increase of this
population, rg, is estimated as 5.5. This is very high -- for example, simple one-dimensional
models such as the Ricker model become chaotic at rg = 2.7 (May and Oster 1976). The dynamics
generated by the estimated response surface without noise are very similar to the observed
dynamics (Fig. 7b). The Lyapunov exponent of the system without noise is relatively small at
0.10. Adding noise to the system further decreases it to 0.03, suggesting that in this case noise
makes the system more stable. Interestingly, the attractor characterizing the estimated
deterministic dynamics consists of four distinct pieces. In short, these results suggest a case of
“*weak chaos": a system not very far from a bifurcation point between a four-point limit cycle and
chaos, with strong periodicities still evident in temporal dynamics (see Fig. 7b).

Measles epidemics

Measles epidemics have recently received much attention as possible cases of chaos in ecology
(Schaffer and Kot 1985b, Olsen et al. 1988, Olsen and Schaffer 1990). The case for chaos in
measles is supported by two complementary lines of evidence: analyses of time-series data using
the reconstruction technique, and a priori modeling using the SEIR (susceptible-exposed-infectious-
recovered) framework (for review see Schaffer et al. 1990). Olsen et al. (1988) have also calculated
Lyapunov exponents for a number of data sets. However, they defined the Lyapunov exponent as
the rate of trajectory divergence due to combined effects of endogenous dynamics and noise. This
definition is not very useful, because noise will always cause trajectory divergence, and therefore
positive Lyapunov exponents. Thus, Olsen et al. (1988) estimated positive Lyapunov exponents
both for measles and for the disease that is not chaotic, chicken pox. The definition of A that I use
here does not suffer from this problem, and thus it could be instructive to apply the method of non-
linear modeling to measles data sets.

Measles data sets consist of monthly cases reports. Analyzing monthly data directly,
however, has a disadvantage in that the generating process is not stationary, since there is a
systematic seasonal variation in contact rates. Seasonally driven variation in contact rates causing
annual peaks is well understood (London and Yorke 1973). The interesting question is whether
interannual fluctuations are chaotic (at least in part), or whether the irregularity in fluctuations is
due entirely to exogenous factors. Accordingly, I aggregated monthly cases into the total number
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Figure 7. (a) Time series of vole population density in Finnish Lapland. (b) A sam :
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Figure 8. The response surface estimated for vy as a function of N ; .y and N,.2 (voles in
Finnish Lapland). Data points are plotted as wiplets (r; , N ;.1 , N ; _2) in the three dimensional

space. The length of the line connecting sach data point to the estimated surface indicates the
magnitude of the residual,

of cases reported each year. This procedure also has the advantage of reducing the influence of
observation errors present in each monthly report, as well as any systematic biases that could cause
under-reporting in some months compared o others,

I begin with a detailed analysis of one data set, measles in Baltimore, This time series
illustrates the problem common 1o many long-term data sets: lack of stationarity. For the first 25
y (1928-1952) the population trajectory appears (o be stationary, undergoing erratic fluctuations
with approximately the same mean and variance (Fig. %), After 1952, however, the nature of
fluctuations changes: the system goes into a 2-point oscillation of decreasing amplitude and then it
converges almost to a steady stale, During the mid-sixties another change takes place: the number
of reported cases declines dramatically, The cause of the latter change is known: widespread use of
vaccination in the early 1960s (London and Yorke 1973). The paradox exemplified by this data set
i5 that many data points are necessary 1o accurately quantify the natore of dynamics, The longer
the time series, however, the more likely it is that environmental conditions will change, which
could in turn change the dynamics. One possible approach is to break up long data series into
several shorter pieces, and model each separately, This is the approach that I will follow here,
Another approach is to add the time dimension 1o the space within which the time series is
embedded. This approach (currently under investigation) is promising because it could allow us to
explicitly model temporal changes in dynamics,
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Estimating a response surface for the first 25 v of Ballimore data yields a striking result:
although temporal fluctuations look very erratic, suggesting noisy dynamics, embedding the time
series in three-dimensional space reveals that the data points are clustered close 1o a two-
dimensional surface (Fig. 10). The fitied response surface captures a high percentage of variance in
r: R 2 =091 (also note that the intrinsic rate of increase is very high: rp = 5). This result
suggests that the primary cause of fluctuations in this time series may be endogenous. Indeed,
trajectories generated by the estimated surface without noise are chaotic (Fig. 11b), and the
estimated A of the noisy system is 0,42 bit / y, one of the highest Lyapunov exponents extracied
from ecological data sets discussed in this paper. In sum, this data set appears to provide an
example of how a simple functional relationship between population change and past population
density (Fig. 10) can produce very complicated temporal dynamics (Fig. 11}, the idea that
motvated the early fascination with chaes in ecology (e.g. May 1974, 1976).

Analysis of the rest of the measles data sets reveals a high propertion of posiuve Lyapunov
exponents (Table 3). To ameliorate the influence of nonstationarity, [ broke long data sets (more
than 40 y) into two picces, and analyzed each piece separately (e.g. Bornholm 1 and 2 in Table 3),
I have also detrended series where doing so substantially improved 82 of the fit. The results
indicated that 7 out of 13 series were characterized by positive A, Again, such a high proportion of
positive As is a strong indication that measles dynamics tend 1o be chaotic, since the method is
biased in Favor of finding stability, and many apparently non-chaotic cases may have been
misclassified as a result of a o low embedding dimension and noise. In fact, a more detailed
analysis of the New York data showed that increasing the embedding dimension 1o three produces a
positive estimate of A, This result agrees with the conclusions of Ellner (this volume), who also
found that one needs al least three lags o correctly estimate A Tor New York measles (see Ellner's
Fig. 9).

=

log N(t)
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30 35 40 45 50 55 60 &5 70
YEAR

Figure 9. Annual cases reports of measles in Baltimore, 19281972,
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Figure 10. The response surface estimated for the Baltimore measles data (1928-1952).

Conclusion

In summary, nonlinear modeling of ecological time series reveals a rich spectrum of complex
dynamical behaviors. In two data sets, voles and measles, the frequency of positive Lyapunov
exponents appears to be too high to be easily explained away as spurious. There is also a real
possibility that many higher-dimensional complex dynamical behaviors have been misclassified as
noisy stability. On the other hand, the data sets analyzed here represent organisms with high
intrinsic rates of increase, whose dynamics frequently exhibit violent fluctuations in population
density. It is likely that complex dynamics will be more frequent in such systems.

It is often argued that populations characterized by chaotic dynamics will be eliminated by
natural selection, because such populations would go through periods of low density, during which
population extinctions would be likely (Berryman and Millstein 1989). One can argue in the same
fashion about populations characterized by limit cycles, since they would also go through periods
of low density. This argument is suspect because it is basically a group-selectionist argument.
Individual selection, by contrast, is expected to favor high intrinsic rates of increase, thus
promoting the possibility of limit cycles and chaos.

The danger of extinction in chaotic populations is more apparent than real, especially for
populations of abundant organisms (such as insects that are characterized by high average
population densities). In many population models chaotic fluctuations can have a relatively low
amplitude of fluctuation, e.g. two orders of magnitude. Populations of real insects typically
fluctuate with much higher amplitudes: 10 out of the 13 insects in Table 1 undergo fluctuations
with amplitude of 3 orders of magnitude or higher. One of these populations, the larch budmoth,
oscillates with more than 5 orders of magnitude! Nevertheless, despite such extreme fluctuations,
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Figure 11, (a) Annual cases reports for measles in Balimore from 1928 o 1952 (observed
time series). (b)) A sample trajectory generated by the model (1) without noise; parameters
estimated by fitting Baltimore measles data,

and the prayers of Swiss foresters, the larch budmoth exhibits no signs of going exunct,
Moreover, under certain circumstances chaos may actually reduce the probability of extinction,
rather than increase it. Recent resulis in metapopulation theory indicate that persistence at the
metapopulation level is promoted by asynchrony among the subpopulations (Reeve 1988).
Sensitive dependence on initial conditions means that two subpopulations starting from almost
dentical initial conditions will diverge very rapidly. Thus chaos promotes asynchrony, and
therefore metapopulation persistence, This idea was recently investigated with metapopulation
models in which global climate patterns cause synchronization among subpopulation fluctuations,
and it was shown that probability of persistence is enhanced when local populations fluctuate
chaotically (Jon Allen, pers. comm.).
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Table 3. Fitting response surfaces (o the measles data. (Columns as in Table 1.)

Source of data Length |A| Dynamics' A

Aberdeen 20y 0.86 0S5 -0.19
Baltimore Co. 27y  0.57 08s -0.23
Baltimore 25y  2.69 Chaos 0.42
Bornhelm 1 21y 110 LC .13
Bornholm 2 22y 0.60 05 -0.12
Copenhagen 1 20y  1.37 LC 0.05
Copenhagen 2 20y 2,34 LC 0.25
Detroit 1 22y 153 Chaos .14
Detroit 2 21y 1.89 LC 0.34
Milwaukee 1 27Ty 127 LG 0.23
Milwaukee 2 2ty 078 05 -0.03
New York 3y L1.14 LC 0,13
St. Louis 20y 077 03 -0.09

| Dynamics obtained by iterating model (1) without noise.

I have argued in this paper that applied ecologists and, in particular, forest managers should
seriously consider the possibility of complex dynamical behaviors in natural populanens, Itis
easy to blame weather for insect outbreaks, but the reality may be that populations of many forest
insect pests fluctuate in response to density-dependent factors, such as interactions with resources
or nataral enemies. This is not a pessimistic conclusion. On the contrary, if outhreaks of a forest
pest are caused by climatic Muctuations, lite can be done about preventing them until we learn 0
regulate weather. On the other hand, if putbreaks are dnven, for example, by a cyclical interaction
with predators, then a judicious program of biocontrol might help keep the pest in check.
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Detecting Low-Dimensional Chaos in
Population Dynamics Data: a Critical Review

Stephen Ellner!

Introduction

Methods of analyzing time series data for evidence of chaotic dynamics have been extensively
developed and applied over the last ten years, and as a result chaos is now recognized as a frequently
occurring phenomenon in physical, chemical, and physiological systems (for surveys see, e.g.,
Olsen and Degn 1985, Mayer-Kress 1986, Schuster 1988, Glass and Mackey 1988, Krasner 1990).
These methods have been applied to data on the dynamics of natural populations, with the
conclusion that there is evidence for low-dimensional chaotic dynamics (Schaffer 1984; Schaffer
and Kot 1985a, b,1986; Kot et al. 1988; Schaffer et al. 1990; Olsen et al. 1988; Sugihara and May
1990), but the validity of these analyses remains controversial (May 1987a, b; Pool 1989a, b;
Berryman and Millstein 1989; Kot et al. 1988).

In this paper, my goal is to show by example that many of the features that have been
presented as evidence for chaos in population dynamics can also be observed in simulated data from
non-chaotic, stochastic population models. I also identify the qualitative properties that create the
spurious impression of chaos. In brief, population fluctuations with a constant period (e.g., one
outbreak each year) but variations in amplitude (some outbreaks larger than others) can easily have
features that have been interpreted as evidence for chaos, even in cases where chaos is not actually
present.

These results leave moot the question of whether or not the populations are actually chaotic.
Their implication is simply that methods of "detecting” chaos imported from other disciplines
should not be accepted uncritically, without examining their ability to tell the difference between
true chaos, and plausible alternative explanations. What is plausible depends on the system under
study, so a method that is perfectly reliable when treating chemical reactions or fluid dynamics in
the laboratory, may be unreliable when applied to the dynamics of natural populations in the field.
Population dynamics may be expected to exhibit unambiguous temporal structure for reasons
unrelated to the presence or absence of chaos -- e.g., overlapping generations, limits to rates of
increase or decrease, seasonality and other gradual trends in environmental conditions -- and it is
necessary to determine if a method for detecting chaos can be fooled by these other sources of
regularity. My contention here is that some methods that have been, and are currently, in use are
unreliable for exactly this reason: the non-random structure they reveal is genuinely present, but it
may not be a sign of chaos. I also review more careful uses of current methods, and describe
methods now in development whose assumptions are more realistic for applications to population
dynamics.

1 Biomathematics Program, Department of Statistics, North Carolina State University, Raleigh,
North Carolina 27695-8203, USA
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Reconstructing Chaotic Attractors

Much of the evidence for chaos in population dynamics is based on graphical atiracios
reconstrud ri- Wi N Lirn- delay co-ordinates, I.II I:. 1f1,.15i". wl.J..'.L-‘.'\‘L'Ll h‘r‘ HlJL'll s (1 '.h !\u}-.'; el i 1950} and

b). To lllust:rate thlS method and 1ts potcnual effecuveness in unmaskmg chaos Fxg 1 shows 1§
i_l}"E:Ll';;I.L':U'f" (o the Rissler differential equations, a standard example of chaos in a simple nonlinea

s;'stem (Schuster 1988). The Rossler equations are the three-variable system

dx — .y D = x40.15y, 92 = 0.2+2(x-
Y, x+0.15y, 42 = 0.2+2(x-10),
at a dt

but the simulated "data set" consists of only x(f), Lo mimic @ siuation in which data are available
on only one species out of a multi-species community. To obtain a chaotic attractor il [
visual appearance of population outbreaks, the values of x(f) were exponentially [ransiommied
(x—sexpla+bx)), but the transformation has no effect on the qualitative properties used as evident

of chaos (Eckmann and Ruelle 1985).

When the data are plotted as "population” abundance x(z) versus ¢ (Fig. 1a), there s i leat
periodicity in the tming of outbreaks bul no regular pattern in their magnitudes, and one migh
easily conclude that the fluctuations in outbreak magnitude are random. However, duractil
reconstruction demonstrates that the fluctuations are entirely deterministic. (Here "random” meas
that future outbreak magnitudes cannot be predicied based on events up to the present, such as s
putbreak magnitudes or past values of exogenous variables affecting the system; a "deterministic

“ n process 1s one which in pring siple can be predicted in advance, given sullicient information aboul
t , events up to the present). For reconstruction in 3- dimensional space, the data values | t(/), i=]
..N} are used to construct the points X(£) = (x(¢), x(++L), x(t+2L)); L is called the lag or [iin
delay. These points are connected in tempor: il sequence by a smooth curve (here, a cubic spling
interpolation) to draw the "reconstructed” trajectory in 3-space (Fig. 1b). This rajectory is clearly
not just wandering at random, but instead traces out a low-dimensional object (the attractor) thas

appcars to lie within a 2-dimensional surface.

This visual impression is strengthened by taking a slice through the attractor (called &
Poincaré section, shown in Fig. 1b as a vertical plane) and looking head-on at the points wher
the trajectory crosses the section (Fig. 1c). The points all bie in a thin band, indicating & one
dimensional intersection between the attractor and the Poincaré section, A Uruly one-dimensionl
intersection with zero thickness would tmply that the attractor 15 contamed i g two-dimension
surface (in fact the fractal dimension of this attractor is slightly above 2, but an dciurniie
determination of the dimension requires more data than are shown here).

Finally, graphing the relationship between successive points on the section {called the
Poincaré map, Fig. 1d) generates points that lie on a single curve. The significance of linding
such a simple Poincaré map, rather than a haphazard scatter of points, is that it reveals i

abundance in the past, future changes in abundance can be predicted with perfect accuracy 'J
essential last step is the conclusion that these same properties hold in the [ull multi-variable
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Figure 1. Attractor reconstruction for data produced by the Rissler equations. (a) The simulated
"data", N = 200 valucs of a single variable x(1). (b} The reconstructed atiractor in 3-space with L
=1 time unit. (¢) A Poincaré section, This is a head-on view of the vertical plane outlined in
Fig. 1b, showing the locations where the trajectories cross from behind the plane o in front of it
ry is the radius (horizontal distance from the left edge of the plane) at the ath crossing, and z, is the
vertical coordinate {i.e., 2, 18 the value of x(1+2L) at the ath crossing time}. (d) The corresponding
Poincaré map, which is the graph of rp4 vs. r, for the section-crossing points shown in Fig, le,
The numerical solutions of the Rissler equations were obtained by fourth-order Runge-Kutta with
variable stepsize (Press et al. 1989}, for ¢ = 0 to 200 with imitial values (xg, yo. zo) = (10, 0, O

the values of x(1) at r = 100.5, 101, 101.5, - - - 200 were recorded.
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system. Takens' Theorem (Takens 1981, Schuster 1988) asserts that this is true, if a sufficiently
large number of lags are used.

How does reconstruction fare with real-world population data? Apparently, quite well. Fig, 2
repeats Schaffer and Kot's (1985b, 1986) atrractar reconstruction for Davidson and Andrewartha’s
(1948) frequently-cited study of outbreaks of the apple blossom thrips Thrips imaginis. Using the
monthly census data (shown in Fig. 2a) as x(f) and reconstructing in 3-dimensional space, an
apparently low-dimensional attractor is obtained (Fig. Zb). that resembles the Rissler attractor in
Fig. 1a. The points on the Poincaré sections lie in a thin-band, suggesting a nearly 1-dimensional
intersection (Fig. 2c), and the Poincaré map for Thrips (Fig. 2b) suggests a single smooth curve
and hence a deterministic explanation of the fluctuations. On the basis of this evidence, Schaffer
and Kot (1986) list Thrips among "apparent examples of real-world chaos,” and reject Davidson and
Andrewartha’s earlier conclusion that the magnitude of outbreaks is essentially random.

Spurious chaotic attractors in a stochastic population model

The results in Fig. 2 reveal some regular structure in the outbreaks of Thrips: but it does nol
necessarily follow that the outbreak magnitudes are chaotic rather than random, because equally
convincing "evidence" for chaos can be generated by non-chaotic models for this population. To
illustrate this claim, I use a simple stochastic population model inspired by Bulmer (1974}, in
which seasonality and bounded rates of change produce temporal structure that mimic features of
chaos. The specific model is

x(t+) = Ax(0P, 0<B <1, )

where x(¢) is the population density (# of individuals or #/area) at time ¢. If A remains constan!
over time, then (1) is a conventional-type maodel for density-dependent papulation growth, whose
solutions converge to the stable equilibrium x = Al/(1-B. The fluctuations in A4 represent two
sources of variation i the population's vital rates: periodic (g.g <easnnal) variations, and year-10-
year environmental variability. These are not ad hoc assumptions for the sake of mimicking
chans, hut have heen recognized by other modelers for populationg on which long-term data wers
available (Bulmer 1974, London and Yorke 1973, Yorke and London 1973) and which wert
subsequently analyzed for evidence of chaos (Schaffer 1984; Schaffer and Kot 1985a, by, 19586,
Schaffer et al. 1990; Sugihara and May 1990). For example, models of infectious diseases in
human populations often include seasonally varying contact rates; and Bulmer (1974), applying
model (1) to Canadian wildlife, invoked periodic variations in prey abundance to explain the
periodic component in predator growth rate. However, like many "strategic” models in population
biology, model (1) is used here as a hearistic devies 1o help elucidate general properties of more
complicated systems, without claiming that it is quantitatively accurate for any specific
population.

Following Bulmer (1974), I used the log-additive form

In A(t) = u+p(H)+ G Z{) (2}
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Figure 2. Auractor reconstruction for monthly census data on Thrips imaginis (Davidson and
Andrewartha 1948). (a) The monthly census data [solid], N = 81 monthly values, and the
estimated periodic component x(i) = exp(y,(1)} [dots]. (b} The reconstructed autractor in F-space
with L = 2 months. (c) Poincaré section and (d) Poincaré map for the Thrips census data.
Following Schaffer and Kot's {19852, b; 1986) procedures, the data were smoathed by taking a 3-
point running average prior 1o reconstruction, and a cubic spline interpolation was used to draw the

trajectory in (b) and to determine the section-crossing points.
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for the input function A(f). u+p(r) is the periodic component of the input, consisting (o)
Ingarithmic scale) of a long-term average (1), and peériodic trends in vital rates with average valoe 18
(D). 71} iz a sequence of independent mndom variahlee with moean B and vardance 1 (thence o 205
has variance ¢ 2), representing random deviations from the "seasonal” trend. Defining y(t) = n 1l
and substituting (2) into (1), gives

y(t+1) = p+p(t)+By(0+0 Z(1). 3

This is a linear equation; hence, the asymptotic (+—oo) solution is easily obtained:

¥(0) = yp()+£(D), (4)

Cp1-8Yl s 3 AR,
where yp() = u(1-B) +k§1ﬂ p(t-k)

i5)

and £(¢) is a first-order autoregressive process with autocorrelation f, satistying efg+1)=[g{i}+0
Z(t). Thus solutions to (3) consist asymptotically of two components: a stable perixic
oscillation y,(f), and superimposed "noise" €&(r) generated by a simple linear stochastic proce
The solutions are never chaotic, and there is no underlying chaos in ®ither companent of (he
solution.

To fit the Thrips data, the equation

3
pO= ¥ (a;in@2m [T;) + bi(cos2at [T})) @
i=1 |

was used with periods T; = 12, 6, and 3 months. The 17- and f-month terms are necded o generae
alternating nuthreak amplitudes; the third term improves the quantitative fit but has no effecton
the qualitative results. Parameier values were estimated by a two-stage least squares method (s
Fig. 3 legend). Since thece parameters are strictly a pasterinri fits 1o the Thrips data, similarities
to the data are not evidence that (1) is the correct model for Thrips. In particular, the alternation of
outbreak magnitudes has been "built in" via (). rather than resulting from a mechanistic model of
population regulation subject only to annual forcing. Such a model would be preferable, but the
information needed to build it (e.g., density responses inieractions with other grganisms, ... 5§
lacking. The point of using (6) with parameters estimated from the data is that spucious evidence

of low-dimensional chaos is not found only at biologically implausible or carefully hand-picked
parameter values.

Fig. 3 shows reconstruction applied to a typical simulation of model (1) with cstimuied
parameters for Thrips (Fig. 3a), duplicating the analysis of the real census data in Fig. 2. Wilh
similar length time-series, the model produces an equally convincing visial imprescion of a low-
dimensional attractor (Fig. 3b), even though it does not have a finite-dimensional attractor. [n facl
with a suitable choice of time-delay L, very similar “attractors” are casily obtained from virtually
any data x(¢) in which (i) there are large outbreaks that nre similar in shape and doration but fy
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Figure 3. Application of equation (1) to Thrips imaginis, (a) A set of simulated census "dawa”
[solid], N = 81 monthly values, and the periodic component x.(f) = exply (1)) [dots]. (b}
Reconstructed attractor for the simulated data in 3-space with L = 2 months, () Poincard section
and (d) Poincaré map for the simulated census data. The parameter values for the simulation were
ap=-0.85 ax=1.11,a3=-0.16, by =-0.87, by = 0.02, b3 =034, =077, p = 2.36, § = 0.52.
The a;, b;, and g were chosen to minimize Ze()? for y{f) = observed values of In{Thrips
abundance}, and then J and o were estimated by fitting an AR(1) model to gt). In both stages the
maodel is linear in the parameters, so estimates were oblained by ordinary least squarces, Maximum
likelihood parameter estimates assuming Gaussian Z(0)'s (proc AUTOREG in GAUSS) were nearly
identical. The simulated data were smoothed and interpolated as in Fig. 2.
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varying amplitudes; and (ii) there are extended periods of time between outhreaks, during which x{)
is small compared to the outbreaks (e.g., Fig. 4).

As in Figs. 1 and 2, the points on a Poincaré section (Fig. 3c; compare with Fig. 2c) lie in
thin band. A quantitative measure of thickness, appropriate for the nearly linear relauonship
among the points on the section, was obtained by fitting the points with a guadratic curve
regressing z, (the vertical co-ordinate of the points shown in Fig. 3c) on r, (the horizonl ¢
ordinate). The measure of thickness was 8 = (standard deviation of residuals) + (standard deviatio
of r, values). In 250 simulations of model (1), log 106 had a very nearly Gaussian distributics
with mean —1.15, standard deviation 0.33. The thickness for the actual Thrips data, log g0 =

0.98, is entirely consistent with these values; i.e., the model and the data are equally "low-
dimensional”.

Finally, the Poincaré map for the model (Fig. 3d) is essentially the same as that seen in the
data (Fig. 2d). Fitting the points with the equation r,yy =ar,? is significant in both cases (P <
.001, R2 = .77, .83 for the Thrips data and model output shown, respectively, in a log-|
regression), but at least for the model, the appearance of a single smooth map is spurious. Muxel
(1) actually generates two separate clouds of points near the axes, one showing the relationshiy

Random Amplitudes

x(t+2L)

\—-
R

Figure 4. The reconstructed "attractor” in 3-space for a model with "white-noise” ocuthreal
amplitudes, N = 200 values for 0 <1 <40, L = 0.4. The data were generated by the equation

x(t)= Y exp(aj-20(t-4]) ),
J=1

which produces outbreaks of duration = 1, at times ¢ = 4, 8, 12,...40. The amplitudes a; were
independent random draws from a normal distribution with mean 0, variance 0.25.
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between a Fall outbreak and the following Spring outbreak, the other the relationship between a
Spring outbreak and the following Fall outbreak. The elongated shape of the clouds results from
the greater variation in the amplitude of large outbreaks compared to small outbreaks.

Model (1)'s ability to generate data with features of low-dimensional chaos is not limited to
short data-sets. When the simulations are extended from 7 to 70 years of monthly values (Fig. 5),
there still appears to be a low-dimensional attractor. In 500 simulations, the Poincaré section
remained thin [log108 = —1.00 * 0.17(SD)], and the fit of the apparent Poincaré map by the
equation r,,] =ar,P was still highly significant [P < .001 in all cases for a log-log fit; average
R2 = .31 £ .067(SD) for all crossings, 0.53 + .061(SD) for crossings n+1 and n less than 9
months apart: see Fig. 5 legend]. Simulations extended to 200 years gave nearly identical results
[log108 = -0.97 + 0.13(SD); R2 = .31 £ .041(SD) for all crossings, 0.53 % .036(SD) for crossings
less than 9 months apart, P < .001 in all cases].

Why does this model mimic chaos?

The example shown above is not just a fluke, because there are identifiable qualitative features
of model (1) which allow it to produce spurious signs of chaos. The apparent one-dimensionality
of the Poincaré section points in Figs. 3 and 5 is a consequence of the specific choice of Poincaré
section and of the time-lag L used in plotting the attractor. The Poincaré section is typically
chosen to be the vertical plane defined by the equation x(f)-x(t+L) = 0 (Schaffer 1984; Schaffer and
Kot 1985a, b,1986; Kot et al. 1988; Schaffer et al. 1990; Olsen et al. 1988). Intersection points
are recorded whenever x(t)-x(t+L) goes from negative to positive (crossing from behind the plane to
in front of it, in the perspective of Figs. 3 and 5). These crossings occur at times f, when x(t,,)
and x(¢,+L) are equal and straddle the peak of an outbreak (Ij‘ig. 6a, b). Thus the radial coordinate
of the point of intersection (r, in Fig. 3c, d) is roughly proportional to the outbreak amplitude.
The vertical coordinate of the intersection point (z, in Fig. 3c), is x(t,+2L). For the value of L
used in this reconstruction, z, sits very near to the next trough between outbreaks. As a result, z,,

shows little variation relative to the outbreak amplitudes, and all points of intersection lie near the
one-dimensional curve z, = 0 on the section.

This bias toward a low-dimensional appearance is most pronounced if z, sits exactly at the
bottom of the trough between outbreaks. If outbreaks are symmetric about their peaks, with
troughs occurring halfway between peaks, then the choice of L that achieves this is L* = T/3
where T is the time between peaks. Reconstructions of population dynamics (and many other
systems: e.g. Roux et al. 1983, Mpitsos et al. 1988) have often used values of L near T/3, based
on the generalization (Schaffer 1984, Schaffer and Kot 1985a) that values between T/5 and T/2
usually give the best results. For example L* = 2 months for Thrips (L = 2 months used here and
by Schaffer and Kot 1985b,1986), L* = 3.2 years for the Canadian lynx cycle (L = 3 years used by
Schaffer 1984, Schaffer and Kot 1986). Reconstructions of measles and other childhood discase
data (T = 12 months, L* = 4 months) are often cited as examples of low-dimensional attractors
(e.g. Olsen and Degn 1985,1988, May 1987a, Stewart 1989, Schaffer et al. 1990, Sugihara and
May 1990). In these studies usually L = 2-3 months has been used; consequently x(t,+2L)

precedes the trough, but it is still negligibly small compared to the outbreaks on an arithmetic
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Figure 5. Simulations of Equation (1) for 70 years of monthly values, with parameters as in
Fig. 3. (a) The reconstructed "attractor” in 3-space with L = 2 months. (b} Poincaré section as i
Fig. 3; the thickness of this section is log;p @ = -0.85. (¢) The Poincaré map as in Fig, 3. The
mdicate (75, r41) pairs for which the successive crossings of the Poincaré section occur more tha
9 months apart, rather than at the usual 6-month interval, due to exceptional patterns of
environmental variation that eliminate the small outbreak in some years. The solid line is the
equation ry 41 = 584.9r, 0756, fit by log-log regression with the exceptional (x) crossings excl o
(R2 = 58, P < .001); the fit remains significant if exceptional crossings are not excluded ( e
310.8r, 0358 R2= 31, P < 001). The simulated data were smoothed and interpolated as in Figs
Zand 3,
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Figure 6. Locations of Poincaré section crossings in reconstructed population trajectories X(r),
with smoathing and interpolation as in Figs. 2 and 3. Values of x(t,}, x{t,+L) and xit,+2L) are
' shown by a triangle, circle, and box, respectively; x{t,+ 2L} is the vertical co-ordinate of crossing
points on the Poincaré sections used in Figs. 2 and 3. (a) Thrips monthly census data, L =12
months. (b) Model (1) with Thrips parameters, L = 2 months. (c) Measles incidence in Baltimore
' on logarithmic scale, L = 2.4 months. (d) Measles incidence in Baltimore on arithmetic scale, L =
2.4 months., Measles incidence data were taken from Yorke and London (1973).
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scale (Fig. 6¢, d). Thus, the one-dimensional appearance of the Poincaré sections does
"confirm the approximately two-dimensional nature of the flows" (Schaffer and Kot 1985a), and is
not reliable evidence for low-dimensional dynamics.

the two clouds of points in Figs. 3 and 5, which the eye (and statistical curve fitting) can easil
interpret as a smooth curve plus random errors. For data having a single dominant frequency wi
superimposed random noise, the Poincaré "map" is just a sin gle random scatter of points (e.g., K
etal. 1988). The reason for alternating outbreak magnitudes in Thrips is not known. Schaffer and
Kot's (1985b, 1986) hypathesis of chaotic interactions with other organisms is a possibility, si

models of multispecies interactions can oscillate with several frequency components. However
second frequency might also result from seasonality (e.g., two periods each year when temperatur,
moisture, abundance of food or paucity of natural enemies, etc. allow a period of populatil
growth). Moreover, random environmental fluctuations can interact with Bge-structure or naon:
chaotic mechanisms of population regulation, to produce oscillations with several distin
frequency components (Nisbet and Gurney 1982). This counterintuitive behavior — a non periodie
perturbation producing a periodic response — can occur because intrinsic population regulation may
act as a "filter” on the environmental "noise," amplif ying some frequencies while damping others.

Thus there are plausible alternatives to chaos as an explanation for the alternating outhreak
magnitudes.

"Stretching and folding” (Roux et al. 1983), a feature of chaotic attractors seen in diseist
(Schaffer and Kot 1985a) and lynx (Schaffer 1984) population data, can also occur in madel (1,
Stretching (divergence of nearby trajectories) occurs at values of x and ¢ where

ﬁ{l(t)xﬂ} = BA(/x1-B

is > 1, while folding (convergence of trajectories) will tend to occur if the same expression is < |
Since 1- B> 0, (1) will have both stretching and folding if parameters are such that outbreaks ae
sufficiently large and rapid: stretching during the increase (x small, (i) large) and folding during
the decrease (x large, A(¢) small). ]

Nonlinear forecasting methods

Sugihara and May (1990) have recently suggested a graphical approach hased on nonlinear
forecasting for identifying chaos in short, noisy time-series. Their method is based on i
sensitive dependence on initial conditions that characterizes chaotic Syslems: trajectories that sian
near to each other diverge exponentially. Hence attempts (o predict future values become less and
less accurate as one tries to predict further into the future. Sugihara and May (1990) suggest using
this property to test for chaos, by using the first half of the data to construct a serics af
nonparametric time-series models for predictions T,=1, 2, 3, ... time-units ahead, and

determining the models’ accuracy when applied to the second half of the data, Aceording (0.
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Sugihara and May (1990), a decrease in prediction accuracy as T, increases is "a signature of
chaotic dynamics as distinct from uncorrelated additive noise,” while a constant prediction accuracy
“indicates pure additive noise.”

Sugihara and May's (1990} method has been extended by Wolpert and Miall (1990) 1o ather
prediction models, and Suglham et al. (19907 present applications to measles incidence data, An
example of the method is shown in Fig. 7. Following Sugihara and May (1990) T used first-
differencing to reduce first-order lincar correlations, a nonparametric model based on averaging
nearest neighbors as the predictor, and the correlation coefficient p between observed and predicied

Nonlinear prediction: 7=1
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Figure 7. Sugihara and May's (1990) nonlinear forecasting methad for distinguishing between
chaos and measurement errors, Solid: a noisy sine-wave x, =sin(2m/10)+U, ¢ = 1, 2, 3, ... with
t/, independent random draws from a uniform distribution on the interval [-0.25, (.25]. Dash: the
chaotic logistic map x,.1 = 4x;(1-x;). The graphs show the prediction accuracy (correlation
coefficient p between observed and predicted values) as a function of the prediction interval T),. For
example, p(3) is the correlation between observed and predicied values 3 time-steps into the future.
N = 1000 data values were used for each, with the first 500 values used w define the model and the
remainder used to determine the prediction accuracy. The time-delay for both was L = 15 the
number of lags was = 3 for the logistic, d = 5 for the sine-wave, For the logistic I [ollowed
Sugihara and May's (1990) recommendation, choosing d to maximize the one-step-ahead prediction
accuracy., For the sing-wave this procedure was not possible, as the accuracy continued 1o increase
as additional lags were added, but for & = 5 the values of g remained nearly unchanged up to d = 10,
the largest value examined.
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values as the measure of prediction accuracy. The prediction-accuracy crterion clearly differentinies I
herwesn chaotic data (from the logistie map) and noisy perniodic dat (o cinecwave with addinya I

noise).

However, chaos versus "uncorrelated additive noise™ is an unrealistically narrow range of
alternatives to consider for population dynamics. Cince nonlinear stochastic models are admitted s
alternatives, the property used as the sign of chaos ~ declining prediction accuracy with increasing
prediction interval — is not at all unique to chaotic systems. Many finite-order Markov processes
have the "mixing” property. that present and future values are asymptotically independent as the
temporal separation increases. The rate at which prediction accuracy decays for such processes
therefore depends strongly on how well the short-term prediction model matches the =crugl
dynamics; hence alternate treatments of the same data may give contradictory results.

Rather than construct hypothetical examples of this phenomenon, | have used some of the dats
analyzed by Sugihara and May (1990). Measles incidence in New York City satisfies the criterion
for chaotic behavior: prediciion accuracy one month ahead 15 high, prediction accuracy 6 or morg
months ahead is low (Fig. 8a). However, after log-transformation the prediction error 15 constant,
satisfying the criterion for nonchaotic periodic oscillations. The intermediate square-rool
reaneformation gi\r{tx resulte of the sort that Hugih:ar:l and M:a}' (15904 '[nli:rpml az a mix of chaos
and random measurement errors. Of course only one of these descriptions can be correct. The
same can he done in reverse to chickenpox incidence: the untransformed data are interpreted as
nonchaotic with measurement errors (Sugihara and May 1990), but after cxponecntial

I transformation there is declining prediction accuracy, indicating a miv of chans and random ermrg

!
EI (Fig. 8b).

Sugihara and May (1990) acknowledge that their method may be unable to distinguish
between chaos and autocorrelated noise. The point of the examples here is that this cavear may
often be fatal for applications to population dynamics. Both chaotic and stochastic dynamics can
have gntacarrelationg, and the chort-term antoencrelations that determine the shape of an outbreak
are affected by data transformations; e.g., log transformation converts multiplicative noise 1o
additive noise, and rounds off "spiky" outbreaks. The relative accumcy of short-term vs, long-term
predictions, therefore, will be eenzitiva tn the eeala of meggyremant. and may not provide o clear
indication of chaos.

b iin Saaniiil )

More quantitative approaches to detecting chaos

Onantitative methods for characton wing r.hnntir:-!imking data have heen dnur:'ln_pf!d over the last
decade by theoretical physicists (e.g., Eckmann and Ruelle 1985, Schuster 1988). The methods
most commonly used in applications (Krasner 199(1} are based on calculating a few key quantities
that characterize a system's dynamics — primurily the Tygpunov exponents (defined below) and the
dimension of the attractor (Eckmann and Ruelle 1985). Accessible surveys of the availahle
methods and their limitations can be found in the physics literature (Mayer-Kress 1986, Alhano et
al. 1987, Abraham et al. 1989, Theiler 1990), and their uses for analyring population dynamies
data are examined by Godfray and Blythe (1990).
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Figure 8. Effects of data-transformation on prediction accuracy in the nonlinear forecasting
method, (a} Monthly reported cases of measles in New York City, 1928-1963; untransformed data
vs. square-root and logarithmic transformations. (b} Monthly reported cascs of chicken-pox in
New York City, 1928-1963: untransformed data vs. an exponential transformalion
{x—rexp(4.3+.0024% )} and its square rool (x—rexp(2.15+.0012%x)). The values of L and 4 are

those used by Sugihara and May (1990). The mmcidence data were taken from Yorke and London
(1973).
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These methods are reliable if the data are abundant (103- 105 values), if measurement error i
nil, and if the data really come from a determinictie system (Mayer-Kress 1986, Abraham et al,
1989). With careful fine-tuning some methods can be also applied 1o maoderate-cize data sels
(several hundred values) with small measurement errors (e.g. Albano et al. 1987, Ellner 1958,
Grassberger 1988, Rapp et al. 1988, Havstad and Ehlers 1989, Smith 1991). However, if data are
gparse, have limited accaracy. or come from g system exposed to random perturbhations, the resulis
may be ambigous or simply incorrect if taken at face value (e.g., Ramsay and Yuan 1985, Riyglle
1990, Smith 1991).

Nonetheless, the option remains of using the physicists' methods anyway, paired will
extensive simulations to determine their behavior under non-ideal conditions. This option is
critically dependent on having a limited "universe" of credible competing models 1o use as trial
cases. Sayers (1990) enmmarizes seonometricians’ per of thols from chaos theory in this way, 10
evaluate the adequacy of linear models for macroeconomic data. Thg definite results are modest -
in several cases low-order linear models are not able to account for features of the data — huit they
are as reliable as any other statistical test of a null hypothesis.

Schaffer and co-workers have taken this line in arguing the "case for chaos in childhoo
diseases” (reviewed by Schaffer et al. 1990). The class of SEIR models is the universe of
alternatives, and simulations of chantig vs. nnise-perturbed non-chaotic SEIR models are used (o
establish a baseline for interpreting results on empirical data. Again, this approach means that the
definite cnnelusiong are maore modest than one wanld like: for example, measles incidence data are
consistent with a chaotic seasonal SEIR model, and not consistent with a non-chaotic seasonal
SEIR model with additive Gaussian perturbations representing finite-population effects. Therefore
there is a possibility that other stochastic models, perhaps incorporating environmental variability
rather than finjie-population effects, could prodoce dimension and exponent estimales consistent
with the data. Monetheless, the chaos-based analyses have discovered aspects of the data that were
not apparent using more traditional approaches, and have effectively eliminated from contention
ezirlier hypotheses invoking finite-popolation effects to explain the ermtic iming and magnitde gf

outbreaks.

For population studies, however, it i5 rare to have the information needed to define a limited
class of plausible models. To get around this problem, one would need a statistical theory for
estimates of attractor dimension, I.yapunnv exponents, or other measures of chang, one which is
valid over a very broad class of models (Sayers 1990). In particular, the universe of alternatives
must include both noise-driven and chaotic nonlinear dynamics.

A surprising finding in recent years is that statistical methods of ume-series modeling can be
successful at identifying the "rules" (i.e., the equations of matinn) governing a deterministic
chaotic system (e.g. Farmer and Sidorowich 1987, 1988a, b; Casdagli 1989; Abarbanel et al,
1990; Abraham et al. 1989). The "moral” of chaos is that apparently complicated dynamics can
be produced by simple rules, such as the density dependence described by the logistic map. In such
cases, often more can be learned from limited data by estimating the rules, rather than by
estimating quantities indicative of chaos directly from the data.



Motivated by these findings, I and several colleagues have been developing statistical theory
for estimates of Lyapunov exponents based on nonlinear time-series models (McCaffrey et al.
1991, Ellner et al. 1991). Lyapunov exponents quantify the sensitive dependence on initial
conditions that is the defining feature of chaos: a system with bounded fluctuations is chaotic if its
largest Lyapunov exponent A is positive. Lyapunov exponents are defined at any level of noise
(Kifer 1986) and therefore provide a very general criterion for identifying chaos when a stochastic
component may be present. However the predominant method for estimating A from data (Wolf et
al. 1985) assumes a priori that the data were generated by a deterministic system, as does Wales's
(1991) method based on forecasting (which uses relationships between A, entropy, and prediction
errors that break down if noise is present).

The basic model we consider is
x(t) = fix(t-L), x(t-2L), -, x (¢-dL)) + o€(t), @)

where f is an unspecified nonlinear function, and &(¢) is a sequence of uncorrelated random
perturbations to the dynamics. When o = 0 (no noise) this model is equivalent to standard attractor
reconstruction in d-dimensional space, but our methods allow for ¢ > 0, acknowledging the
possible importance of random variation in factors affecting the system. Of course (7) has a roster
of questionable assumptions (the noise is uncorrelated over time with constant variance;
measurement errors are ignored), but it is a first step and certainly more realistic than setting =0
a priori.

Because f is unknown, we are using nonparametric (e.g., spline) or "semi-nonparametric”
(SNP) estimates of f. SNP estimates are based on truncated series expansions,

N k
X)) =apt T a;gi(X;6;)
i=1 ®

in which X is the state vector (x(t-L), x(¢-2L), . - - x(t-dL), g; is a specified set of "basis” functions,
and 6; is a set of estimated parameters. SNP shares the advantage of nonparametric methods that

one need not choose a specific functional form for f which reduces the problem (recently re-
emphasized by Morris 1990) that the results of fitting a model to time-series data may be highly
dependent on the model chosen. The number of terms in the expansion (k) can be chosen
objectively on the basis of the data (Gallant and Tauchen 1990), much like choosing the order of a
polynomial regression. Parametric approaches using local polynomial models have been proposed
independently by Briggs (1990), and Bryant et al. (1990). Turchin and Taylor (1991; see Turchin,
this volume) have proposed a method specifically for population dynamics based on global
polynomial models.

Given an estimate of f and the observed values of X(¢), estimates of the Lyapunov exponent
can be derived from its mathematical definition in terms of the partial derivatives of f (McCaffrey
etal. 1991). Under some reasonable qualitative assumptions about (7), we have proved that these
estimates are consistent (i.e., the estimates converge to the true value as the sample size increases),
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and have derived their asymptotic rate of convergence (McCaffrey et al. 1991, Ellner et al. 1991),
These results demonstrate that our methods are applicable to systems with a stochastic COMPOnEnL

In simulation trials, estimates based on (7) have worked quite well when the number of lags?
(d) and the time-delay (L) are known (McCaffrey et al. 1991, Nychka et al. 1991). For example in -
20 trials with N = 100 values each from the Henon map (d=2,L = 1) with Gaussian addifive

measurement errors (o = .05), we obtained A = 0.386 + 0.04 (standard deviation), using a "neunral
net” SNP model (Gallant and White 1991; McCaffrey et al. 1991). The correct value is 4 = (1.418
(Vastano and Kostelich 1986). To conclude that a system is chaotic, one only needs to know Lhl
A is positive; hence this degree of accuracy is more than adequate. Allowing for noise in the mode]
does not necessarily degrade the performance in noise-free situations. Again, using the Henon

system, with local spline estimates of J, we obtained estimated exponents 4 = {1416 + 00,0144

(standard deviation) with N = 500 data values, and 4 = (1420 + (10102 (standard deviaton) with ¥
= 1000 (n = 20 repetitions in each case). With the standard methods, results with 1024 data values
were "poor”, and reasonable eimates (within 10%) required several thousand data points {Vastang

and Kostelich 1986). Briggs (1990) reports similarly good results using Jocal polynomial models
based on 200 — 2000 noise-free data values,

Unfortunately, 4 and L are generally unknown. The problem of identifying "correct” aor

"optimal" values of 4 and L for attractor reconstruction has received considerahble attention, but

there is no generally accepted solution (Abraham et al. 1989). Early suggestions for choosing 4

“r and reducing noise (Broomhead and King 1986) have proved nnsuccessful in general (Mees et al,

' ; 1987, Fraser 1989). More recent suggestions include Sugihara and May's (1990) prediction
iy accuracy criterion, the BIC Bayesian criterion for identifying the arder of time-series models ({8
111 Potscher 1989, Gallant and Tauchen 1990), and information-theoretic criteria based on "mutual
information" and "minimal redundancy” (Fraser and Swinney 1986, Fraser 1989, Lichert and
Schuster 1989). These all try to quantify the intuitive idea thar 3 good chowce of d and L gives
maximum ability to predict the system’s future from a minimum number of measurements of its
past, but they often give different results. For example, the Sugihara-May and mutual information
criteria choose L = 1 month and L = 4 months respectively for the NYC measles data, and [, =
1/24 and L = 1/6 of the time between outbreaks for the Réssler equations (250 x-values with
values recorded every 1/24 of the inter-outbreak interval). BIC gives consistent estimates of model
order in autoregressions under certain assumptions (Pétscher 1989), but with small data §e1s il

tends to be conservative, choosing a model with slightly too few parameters (Gallant and Tauchen
1990, Nychka et al. 1991).

0 et

mr

In theory the true value of A is the same for all sufficiently large d's, so one can simply
increase d until a plateau appears, as is usually done to esumate attractor dimensions when d is
unknown. The success of this ploy may depend on the method used to estimate f: local
polynomials (Briggs 1990, Brown et al. 1991) and several standard nonlinear regression models
including local splines (McCaffrey et al. 1991} afien generate spurious exponents when the model
includes extraneous lags (model d > true d), while neural nets appear [airly robust 1o extrancous
lags (McCaffrey et al. 1991, Nychka et al. 1991). Thus a value of 1 may be estimated roughly

when a plateau exists for an increasing number of lags in the model, and is constant aver
reasonable choices of L.
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Figure 9 shows results for a neural net regression model with the time-delay L chosen by
several different criteria: mutual information (MI, Fraser and Swinney 1986), BIC with the same
time-delay for all values of d, and "local BIC" in which the optimal time-delay is found separately
for each value of d. Because BIC is conservative (as noted above), estimates are shown for the BIC-
preferred model (solid lines) and also for models with the order [the value of k in equation (8)]
increased by 1 (dashed) and by 2 (dots).

The results are cleanest for NYC measles, where all choices of L give a plateau with
increasing d and an estimated A near 0.15/yr. This is roughly half the value estimated by Schaffer
et al. (1990), which is understandable given that the methods of Schaffer et al. (1990) will tend to
over-estimate A when o> 0. Thrips is estimated to be chaotic (4 > 0) by the MI and BIC criteria,
but the local BIC is inconclusive. The large effects of changing the model order suggest that the
positive values would not be statistically significant, so while these estimates favor the hypothesis
that Thrips is chaotic they should not be taken as proof. The results for marten are similar, except
that both BIC criteria choose chaotic models while MI is inconclusive.

These results indicate the importance of deriving confidence intervals to attach to the estimated
values of A. Repeated nonlinear function minimizations are required to obtain least-square
parameter estimates for each (d, L) examined, so the sort of replication (e.g., bootstrapping) needed
for statistical inference, and serious explorations of the method's ability to distinguish between
chaos and plausible alternative models, appear to be a job for the supercomputer. Taken
pessimistically, these results might suggest that SNP estimation of A is too data-hungry for use
on most population data sets: n = 432 is enough (NY measles), but n = 80 isn't. However much
of the variability in current estimates of A may simply reflect the numerical inaccuracy of
nonlinear least-squares for the underlying regression model, and more careful parameter estimation
algorithms (now being coded) may give estimates that are less sensitive to changes in the time-
delay and model order. The progress to date indicates the potential for developing statistically
rigorous estimates of Lyapunov exponents for nonlinear stochastic dynamics, but that potential
remains to be realized.
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Figure 9. Estimated Lyapunov exponents (in units of yr-1) for New York City measles {same
data as in Fig. 8), Thrips imaginis (same data as in Fig. 2), and Hudson's Bay Company fur
relumns for maren 1820-1900 (Jones, 1914). All data series were log-transformed prior 1o analysis.
In the marten series the two pairs of years confounded due to delayed returns 183334 and 1836/3T;
see Jones 1914, p. 202) were averaged. A "neural net” regression model was fitted 1o equation {7)
for all d, L pairs with 1 £d, L <6. The number of units in the network (£ in equation (¥)) was
chosen by the BIC criterion. Assuming that the random perturbations &(¢) in equation (7) arc
independent Gaussians with 2ero mean and constant variance, the criterion is to minmize
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Figure 9. (Continued)
BIC = ;_{1 + In(2m)+2In(RMS)+PIn(n)/n}.

where n is the number of data points, P is the number of parameters in the model, and RMS is the
root mean square one-step-ahead prediction error; see Gallant and Tauchen (1990) or Potscher
(1989) for the general form. The solid line shows estimates from the BIC-preferred model; the
dashed and dotted lines are for models with 1 and 2 additional units, respectively.
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Conclusions

The main point of the results presented here is that claims for evidence of chaos must he
accampaniad by a consideration of the plansible altemative explanations, and an examination of
whether the methods being used are able to distinguish between chaos and the alternatives. In
applications to population dynamics data often these have not occurred, or have hern carried out
within an unrealistically narrow range of alternatives.

This level of caution is especially important when using methods imported [rom the physical
soiences, which often carry the implicit assumptinn of nearly-perfect measurements on a perfectly
deterministic system. These methods are highly effective on accurate data from a deterministic
chaotic system--we are far from the situation of 15 years agn, when it appesred that deterministic
chaos could never be distinguished from random noise. However, the problem [or population
biologists is to detect a chaotic component in a real-world population that almost certainly i= also
subject to random perturbations, if only by the vagaries of climate.

The potential now exists for a second generation of methods that explicitly allow for the
stochastic as well as the nonlinear components of population dynamics. Several groups are
developing the use of time-series modeling to characterize complex dynamics and estimare
Lyapunov exponents (Turchin and Taylor 1991, Bryant et al. 1990, Brown et al. 1991). Atiention
is being given to dealing with noisy measurements or stochastic dynamics (Méller et al. 1989,
Hammel 1990, Kostelich and Yorke 1990, Farmer and Sidorowich 1991, Smith 1991), and though
current noise-reduction methods still require abundant data (thousands of values) and very low
levels of noise (<< 10%), work in this area is only beginning. The hope for ecnlogical
applications is that methods with more realistic assumptions, currently in development, “vill he
applicable over a broader range of situations and harder to fool than the current generation,
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Individual-Level Simulation:
New Evidence for Chaos in Population Biology

Nicholas D. Stonel

TWO FACTS are readily apparent from the recent debate on chaos in population biology.
First, natural systems often exhibit very complex dynamics that, despite their irregularities, appear
to contain some order. Second, there is a large class of differential and difference equation models
that produce similar dynamics. These mathematical models that produce chaos have been
extensively analyzed so that we know how chaotic systems ought to behave: they are
deterministic; they are highly sensitive to initial conditions; and they are seemingly random.
However, the fundamental question remains: do natural systems display complex dynamics because
they are chaotic or merely because of stochastic influences and system complexity? The work
described here sheds some new light on this issue.

The finding that initially interested population biologists in chaos was that many of the most
basic models of population growth, single-species models like the logistic model, would produce
chaotic dynamics over specific ranges of parameter values. However, as many researchers have
demonstrated in the last fifteen years (e.g., Hassell et al. 1976, Stubbs 1977, Thomas et al. 1980,
Bellows 1981), the required parameter values have almost always proven to be biologically
unreasonable. As a result, population biologists as a whole have lost their optimism about
finding chaos in natural ecosystems.

Two aspects of this waxing and waning of interest in chaos were unfortunate. First is the
focus on single-species models. These models are universally understood to be extreme
simplifications. They are useful in a descriptive way; that is, they show the general pattern of
population growth expected in populations governed by a density-dependent effect on birth and
death rates. However, these models barely begin to approach biological realism. Furthermore, the
chaotic behavior of these models is highly irregular and unnatural (see Berryman in this volume,
Fig 1), giving the impression that chaos implies wildly fluctuating populations with numbers
frequently crashing to levels near zero. In fact, higher order systems can exhibit chaos without
biologically unrealistic parameter values or any apparent trend toward self-extinction.

The second regrettable aspect is the focus on the model itself as the item of interest. Most of
the attention in studies of chaos in biological systems has been on developing and analyzing
difference and differential equation models of low order, specifically to test those models for chaotic
dynamics. This emphasis is or ought to be foreign to population biologists. As a rule, their
focus should be on accurately identifying and representing the key biological elements and
interactions in the system. The type of model chosen should then be dictated by the biology.
Research in chaos has been constrained by an a priori choice of model form and type.

1 Department of Entomology, Virginia Polytechnic Institute & State University, Blacksburg,
Virginia, 24061, USA
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The work described here takes a different approach, one that evolved from a project studying
the interaction of a parasite, Campoletis sonorensis, and one of its hosts, Helicoverpa virescens.
In that study (Makela et al. 1988), we wanted to simulate the population-level effects of changes in
the individual searching behavior of the parasite. Each individual host and parasite adult was
simulated individually in an event-driven simulation. Each individual maintained its identity and
history and acted as an autonomous entity in the model. Population dynamics were simulated as
the sum of individual actions, oviposition, and death. As in nature, population dynamics was an
emergent property of the system, not determined by rate equations as in models of the form dN/dt =
f(N, P).

The host-parasite model produced dynamics that were extremely complex and apparently
realistic. However, because the model included random choices in the selection of individual
behaviors, determining the underlying causes of the complexity was inhibited by noise.

The model of predator-prey interaction presented below was constructed specifically to examine
the emergent population dynamics of a behavior-driven, individual-level simulation with all
random elements removed. The model is therefore unlike most individual-level models or
behavior-based models in that the behaviors of individuals are chosen deterministically with if-then
rules, rather than through the random choice of behaviors with different probabilities of occurrence.

The model is object-oriented (Stefik and Bobrow 1986), a style of programming that has only
recently been applied to model biological systems (Graham 1986; Saarenmaa et al. 1988; Makela
et al. 1988; Crosby and Clapham 1990; Sequeira 1990). It was written in an object-oriented
programming language, Smalltalk-802, in which it is very easy to create computer representations
of the individual actors in a complex system.

Understanding the model description requires familiarity with object-oriented programming, so
it is reviewed briefly here. More complete discussions abound in the popular and scientific
computer-related literature, and excellent summaries can be found in Stefik and Bobrow (1986) and
in the introductory chapters of Goldberg and Robson (1983).

Object-Oriented Programming3

Traditional procedural computer programming involves defining data structures to represent
system state and procedures to operate on the data structures to reflect changes in system state.
Procedures are like mini-programs. They perform operations on a set of arguments passed to them
and they can return values to the calling program. For example, to compute the area of a
rectangle, one could define a procedure, calculate—area, which requires arguments for the lengths
of the rectangle's base and height. The area of a square with sides 3 units long would be calculated
by the statement, calculate—area (3, 3). Internally, the procedure would multiply the values
specified for base and height and return the result.

2 Smalltalk-80 is a registered trademark of ParcPlace Systems, Inc.

3 This section is virtually identical to a similar section in Stone (1990).
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In object-oriented programming, one creates structures called objects that contain both
information on state varibles and procedures for operating on that data. The state of an object
(i.e., the values of its state variables) can be accessed or modified only by the procedures defined in
that object. Procedures are called methods and are invoked by messages sent by one object to
another or to itself. Methods may return the value of a variable or calculation to the calling
object. For example, one could define an object called mySquare with one state variable,
sideLength = 3, and a method called calculateArea that computes the length squared and returns
the value to the object sending the message. Finding the area of this square would be
accomplished by sending the message, mySquare calculateArea. Notice that the. message name
is the same as the method name and that the message makes no reference to the size of the square.

Classes, Hierarchies, and Inheritance

Objects are specific instances of an object class and object classes are organized into
hierarchies. For example, the object, mySquare, would be a particular instance of the class,
Square, with sides of length 3. The class definition includes all variable declarations and code for
methods. It also includes a special method (called a class-method) for creating instances of itself,
with appropriate initial values for variables. Creating the object, mySquare, for instance, would
be accomplished by the code, mySquare < Square newWithSide: 3, which sends a message to
the Square class, causing the class to create and return a new object with sideLength equal to 3,
after which the new object is assigned to the name, mySquare. This process is called
instantiation.

Object classes may also be subclasses of other classes. Subclasses inherit variable
declarations and methods from their parent classes, just as an object inherits from its class.
However, subclasses may add variables, add or redefine methods, and specify static class variables.
For example, if there were a class, Rectangle, with two variables, base and height, and a
method called calculateArea that returns the value of base * height, then the class, Square,
could have been created as a subclass of Rectangle. The only coding required would be to redefine
the class method for instantiation so that the message, Square newWithSide: X, would return a
new instance of Square with both base and height set equal to X.

Despite the semantic conflict, one could also create a class called Triangle as a subclass of
Rectangle by modifying the calculateArea method to return 0.5 * base * height. Instances of
Triangle would respond appropriately to the same message, calculateArea, as would instances of
Square and Rectangle. The sender of the message need not know what the appropriate
algorithm is for a particular polygon. This characteristic of object-oriented systems, that different
objects can respond in different ways to the same message, is termed polymorphism.

Object-Oriented Simulation
Writing an object-oriented simulation involves creating classes to represent the types of actors

in the simulation, creating specific instances of those classes with appropriate state variables, and
letting them interact by sending messages to one another. The objects in the computer model and
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the actors in the natural system are in one-to-one correspondence, and the interactions among actors
in the natural system likewise correspond to messages sent among objects in the computer model.
In designing an individual-level population dynamics model, the actors clearly include the
individual organisms, as well as the physical objects with which they interact.

The Model

The individual-level model of predator-prey interaction was designed to be very simple in that
all individuals were created with the same default values for state variables and the environment
was likewise completely uniform at the outset, consisting of identical habitat patches.
Furthermore, there was no individual variation in the methods used to select behaviors by
individuals.

Nevertheless, the simulation was also fairly complex, since many fundamental aspects of each
individual's daily life needed to be mimicked. Aging, eating, moving, hiding or hunting, and
dying all had to be described in methods, along with behavioral rules to stimulate these actions at
appropriate moments.

Object Classes

The class/object hierarchy of the model as well as the relationships among the different object
types are shown in Fig. 1. The simulation environment included 225 patches arranged in a 15 x
15 grid, and each patch represented a suitable habitat for the prey. The environment's boundary
was closed. Except for the initialization of the model, no migration was allowed.

Each patch was modeled as an instance of the class, Patch. All Patch objects contained their
Cartesian coordinate in the grid, but the overall spatial arrangement of the patches was recorded in
another object, a single instance of the class, Environment. The Environment object also
maintained a list of all the live predators and prey in the simulation. Each day of the simulation
consisted of the Environment object sending each actor (instances of the classes: Patch,
Predator, and Prey) the message, act. Each object receiving the act message responded as
specified by the act method defined in its class. This use of polymorphism allowed the
Environment object to treat all the actors identically.

Patches

The state variables in the Patch class included: xyCoord, a pair of integers describing its grid
position within the environment; food, an amount of food for the prey; and shelters, a list of
refuges in which the prey could escape predators but could not eat. In this analysis, all Patch
objects were assigned the same default values, including a single shelter. The Patch class also had
variables called prey and predators, which were lists of all prey and predators in that location

(Fig. 1).
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Figure 1. Class-object hierarchy of the predator-prey model and a listing of the linkages among
objects in the simulation (box). In the hierarchy, solid lines indicate class-subclass relationships;
dashed lines indicate class-object relationships. Class names are shown in bold type on the left.
In the box, double-headed arrows indicate that the objects are associated. For example, each
predator is associated with one patch and one environment.

Methods defined in the Patch class included: act, which added a constant increment to the
amount of food available for the prey up to a maximum value; and removeFood, which decreased
the food in a patch and was triggered by a message from Prey objects to simulaté eating. Other
methods allowed patches to respond to objects requesting information about the patch. An
immature prey, for example, sensed the presence of predators within its patch by sending the
message, predators size, to its patch. The Patch object responded to this message by returning
the length of its list of Predator objects. Finally, there were messages for keeping track of
individuals as they entered and left the patch.
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Predators and Prey

Because predators and prey shared many aspects of biology and behavior, their object classes
were defined as subclasses of an abstract class, SimBug. It had no instances; it was defined for
convenience so that shared characteristics of the predators and prey could be coded once and
inherited by both subclasses.

Predators and prey were modeled after simple arthropods in their biology. The SimBug class
description included variables to hold the name of each individual's Environment and current
Patch objects, its age, stomach content (metabolic supply), and the number of eggs ready to
oviposit. Males were not included in this simulation. Behaviors implemented in the SimBug
class included act and move methods, as well as two messages announcing an individual's arrival
in and departure from different patches. The act method (Fig. 2) in turn sent messages like die,
eat, and reproduce that were defined differently for each subclass.

The act method was based on the motivational model of animal behavior described by Packard
et al. (1990). At each time step, individuals updated their age, chose a motivational mode of
behavior (e.g., ingestion, reproduction, escape), and chose an action based on their behavioral
mode. Mortality occurred by predation, starvation (defined as going two time steps with exhausted
reserves), or by aging past a fixed maximum age. Individuals were always given the opportunity
to eat and reproduce if possible. Specific methods for these actions were defined in the subclasses,
Prey and Predator.

The Prey class inherited all the variables and methods of SimBug. It also added a variable
called inShelter, which was true when a prey was in a shelter. Also, variables that were constant
for all Prey instances were defined in the Prey class. These included the metabolic loss rate,
maximum age of the prey (20 days), and the age at reproductive maturity (10 days). Methods for
choosing motivational modes and actions were also defined at this level in the hierarchy. These are
described below. In addition, methods that allowed the prey to act were defined at this level,
including methods for eating, ovipositing, dying, and entering and leaving shelters.

Predators were instances of the Predator class, which also inherited variables and methods
from SimBug. In addition, all predators shared a maximum age of 30 days and became
reproductively mature at 20 days. Predators’ metabolic loss rate was also higher than that of prey.
Other behaviors and methods were similar to those of the prey.

Eating was more complicated for predators because it involved capturing and consuming a
prey. Predators chose prey items from the list of Prey objects recorded in their current Patch
object. They had an age-preference for prey that was a function of their own age. Predators chose
the first prey in the list that was an acceptable age. Their stomach contents were increased after a
kill as a function of the age of the prey they took.
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Behavior

Behaviors were chosen deterministically by if-then rules based on the individual's current state
(e.g., hunger, position, and age). Rules were developed in an ad-hoc manner, in an attempt to
model as simply as possible the motivational model of animal behavior described by Packard et al.
(1990). These rules were coded in two methods, chooseGoal and chooseAction. First a
motivational mode or goal was chosen, then actions were chosen to meet those behavioral
objectives. This implementation of an animal's decision-making scheme was based on the general
model developed by Saarenmaa et al. (1988). Prey goals included: Food, Rest, Escape, Dispersal,
and Reproduction; actions included: Eating, Resting, Hiding, Moving, Staying, Reproducing. The
behavioral repertory of immature prey was more restricted than that of adults. Adults could
disperse or sense the approach of predators. Immatures could not. They sensed predators only in
their current patch. Adults also attempted to oviposit when they reached reproductive age.

The goal, Dispersal, was triggered when the Prey object’'s patch became crowded or low on
food, and Food became a goal when the Prey object's stomach was nearly empty. Once a set of
goals was decided, the Prey object's chooseAction method was triggered, which selected an
action and then sent messages to carry out the actions chosen. Prey could decide to enter a shelter,
remain in their current location, or move. If they moved, they picked one of the adjacent patches
in the environment to move to. . This selection involved narrowing down the potential locations to
a subset that best satisfied the Prey object's goals, then selecting the first member of this subset,

Even though there might be more than one suitable patch to move to, patch selection was not
implemented as random choice. Instead, all neighboring patches were placed into an ordered list,
always in the same order, and then inappropriate patches were eliminated. The first patch
remaining in the list after elimination was always selected. This procedure did put some bias into
the direction that prey and predators tended to move; however, it also eliminated any randomness.

Predator behavior differed from that of prey in the following ways. Their goals included Food,
Rest, Hunting, and Reproduction. They fed only by killing prey. They could not eat the food in
patches, and they were not able to kill prey in shelters. Predators could sense the presence of prey
in patches up to three steps away from their current location. When hunting, predators moved as
directly as possible toward the highest concentration of prey nearby. This sensing ability is
analogous to insect predators keying in on kairomones or chemical cues in the environment that
relate to prey density. In the model, a hunting Predator object sent a message to the
Environment object requesting the direction toward the highest prey concentration nearby. Recall
that the Environment object was the only object in the simulation with any knowledge of the
spatial arrangement of the patches.

Simulation Results and Analysis.
The model was initialized by placing newborn predators and prey into the simulation

environment at one edge of the grid (Fig. 3). Prey were placed first, ten per day for five days after
which two predators were added per day for 20 days. Subsequently, no individuals were added except
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by individuals giving birth. In each day of the simulation, every location updated its food supply,
and each predator or prey was allowed to act.

A time-series from a run of this model is shown in Fig. 4. The system clearly exhibits
complex dynamics. The system ran for several thousand days (hundreds of generations) without
any indication of repeating or stabilizing. A phase plot (Fig. 5) from the simulation shows a
complex or strange attractor in two dimensions. From Fig. 3, one can see also that the dispersion
of predators and prey in the environment went from pattemns that were easy to follow (a wave of
prey spreading out before a wave of predators), to a more complex and jumbled situation after
approximately 200 days.

Fig. 6 shows the effects of very small variations in the initialization of the model. By adding
11 prey on the fifth day of the model initialization instead of 10, for a total of 51 instead of 50, the
model's trajectory was totally changed so that 50 days later, the two trajectories bore no
resemblance, except that in phase space they were constrained within the same attractor.

To summarize, the simulation was deterministic, it produced pseudo-random but bounded
population dynamics; and it exhibited extreme sensitivity to initial conditions. This combination
of characteristics defines chaotic behavior. There is some chance that the pseudo-random
oscillations produced by the model would eventually stabilize to some periodic or quasi-periodic
pattern. Still, the output from the model is remarkably realistic; it is unpredictable within a
bounded region of phase space; and it is completely deterministic. This is exactly the kind of
system behavior that, when observed in nature, sparks arguments about whether it is chaos or the
influence of stochastic events that is responsible. In this case, randomness has been eliminated.

To obtain some confirmation of the chaotic nature of the model's dynamics, two analyses were
undertaken based on the time series data. However, since the model is not in the form of
differential equations, testing for chaos is complicated. The methods used were the same one
might use to test whether a time series observed in the field is chaotic. The Lyapunov exponent
and fractal dimension of the system were estimated using algorithms from the Dynamical Software
program (Schaffer et al. 1988). Calculation of the Lyapunov estimate employed Wolf et al.'s
(1985) method, and calculation of the fractal dimension was by the method of Grassberger and
Procaccia (1983). Both estimates used a univariate time series of just the total prey numbers over
time. Over a wide range of parameter values for sampling interval and delay, the estimate of the
Lyapunov exponent was positive (appx. 0.04), and the correlation dimension was approximately
4.7, indicating a fairly high-ordered chaotic system.

If the two-species system was chaotic, one obvious question was whether the single-species
model would behave similarly. That is, is the complexity coming from the interaction, or is it
driven by the prey dynamics? To examine this question, the model was run with no predators.
The results are shown in Fig. 7. At first glance, it seems that no chaos is present. The prey
population increased in a sigmoidal pattern and seemingly stabilized at a carrying capacity of about
K=1095 individuals. Fitting the Ricker (1954) equation

New=Nier (%)
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Figure 3. The spatial pattern of predator-prey dynamics is shown in a series of charts. The
environment is represented by the 15 x 15 grid. Prey population density in each grid cell or patch
is indicated by the intensity of blue color. Predator population density is indicated by the intensity
of red color. Thus, a black cell is empty; a bright blue cell contains only prey at a high density;
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206

Figore 3. (continued) and a purple or lavender color indicates the presence of both predators and
prey. A sequence of 9 days is shown at the beginning of the simulation, and another sequence of 9
days is shown alter 200 days of simulaton.
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Figure 5. A phase plot of the time series data from Fig. 4. The attractor has a fractal dimension
of approximately 4.7,

1o these data vielded an esumated intrinsic rate of increase of about r=0.08. This result is well
below the values that would produce chaos in the equation (r > 2.69). However, a close inspection
of the system's dynamics near equilibrium revealed that this single-species system never did settle
down (Fig. 7, inset). This effect could not be explained by using a Ricker model constrained 1o
integer values, and the time series data showed a positive Lyapunov exponent and a fractal
{correlation) dimension of 4.9, Apparently, the single-species system was also chaotic. In this
case, however, the chaos caused only a minor disturbance in an otherwise stable system — the
attractor was strange but small.

103




450

400

350 -

00

250 =

200

450 -

400 -

Predator Density
g

350

300 «

250 =

200 =

150 =

100 =

A0 -

o S0 100 150 200 250 300 350 400 450

Prey Density

Figure 6. Sensitivity of the model w initial conditions is shown by comparing the first parts of
two simulations, identical except for the msertion of one extra prey in Lthe second simulation {solid
line). A shows a time-series of the predator populations from the two simulations; B shows the
two phase plots superimposed,

104




1200

sty A-:-‘"“——"‘"‘:‘L"I'.""ml."" LA

e 4 Ll 2 1‘—,-".-‘1;’1"“""_"I".‘"-,!.rrx'“'“xw\-'
1000 T
1120 « . o
ear equilibrium
>, 800 . .
x 1110 <
4
Q 1100 +
0 600
> 1090 o
Q
}
0. 1080 =
400 mff-fr e .
1070 -1
. 1060 ¥ T T r v
200 wll-}- ) 100 200 300 400 500 600

0 100 200 300 400 500 600 700

Day of Simulation
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equilibrium for 500 days after day 100, showing chaotic cycles about K. This system had a fractal
dimension of approximately 4.9.
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Conclusions

If one were to examine this simulated interaction as though it were a natural system, one
would very likely conclude that the single-species system is well modeled by a Ricker or logistic
model, that the intrinsic rate of increase in the prey population is in a very normal range, and that
the two-species system exhibits the typical limit-cycle dynamics predicted by the Lotka-Volterra
equations. The noise in the data, one would argue, is just that—evidence of stochastic influences
on the system that we do not understand or cannot measure. In fact, however, there are no
stochastic influences acting on this system. There are no forces that we do not understand. The
model is simple; it is deterministic.

The chaotic dynamics produced by this model were generated by allowing individuals to
behave and interact. Many attributes could have been added to the model to increase the system's
complexity. There could have been individual variation in factors like aging rates, fecundity, or
metabolism. There could have been spatial heterogeneity, variation in the characteristics of the
patches. There could have been random choice involved in decision making or even variation in
the rules used by individuals to make decisions. There could have been periodicity in food
availability. None of these complicating factors existed in the model, yet the system dynamics
was still remarkably realistic and complex.

That this elementary model of individual's interacting produced chaotic dynamics indicates that
there is something fundamental about population interactions that results in chaos. Perhaps it is
the spatial or compartmental aspect of the environment. Perhaps it is the fact that individuals are
affected by the decisions of others so that populations are inherently non-linear systems. In any
case, high-order chaos may well be the foundation upon which we study population dynamics.

As we have seen here, even though a system is chaotic, it need not be wildly fluctuating or
unpredictable. It may, in fact, be well enough bounded to be modeled effectively by a simple
logistic function. However, this work suggests that arguments discounting the role of chaos in
population dynamics are premature.

This study also suggests that chaotic population models can be constructed based directly on
observation of individual behaviors and actions. Furthermore, such models can be experimentally
validated by comparing emergent properties from the models with emergent properties of the
natural populations: survivorship and natality functions, functional response relationships, and
dispersion patterns, for example. This type of modeling and its relationship to chaotic dynamics
warrant further attention.
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