
CMAOS 
AND 

INSECT ECOLOGY 

Jesse A. Logan and Fred P. Hain 
Editors 

Virginia Agricultural Experiment Station 
Virginia Polytechnic Institute and State University 
Blacksburg, Virginia 2406 1-0402 

Information Series 9 1-3 
December 199 1 
ISSN 0742-7425 



James R. Nichols, Dean and Director 
College of Agriculture and Life Sciences 
Virginia Agricultural Experiment Station 
Virginia Polytechnic Institute and State University 
Blacksburg, Virginia 24061 -0402 

This Information Series of the College of Agriculture and Life Sciences 
and the Virginia Agricultural Experiment Station provides reviews of 
scientific literature, historical progress reports, proceedings of signifi- 
cant scientific symposia, and presentations of scientific data in a less 
formal structure. 

To simplify terminology, trade names of products or equipment may have been used in this pu blication, but 
no endorsement of products or firms mentioned is intended, nor criticism impliedof thosenot mentioned. 
Material appearing here may be reprinted provided no endorsement of a commercial product i s  stated or 
implied. Please credit the authors involved and the College of Agriculture and Life Sciences, Virginia Tech. 

Virginia Tech does not discriminate against employees, students, or applicants on the basis of race, sex, 
handicap, age, veteran status, national origin, religion, or political affiliation. Anyone having questions 
concerning discrimination should contact the Equal Opportunity/Affirmative Action Office. 







TABLE OF CONTENTS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Acknowledgements iv 

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 
Jesse A. Logan and Fred P. Hain 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Chaos: Much Ado About Something 1 
Jesse A. Logan 

....... Chaos in Ecology and Resource Management What Causes It and How To Avoid It 23 
Alan A. Berryman 

Nonlinear Modeling of Time-Series Data: 
Limit Cycles and Chaos in Forest Insects, Voles, and Epidemics . . . . . . . . . . . . . . . . .  39 

Peter Turchin 

Detecting Low-Dimensional Chaos in Population Dynamics Data: a Critical Review . . . . . .  63 
Stephen Ellner 

Individual-Level Simulation: New Evidence for Chaos in Population Biology . . . . . . . . . . .  91 
Nicholas D. Stone 



Acknowledgments 

We owe a particular note of thanks to David Krarner who helped organize the original 
IUFRO Symposium and who presented Dr. Ellner's paper at that Symposium. IUFRO (the 
International Union of Forest Research Organizations) provided an international forum for 
presentation of these papers, and in particular we thank the Working Parties S2.07-05 
Integrated Control of Scolitid Bark Beetles, and S2.07-06 Population Dynamics of Forest 
Insects. Mary Holliman, Experiment Station Editor, provided exceptionally competent (and 
considerate) editorial expertise throughout preparation of this publication. Rose Norris 
prepared all of the final camera-ready copy and proved a tireless worker. Courtney Couch added 
a touch of class with the cover and fly-page art-work. Finally, the Gypsy Moth Research and 
Development Program provided partial funding for this publication through augmentation of 
an existing Co-operative Research Agreement between the USDA-Forest Service, Northeastern 
Forest Experiment Station and Virginia Polytechnic Institute and State University (Research 
Agreement FS-23-383-A2). 



Preface 

Jesse A. Logan1 and Fred P. Hain2 

Recent advances in applied mathematical analysis have uncovered a fascinating and unexpected 
dynamical richness that underlies behavior of even the simplest non-linear mathematical models. 
Due to the complexity of solutions to these non-linear equations, a new mathematical term, chaos, 
has been coined to describe the resulting dynamics. This term captures the notion that in spite of 
the fact that these equations are purely deterministic, the resulting time dynamics are for all 
practical purposes indistinguishable from a purely random or stochastic process. A unique aspect 
to this new revolution in the esoteric arena of non-linear mathematics is the fact that it has 
captured the imagination of the public at large, and is even the subject of a New York Times 
leading best seller (James Gleik, Chaos: Making a New Science). The popular interest in chaos is 
at least in part due to the fact that solution sets are often represented as fractals, resulting in 
complex and strangely beautiful geometric patterns (fractals are, themselves, the subject of 
numerous popular books). Although the subject of chaos has its lighter side, it has also formed 
the basis of serious science. 

Since the accidental discovery of chaos in a simple atmospheric weather model by Edward 
Lorenz in 1963, chaotic dynamics have been found to be pervasive in all of physics. Chaos has 
been observed in phenomena ranging from the sub-atomic level of organization to cosmic 
questions such as the orbit of planets in the solar system. The application of non-linear dynamics 
in physiology has resulted in an impact similar to that in physics. Chaotic dynamics have been 
found to underlie even those physiological processes that were previously thought to be strictly 
periodic (e.g., the heart rhythm). Results, primarily from applications in the areas of physics and 
physiology, have led to prominent review series in the major scientific journals, such as Science 
(1989) and New Scientist (1989), and to numerous international conferences. As a result of 

4 investigations in physics and physiology, the general characteristics of systems that promote 
chaotic dynamics are well known. 

Ecological systems typically exhibit characteristics that lead to chaos. Non-linearity is the 
basis of chaotic dynamics. Very few unequivocal statements can be made in science; however, one 
of the few is that ecological relationships are non-linear. Non-linearity in ecology is a result of 
fundamental thermodynamics. Malthus recognized this fact in 1826 when he stated, in the sixth > 
edition of his famous essay, that. "... the power of the earth to produce subsistence is certainly not 

t unlimited ...." Any system that is based on a finite rate of energy input must at some time become 
bounded by non-linear feedback. High order dimensionality is another characteristic that 

i predisposes systems to chaotic dynamics. One of the hallmarks of ecological structure is the large 
number of interactions found in natural ecological associations. In fact, high order dimensionality 
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has been proposed to be the most significant difference between physics and physical systems, and 
ecology and ecological systems. Time-lags are notoriously de-stabilizing in mathematical models:' 
The simplest non-linear difference equation (quadratic) produces well-known chaotic dynamics. 
Once again, time-lags are a fundamental characteristic of ecological organization. One has to look 
no further than reproductive time-delays to be convinced of the ubiquitous nature of time-lags in 
ecology. The final common characteristic that predisposes systems to chaotic dynamics is periodic 
forcing. The natural world abounds in cyclical patterns that act as periodic forcing variables to 
ecological systems. Daily cycles function within seasonal cycles that are themselves embedded in 
solar cycles. In summary, the attributes that lead to chaos are to be found everywhere in the 
natural ecological world. 

If the characteristics of chaotic systems are so ubiquitous in nature, why hasn't chaos been 
recognized as a fundamental property of ecological structure? Well, in fact, the potential for chaos 
has been demonstrated in almost all realistic models of ecological organization. However, 
empirically demonstrating the existence andlor importance of chaos in ecology is quite another 
story. The reason that this has been such a hard question to answer is the difficulty in empirically 
differentiating chaotic dynamics from random dynamics. To convincingly separate the two, it is 
necessary to have literally thousands of datum points. Such data are relatively easy to generate in 
physics and physiology, but almost impossible for most ecological systems. Therefore, to date, 
the debate has largely been waged on theoretical or hypothetical grounds. Convincing theoretical 
arguments suggest that chaos should not be exhibited in surviving ecological associations. 
Coincidentally, this conjecture does not mean that chaos is not important in ecology, just that it 
should not be commonly found. Either way the debate is finally resolved, the answer will be 
interesting and will have important ramifications. 

Recognizing the importance of resolving the questions of where and how chaos fits into 
ecological organization, a symposium was organized by F. P. Hain, North Carolina Swte 
University, and J. A. Logan, Virginia Polytechnic Institute and State University, at the 19!)0 
International Congress of the International Union of Forestry Research Organizations in Montreal, 
Canada. The topics discussed in this symposium, titled Does Chaos Exist in Ecological Systems, 
address some of the most important issues facing ecology today. At this symposium, Logan 
introduced the concept of chaos and described questions that are at issue in determining the 
importance of chaos in ecology. Turchin and Ellner discussed the problems associated with 
dcrnons[nring chaos in ocnlojilml dam, and h t h  eifcml ncw and novcl apptoacha 10 detecting 
chaos from ecological time series. Ber ry~nsn  pm.esentcd Lhe caw against chaos Ixing commonly 
exhibited in naturally occumng ecological systems. He further discussed ~ h c  cnnscqucnccs ni 
ecological disturbance, through intentional management or unintentional disruption, within the 
context of chaos theory. Stone presented exciting new results from a model based on individual 
prey and predator behavior in a spatially diffuse system. Tltc rcsul~q frola this cxpcrimcnl suggcsr 
that chaos should be expected in simple preylpredator systems, and that tightly hun&d chao! 
could easily be mistaken for "white noise" in populations that are controlled by natural enemies. 

The topics of this symposium are timely and have importan1 nrnifications for the major 
ecological issues of today. 'Ihc major pmhlcrns or thc curreal "~alapical  crises." such as clirnnrc 
chsngc, nrc Iai-gcly hcing addrcwd in chcrrricat or physlcd tcrms I;e.g., glahl climate models or 
the i&nospheric chemistry of anthropogenic pollutants). However, they are being cxytcwd 





Plate 1. (a) Gypsy moth defoliation in Shenandoah National Park, Virginia, USA (photo 
courtesy M. Carter). Extensive defoliation caused by the advancing wave front of gypsy moth 
populations. Significant tree mortality has occurred as the gypsy moth extends its range to the 
south. (b) Southern pine beetle spot, Sam Houston National Forest, Texas, USA (photo courtesy 
R. Billings). The red top and faded trees are all victims of the southern pine beetle. (c) Mortality 
from mountain pine beetle, Targhee National Forest, Idaho, USA (photo courtesy G. Amman). 
The extensive potential for tree mortality from attacks of aggressive bark beetles is well 
demonstrated in this aerial photograph. (d) A "windrow" of range caterpillars, shortgrass steppe, 
East of Raton, New Mexico. USA (photo courtesy New Mexico State University). The total 
standing crop biomass is essentially eliminated by the advancing caterpillars. 

I"' 



Plate 2. (a) A toris viewed from above. The dynamics of the system result from h e  system's 
variables winding around the surface of the toris. This parricular Mris results from periodic forcing 
(seasonality) acting on a herbivorelplant interaction (see Schaffer et al., 1988, pp 1.41 for a 
detailed description). The system is not phase locked for the chosen parameter values. Tkrcfore. 
rhe resulting dynamics arc quasipcriodic, md the winding action on the (oris will cveniudly mvw 
the entire surface of the attractor. Ib) A tinlc wries of h c  cumplcx peridici~y h a t  results Tmrn he 
dynamics of a phased-locked system. Note the complex expression of cycles-withincycles. This 
system results from a model of a host/pathogen system with seasonal transmission (see Allen 
1989). (c) The phase space plot of the tons that resulted in the time series shown in Plate 2B. [dl 
Thc strwgc amm in cha rhm-dimensional phase qaw fmod by a modcled in~eraction h t w m  
one predator and two prey species (Gilpin 1979). Chmtic d y  n m i s s  rcsull from rnwernani nf ~ h c  
system on the surface of the attractor (see text for further discussion). 







Chaos: Much Ado About Something 

Introduction 

The discovery of complex "chaotic" dynamics in simple mathematical models has resulted in 
widespread interest from a diversity of scientific disciplines. These complex dynamics have been 
observed in many real world systems, primarily in physics and physiology. As stated in the 
Preface to this volume, and also indicated by this symposium title, the role that chaotic dynamics 
may play in real-world ecological systems is less certain. A legitimate question is then, what is 
the principal motivation for interest in chaos from an ecological point of view, and in particular 
from that of a Forest Entomologist? The answer to this question, in my opinion, lies in the basic 
nature of pest management problems in natural resource systems. In a previous publication 
(Logan 1987), I contrasted the attributes of pest management in rangeland systems to those in 
intensive agricultural systems. Most of the salient features of this characterization are true for 
natural resource systems in general, and carry-over to insect pest management in forest systems. 
The most important attribute with respect to chaos is the time frame of interest. In crop systems 
management patterns are typically based on a annual rotation. The time frame of interest is 
therefore short-term, and the important population dynamics of insect pests and their associated 
biological control agents are of a proximate nature. The contrast to forest pest management is 
obvious, and the necessity for adopting a long-term view is self apparent. Long-term dynamics 
associated with forest insect pests are typically complex (see Fig. 1). Several attributes are 
apparent from the time series shown in Fig. 1, the most obvious of which is the magnitude of 
differences between endemic or latent phase and the outbreak or eruptive phase. Phase differences 
for outbreak species of forest pests may be several orders of magnitude; in other words, outbreak 
densities may be greater than one-million times those of latent phases. Another attribute of the 
time-traces of Fig. 1 is the lack of true periodicity. The time series is temporally complex. 

In addition to the complex nature of temporal patterns, outbreaks of insect pests in natural 
resource systems are often spectacular events (Plate 1). Outbreaks are both intensive (i.e., greater 
than 80% mortality with some bark beetles and virtual total defoliation with many lepidopterans) 
and extensive (thousands of contiguous hc. can be affected). Due to these characteristics, patterns 
of density and outbreak are both dramatic and enigmatic. 

Additional attributes of pest management in forest systems are based in economic rather than 
ecological terms. Due to the lower per-unit monetary return from natural resource systems, the 
management options available to Forest Entomologists are more restrictive than those that are 
available to Crop Protection Entomologists. In many cases, Forest Pest Management must rely 
on the augmentation of natural forces rather than the more simplistic approach of direct 
intervention. Monetary constraints on the viability of heavy-handed control tactics necessitate that 
managers have a more in-depth understanding of the system to be managed, and the nature of forest 
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rotation necessitates that this understanding include long-term population dynamics. The attributes 
of pest management in natural resource systems undoubtedly poses a challenge to development of 
effective management strategies and tactics, but it also provides for significant scientific 
opportunities. The requirement for understanding basic ecological relationships combined with the 
intrinsic and extrinsic value of forest systems provides both the motivation and the resources to 
undertake ambitious scientific enterprise. Forest entomologists have a long and rich history of 
contribution to basic insect ecology. Many of these contributions have been of a quantitative 
nature. For reasons of necessity (time frames of interest that rival or exceed the professional life of 
a scientist), economy, and intellectual return, mathematical reasoning and modeling have played a 
prominent role in the scientific contributions of Forest Entomologists. 

Application of computer modeling technology began to have a major impact on Forest 
Entomology during the mid 1960s. Forest pests, in particular bark beetles, were one component 
of the famous Huffaker Project. This historically important research project was part of an even 
more ambitious2 research program, the International Biological Program (IBP). The central 
unifying theme of the IBP was development of detailed computer models that faithfully simulated 
entire ecosystems or even biomes. The strong commitment to computer simulation models carried 
through to the Huffaker Project; of twelve specific objectives, seven were directly related to 
development of simulation models (Stone 1989). The Huffaker Project was largely responsible for 
formulating the philosophy of pest management in North America as it continued to evolve during 
the 1970s and 1980s. This philosophical basis continued to have a strong computer modeling 
component, as illustrated by the central role of computer models in the "Big Bug" projects funded 
by the U.S. Forest Service. The U.S. Forest Service during the past 20 years has provided 
resources for accelerated research on several important North American forest insect pests, 
including tussock moth, southern pine beetle, spruce budworm, and gypsy moth. The central role 
of modeling in these efforts has fulfilled expectations with respect to research organization and 
synthesis (Brookes, et al. 1978, 1987). but has not resulted in improved power to predict outbreaks 
(e.g. Berryman 199 1). 

In general terms, prediction of insect pest outbreaks in natural resource systems remains an 
elusive goal. This statement is true in spite of efforts by some of the most talented entomologists 
(including C.V. Riley, the "founding father" of Applied Entomology in North America), 
expenditure of substantial dollars, and application of the most advanced computer technologies. 
What is going on here? Perhaps the reason for our lack of predictive power lies in the prevailing 
modeling paradigms, as suggested by Berryman (1991). However, it may also be due to 
something much more basic. New mathematical discoveries in non-linear dynamics indicate that 
this situation may not be entirely due to the maladroitness of those asking the questions, but rather 
may result from the very nature of the problem itself. Results indicate the characteristics of 
ecological organization and structure predispose these systems to the complex dynamics that have 
become known as deterministic chaos. The continuing frustration in lack of predictive power, 
then, is the reason for my interest in non-linear dynamics and chaos. The inability to predict 
outbreaks in even seemingly straightforward systems has prevailed throughout my personal work 
in natural resource systems, experience that includes grasshoppers in the short grass steppe, bark 

2 Total U.S. funding for the IBP was in excess of $55 million in 1970s US dollars; personal 
communication. J. T. Callahan. Associate Director. NSF Ecosystems Studies 
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beetles in the coniferous forests of the West, and gypsy moth in the deciduous forests of the East. 
The chance that innate properties of ForestlPest interactions negate prediction of outbreaks is 
simply too important to ignore. 

In the remainder of this Chapter, I will first attempt to introduce the somewhat esoteric notion 
of deterministic chaos. Then I describe more fully the characteristics of chaotic systems, provide a 
review of the search for chaos in insect population dynamics, and discuss contributions that other 
authors in this volume make toward a more complete understanding of chaos in insect population 
systems. 

Non-linear dynamics and Chaos - What is Chaos? 

Several recent reviews introduce the concept of chaos (Crutchfield et al. 1986, Gleick 1987. 
Holden 1986, Jensen 1987, Krasner 1990, Stewart 1989). Treatment of the subject in thcsc 
articles and books ranges from a popular New York Times best seller (Gleick 1987) to rigorou~ 
mathematical developments (Devaney 1986). Thc apprnach I will lakc is lo provide morc ticur 
than the popular accounts, but remain comprehensible to an interested insect ecologist. 1~'cbarr's 
N w  Wurib DirrIonnry, CoIIcgc Edilion, dcfincs chriv,~ w" nny gnat confusion or pml  disordrr," 
and chaotic as, "in a complete confused or disordered condition." As w i ~ h  many curnrnon words 
that have been appropriated by mathematicians, the mathematical meaning of chaos is only 
obliquely related to the standard usage of the term. In [he rnathcma~ical scnse. chaos does not 
imply "camyZezcFy disaniercd'" bur instcad r c f m  tn a vcry spcixl  md cnmplcx typc of ordering. 
Perhaps the best way to gain an appreciation for rhc mathernalic;h meaning of chaos is Lhmugh a 
series of progressively more complex dynamics, leading to what Schaffer and Kor (19RSb) h ~ v r  
termed a "taxonomy of motion." 

Before I proceed with a "taxonomy of motion" for dynamical systems, il Lq rml rtcccssary tn 
introduce the notion of a "phase space." Phase space is a graphical way of representing ~ h t  
dynarn~eal prnpcrlics of ;I system thn! may nl firs1 be conr!~s~ng to wnlogisu, bul is valunblc Ior 
characterization of a system's long-term dynamics. Ecologlsu have mdirianally though1 in tcmc 
of the time series as a way to represent population dynamics (Fig. 2a). Althoufih conceptually 
straightforward, a time series plot is often of limited v a h e  fnr re~.ltcrxnting lang-rem dynamics, 
and may in fact not provide much insight into the dynamical structure of the system. As nn 
nltcrnntivc rn x timc %?rim, mathcmaticinns typirolly plot concum1 values of srnrc variables on 
independent axes (see Fig. 2b). 'Ihc srplc-vzriahlc spacc gcnerdrcd hy this p r p c ~ s  is callcd p h r  
space, and the graph of state variables in phase space is termed a phase plot. Plntring sysrcm 
dynamics in phase FCC as opposed to a h e  serlcs ha5 the distinct advantige of calfopsing he 
syslcrns dynamics nlnng thc limc axis,  lhcrchy solvinr ~hr :  logrsric problem of plotting lang-rcnn 
behavior. More important. structure that is opaque in a time-dimensioned plot may bceomr 
obvious in a phase plot. For this imprtant reason, p l a ~ i n g  long-term dynamics of a system in 
phase space is an essential step in dynamical systems analysis. Adopting the phase sp3cr 
pruspccu'vc elso fa'acililalcs thinking of ixologiml systcrns in qua11l;ltivc kms. a petymuvc tha! s 
essential for assessing the impact of complex non-linear dynamics on ecological structure. 





The simplest dynamics in our classification scheme is that of a stable system. Thc dyn:rrni~?I 
requirement for such a system is the existence of a steady-state that acts as an awactor. IThc 
ccologicnl conccpr oTn srcxly-stinrc is i~lcrtticnl m ~ h c  marhcmaticnl l c m  o f  afired-point. Iwth ol' 
udhirh wlcr ~n s combinntion of swc-vnriahlr valurx that m~u11 in 3 smdc, rime-invariant dpnrnic. 
The system will remain at steady-state indefinitely unless perturbed by an external force. Tlic 
concrp of .UI arwnclnr rtfcrs lo Ihc time behavior of Lhc syslcrn once i~ is mavcd or pcnuttwd fmrn 
steady state. If a slr3dy-smc is an atmaor. Lhen the resulting tnjmtory of the perturbed systcm 
will always be back towards the steady-state value. Thc w:iy in which Lhc ~ ~ f l 1 1 t t K . t 1  xystcrn rctrrms 
to steady-state may be either directly without cycling or as a damped cycle, the i m p r m l  p i n 1  
being that the system always returns to its steady-state value. Such kh?vim iq ilhrstr~lcri in Fip. 
2, which represents a stable prey-predator system. The existence oi stability is implicit rn many 
of the basic tenets of ecology, such as Clementsian succession, and is reflected in the p~pul:a 
concept of the "balance of nature" (Ellis et al. 1991). 

The next, more complex dynamical behavior is that in which the steady smtc no longer is  
itself an attractor but rather serves as a focus for an attracting cycle. 1n khc* dynamics, s steady- 
state still exists, and if the system is initiated exactly at steady-state, then it will remain here 
indefinitely. However, even the slightest disturbance will result in a riijlxlury away fmm tire 
steady-state. P k r  dcflrction from stcad y-smtc. the uajtclory will cventuall y bc caprurcd by nn 
attracting cycle. The cycle, insteal a l  Lhc steady-smc, acts .as &c atkrxtar for win.& in phasr- 
space that are outside the cycle as well as for those that are inside the cycle (Fig. 3). Tht 
mathematical terminology for such dynamics is a stable limit cycle. Smlrlr limil cyclc h h v i o r  

has been the subject of substantial ecological interest, in both theoretical (e.g. Voltem 1926, May 
i 1981) and applied terms (Noy-Meir 1975). Dynamics that cycle without damping, I-ut that art 

ell n~nc-thy- less Ixr~~ndcd, am in l~~i l ivc ly  apwaling and, st least q~~al i tnr ivcl~ .  a p p r  ro k common it 
the natural ecological world (e.g. prey-predator cycles). Swlrle 1 ~ m i t  cycle IY hsvior is a rcsull P I  
non-linearity and, in fact, requires non-linearity to be expressed. Non-/irteflr.iry. in turn. fcfrrs Iil 

the effects of a state-variable upon a system that is non-proportional. 

Dynamics that are similar, but potentially mom complex. than limit cyclc khnviar wc host: 
that result from motion on a toris. A trssis i s  a ~corncaiu f j ~ u ~ c  !hat rcqs-ul~s fmm Ihc intcmctir5r 
of at least three forces, and has been described as a doughnut-like surface (Plate 2 4 .  In ccologicn-l 
sysfcrnf, 3 1m-i~ nflcn mu11q rrnm p r i d i c  h c c s  scting on m already cycl~csl inrrraction. or fran 
the natural resonance of three (or more) trophic interactions. A sgstcm's dynamics rt T 

points in phase-space being attracted to, and winding around, the surface of the toris. i t  

resulting from motion on a toris can range from relatively simple to exceedingly ~ r r ~ r ~ l ~ ~ c t ,  
dcpcnrling an chc rcln~iansliip k lwccn  thc Tnrcing varirrblc and star-vsriablcs or that between th? 
state variables themselves. For c;ramplc, ~f IAC. rmjmrnry in pt~av-spatlc wrnci~ around rhc ~ariq a 
integer nurnhcr of timcs whitc winding nmurld thc :inothcr intcgcr nu~nbcr of timcs, thcn 11.: 
system is said- la k phaze-bckd and t l ~ c  rcsdling clynx~~cs  arc mly periodic, allhough 11 
can be lengthy and complex (Plates 2b and 2c). Conversely, i f rhc ratio of r h c  1uqo pcrir n: 
kc cxpmswl as s n ~ i n  p i  rwn intcgm, rhcn L ~ C  resulting dynamics will nevrr closc u p n  6 
become periodic. The dynamics in this latter case are said to be quasiperiodic (Plate 243). 

the ~ r i r  
ds cmnl 
I i l rclf  an 

Toridal flow does not always result in simple doughnut-shaped figures, but can prodnrc 
complex and beautiful attractors such as that shown in Plate 2c. Likcwiw. the dynam~cs r h  





result from motion on a toris are highly variable; in fact, perhaps all dynamics short of chaos may 
be described as some manifestation of motion on a toris. The ecological implications are clear. It 
has often been the case that population time-series superficially appear to be periodic, but upon 
closer inspection are found to lack true periodicity. As an example, Uvavrov, in his classical 
LOtwfx and Gra,~,~happcrs (1928) smted, "Thc fiat idca of m o n  autliorrr w a s  10 bixciver a definitc 
pmirwlicity, or the existence of dcfinitc cyclcs of years. coinciding wih l h ~  d e m s e  or incrcsr ctf 
locust numbers . ... On Lhc contrary, cvcrything seems to indimtc h ~ t  wc should. h kbcrtcr juslificil 
in @ing no1 of a wguli~r periodicity hut il!' r r r ~ ~ u l r u J w f ~ a f i ~ ~  RI numhL'r~ or B riven spccics 
in a country." The emphasis, by the way, is Uvavrov's. 'Shc cxis~encr nf fil-~ry ar mcsy  time 
series is usually attributed to the effects of stochastic variation. Recognizing that camplcx, 
quasiperiodic dynamics can result from smctly deterministic interactions (endogenous rather ~hm 
exogenous effects) should be more widely appreciated by ecologists. 

As with the preceding examples, chaos also rcsulu from poinls in pbc-qncc k i n g  a~uactcd 
to a surface but in thiq caw hth~ pcomctry of the surface mnnot wsih c?lcgarizcd by scirnc 
simple shape such as a doughnut. Due to its geomemc complexity, the name sr~unxc nrrracror has 
been attached to the attracting surface of chaotic systems (Plate 2d). Onc dcxciptian or chaos is 
"the dynamics that result from motion on the surface of a strange attractor," although nor all 
strange attractors result in chaos. An important a.pcct of PI:itc 26 IS zhc bending nnd folding rhir 
occurs on the surface of the attractor. 7 1 t :  c t m y ~ l c x  clmamics that chnmckctiilc chrrvs arc a dirrcr 
consequence of this bending and folding. Thcsc d~nnmics arc so cnmplex ttrnt thcy arc vinwally 
indistinguishable from those of a random or stochastic process. Annthcr chanclrrjslic that rcslrlls 

:! r a m  tl~c mnvolt~lcd r~rrhcc af h c  qmngc attmerni in Plnrr. 2rC is thar ~1 inLs &ILL *are i n i rd ly  close 

~i 1 together soon diverge, and in fact do so at an exponential rate. The characteristics thnr arc 

1 1 1 1  

c r n M i d  by a chmtie smngc arlrnctnr src hcrefar: (I)  the long-term dynamics of h c  sysum arc 
bounded by motion on the surface of the attractor; (2) even though 1111 dyh~rnics  arc strjctl~ 
d~terministic (i .t .  given Ihc cxacr 513tP. nf the syslcm at any p i n 1  in  h e .  h e  smtrr a1 any i t r~r~rc  

t '/I1 point in time can be uniquely determined), the resulting time series is apparently nndarn or 
stochastic; (3) points that are initially close together rapidly diverge. The c~mbinauon O E  thesc 
factors results in the paradox of regularity existing in the midst of apparently random behavior. 

rlc rcolog 
:ns ;I* 5cv 
F 

The classification scheme of the preceding paragraphs is not inclusive; there are other, mare 
subtle dynamical consequences of non-linearity that have not been described. I n  f ~ c ~  hcrc iq cvcr?; 
reason to believe that undiscovered dynamical pssibilidm uuddcrlic many ic31 

models. It is also clear that I have characterized, but not defined, chaos. Alt #en l 
postihlc rigomus definitions of cham, they arc lormuliild In the mokric l : l ~ l ~ u , ~ ~ ~  ;l-~ I U ~ U I U ~ Y O T  

ergodic theory, and are therefore incomprehensible to most ecologists. While lacking rigor, 
prcscnring fmiliw exam[rlcs fmm ihc ecological fitcmturc that prngrms imm simple to camplct 
dynamics is intended to provide an appreciation for the concept of chaos. This progression is also 
intcnrlrd ta demons!mlc th,~ chaos i s  a mr~ird mnsqucncc of rndcling apmachcs ha1 h3v.c k c n  
used for over a century to describe ecological associations (Verhulst 1845, Lotka 1925, Voltern 
1926). In the natural evolution of theoretical ecology, it has been necessary to inclub: 
nonlinearity, time delays. periodic Torc~ng, elc. lo mom rwljs~colly rcpscnt ecological structm~ 
With ciich nddilional incrca-st in tcologicdl rcniism, rhcre has been n crrncurrcnl in the 
potential for dynamical complexity. Chms is sinlply the rnmr mcnt  ndrli~ion to t icsl 
possibilities of ecologically motivated models. 



Characteristics of Chaotic Systems 

In the previous section, the basic characteristics of chaotic systems were described. In this 
section the consequences of those characteristics will be discussed in greater detail. Since chaos 
results from motion on an attracting surface, chaotic systems are bounded by the limits of the . 
attractor in phase space. Boundedness within ecologically reasonable limits is required for a 
feasible ecological model. This ecological constraint may or may not be violated by chaotic 
systems, depending on the characteristics of the particular attractor in question. Therefore, the 
ecological necessity of remaining within reasonable limits, i.e. neither growing without bounds 
nor decaying to zero, is neither necessarily violated nor satisfied by chaotic systems. 

The rapid divergence of points that are initially close together is illustrated by the two time 
series that are plotted in Plate 3a. The time series in this figure are the result of numerical 
solution to Lorenz1s3 (1963) famous weather model. The two different numerical solutions were 
obtained from initial starting values that differed by only 0.001. As is apparent in Plate 3a, the 
time series are indistinguishable for a short period of time, but once they begin to diverge they 
rapidly become totally out of synchrony, and in fact do so at an exponential rate. The exponential 
magnification of small differences is one of the most characteristic attributes of chaotic systems, 
and is directly responsible for the lack of long-range predictive power. A measure of the rate at 
which close points diverge is known as the Lyapunov exponent. For a n-dimensional system, 
there will be n Lyapunov exponents, only one of which needs to be greater than zero for the 
system to be chaotic. The condition of at least one positive Lyapunov is, therefore, necessary (but 
not sufficient) for chaos. For a defined system of equations the complete Lyapunov spectrum can 
be obtained. Techniques are also available for estimating the largest Lyapunov exponent from an 
empirical time series, although the typical sparsity of ecological time-series data is a significant 
limitation to the application of these techniques. 

Motion that is restricted to the surface of a chaotic attractor is responsible for the order that 
lies at the heart of "chaotic" randomness. Plate 3b offers an excellent example of the nature of this 
order. Even though the two time series in Plate 3a are completely out of synchrony and appear to 
be unrelated, the plots that result from their 2-dimensional projections in phase-space are 
essentially indistinguishable. This is an important result for ecologists, because it clearly 
illustrates that the "classical" way of viewing dynamical properties of a system result in an 
misleading plot (Plate 3a). while viewing the dynamics in a somewhat different light (the phase- 
space of Plate 3b) result in the emergence of an underlying order. 

Another attribute underlying deterministic chaos is the existence of a non-integer fracral 
dimension. The statement that chaotic systems have fractal (or fractional) dimension is confusing 
because of the standard use of the term dimension to describe the number of state-variables that 

3 Lorenz's classical experiment with a simple weather model dates the beginning of the modem 
(computer- assisted analysis) era of nonlinear dynamics. Through a series of simulation experiments 
with a simple, non-linear model of the weather, Lorenz discovered never-repeating, aperiodic cycles in 
which long-term prediction was not possible due to an exponential growth of initial error. An excellent 
popular account of Lorenz's work can be found in Gleick (1987) and a mathematical account in Sparrow 
(1982). 
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define a system. For example, a prey-predator system has dimension 2, and a prey-predator- 
pathogen system has dimension 3. Used in [his scnsc, dimension cornsponds to the ordcr of the 
system or, equivalently, the Euclidian dimension of the system. Othcr cnncepu aT dimcnsinn, 
such as fractal dimensions, defy such simple description. The con~gucnms that rcwlr from a now 
integer fractal dimension are, however, comprehensible. Self-similarity is anc chamcrcriztic of 
systems with a non-integer fractal dimension, and refers to complexity that i~ nnl ncccssiuily 
related to the scale by which the system is observed (Gordon and Greenspan 1988). FLW cxumplc, 
Fig. 4 ws nbtaincd by pplltins lhc dynamics of a chaolic system ar pragrcssivcl!, higher Icvels of 
resolution. Alrhnugh &c qcnlc in h c  Iasl Tmmc in F I ~ .  4 i~ nvcr 5 nrrlcrs nf rnapitucle hmnllrr 
thnn h a t  OCLIIC  firs^, hrrc hay not k e n  a concurrent r~ducLicm in h e  complcxiry nf h c  dynam~cs.  
The fractal nature of chaotic systems also leads to complex and beautiful geometric patterns. Thc 
complexity and beauty of plots such txq Plate 4 havc h c n  rc.~pnsiblc for much of the ppular 
attraction of chaos (i.e. Gleick 1987). Sinw a nun-integcr fractal dirnerrsinn b one hdlmwk of 
chaos, calculation of the fractal dimension provides a diagnostic tool for evidence ni chaos ~n 
empirical time series. Additionally, for the ecologist, the fact that the complexity or chnr i c  
q m m q  i q  imdricihla with rcspci ~h stfile mny hnve ~mpnrrant mnn<~q~~mt.< rcmrrlinr nlfrrnptq to 
determine an "appropriate" scale to view various ecological phenomena. 

Although I have yet to formally define chaos, t l~c ch3mc1crisLics of cl~aoric s)rs[crns (tmuadcd- 
aperiodic behavior, sensitivity to initial canditi~ns, psidva L y a p u n ~ u  expncnn, non-integer 
fractal dimension) provide criteria to evaluate the likelihood of chaos in a pi~r!icolar 4Ystcrn 

Dcmonsmting chaos is mom oftcn 3 m e  of accumulating rvidcnce Tnr or apirrst chaoric dynamics 

11 
rather than obtaining unequivocal "proof' of chaos. This statement is particularly uuc Itrr 

~i 1 empirical systems. Establishing thc existence andlor irnpmncc of  complex non-linear dynamics 
in  urnpirim1 ccdo@cal awxinGflns neccs?it?tcs ihc nccumul~rian nf qunliktirc (cvnluatinn of tht  
pnnicrllnr ecolagics[ B L U ~ ~ U L C S  of the as~ocixlinn in quest inn) ss wcll KS qu~ntitn~ivn. infomarim 
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Chaos and Insect Population Ecology 

May's (1974) discovery of chaotic dynamics in one of the simplest and most nnd w i d ~ l * ~  
applied ccnlngical mdc-Is rnodvacd numcmus suhseqacn~ 3rticlcs Llrs~ cxplarcd exisling ecologrcs! 
models for evidence of chaotic dynamics [see Logan and Allen (1992) for a recent review]. Thc 
result of this work was that the potential for chaos existed in almost every case. In Bcrrymnn'l 
words (these proceedings), "the seeds for chaos underlie all reasonable ecological models." llex 
results have provided fertile grounds for both active empirical investigation and thsorctirsl 
conjecture. 

The first, and until mecnrly nnlr of the fcw, empirim! srurlicq dm1 alumptcd lcl cxnmine f icld 
darn on jnsrrct k r n p m l  ahundancc patterns for ind~ations of  cnrnplcx nnnlinmr dynamics WXF: fy 
Hassell et al. (1976). l~ k h i ~  h i < ~ r i ~ i ~ f E y  irnpotlsn~ p a p ,  lhcy rcviewcd litnc-whcs ficld-~allccr~~! 
data for 24 insect species. Through thc use of a sinlplc single-species poptll~~ion rnodcl (s divrrlr 
analog of the lagistic rndrl), they estimated pputarton grnwth and densisg dsp.xdcnt fctdh;k 
parameters for each species. They rhcn cl~silicd_ [be ~ J y m ~ n i c a t c ~ ~ . c t i ~ ; t i c s  far ~ c h  spits, mi 
found that almost all fell within a region of stability. In fact, only one gave ind~calions (1' 



complex nonlinear behavior (a stable limit cycle) and none fell within the region of chaos. 
Subsequent work (Bellows 1981, Thomas et al. 1980), which generally replicated Hassell et al.'s 
approach, served to reinforce their results. Although Hassell et al. were careful to point out the 
limits of their analysis, their results have been widely cited in support of the view that complex 
dynamics, and in particular chaos, are seldom expressed in nature (e.g. Berryman and Millstein 
1989). 

The major limitation to Hassell et al.'s work, as they were careful to point out, was that their 
model explicitly excluded trophic interactions with other populations. Naturally occurring 
populations are invariably embedded within a matrix of nonlinear interactions with other 
populations. It has long been recognized that analysis of a complex ecological system in reduced 
dimensionality and a single time lag will tend to obscure complex dynamics (Guckenheimer et al. 
1977). The problem, of course, is that it is typically difficult enough to accurately sample one 

1 

insect population, much less the complete community within which it is embedded. Fortunately, 
due to a theorem of Takens (1981). which confirmed a previous conjecture by Packard et al. 
(1980). the dynamic behavior of a complex system is often identical to that of the time-lagged 

I series in one of its state variables. Takens' theorem has been routinely applied in the analysis of 
I physical systems (Argoul et al. 1987, Roux et al. 1983). Schaffer and coworkers (1984, 1985a, 

1985b. 1986) were the first to recognize the implications of Takens' results to ecological systems, 
although the analysis of time-lag structure per-se has a long tradition in population ecology 
(Berryman 1978, Hutchinson 1948, Moran 1953, Royama 1977). Graphical analysis (by Poincard 
section) of the lagged time series, in view of Takens' theorem, has resulted in the discovery of 

I probable complex nonlinear dynamics underlying the behavior of insect systems that had 
previously been thought to be random (Schaffer and Kot 1985b). Other graphical procedures have 
also been used (Sugihara and May 1990) to demonsrrate the existence of low-dimensional attractors 
(chaos) in ecological data. Ellner, in these proceedings, reviews the validity of these techniques for 

I analysis of ecological time series. 

In recent work, Turchin (1990, this volume) applied a time-lagged methodology (Turchin and 
Taylor 1991) to analyze the time series of 13 forest insect pests. This work, which is reviewed 
and expanded upon in these proceedings, resulted in the following breakdown of dynamics: no 
regulation, 1 case; exponentially stable, 2 cases; damped oscillations, 6 cases; limit cycles, 3 
cases; chaos, 1 case. Turchin's results are in marked contrast with Hassell et al.'s (1976) earlier 
conclusions, indicating the general importance of complex nonlinear dynamics in forest insect 
populations. In particular, Turchin suggested that complex dynamics resulting from density- 
dependence may in fact underlie population fluctuations that had previously been attributed to 
stochastic and/or exogenous effects. 

Analysis of empirical insect population data for the signature of chaos presents a significant 
dilemma. On the one hand, the "standard" techniques of mathematical analysis are unrealistically 
data intensive. Although development of new methodology for detecting chaos in small data sets 
is currently an active area of research in mathematical analysis, there are potential problems in 
ecological application of this work, as illustrated by a recent quote from this literature. Ramsey 
and Yuan (1989) provide an optimistic statement that, ". . . one should be able to get a reasonably 
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Figure 4. (continued) into more complex dynamics are called "bifurcation points." hence the 
name bifycation plot. Chaos results in a "smear" of points. As the parameter for population 
growth rate is increased, the dynamics become increasingly complex. Note that in chaotic regions, 
some population values are very close to zero (extinction), and that low population levels become 
increasingly close to zero as the critical parameter is increased (see Berryman and Millstein 1989). 
@) An enlargement of the region contained in the box of A. (c) An enlargement of the region 
contained in the box of B. (d) An enlargement of the region contained in the box of C. See text 
for further discussion. 



clear idea of whether one has an attractor or not with only a few thousand observations ... 
Obviously, the concept of "small data set" is relative. Ecologists feel lucky to measure data 
terms of tens rather than thousands! 
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the conclusions that are drawn. , ,  . .  . . 

stable equilibrium through chaos) for the same data set. 

process level simulation models to generate data that &e then subjected to quantitative analysis. 
this approach, data from a validated simulation model can be used in several ways. 
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of chaotic systems (i.e fractal dimension, positive Lyapunov exponents, etc.). Since the 
result from simulation, the large data requirements 
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budworm, Heliothis virescins (Makela et al. 1988). 
proceedings. 
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in more analytically tractable models. The analytic model is then subjected 
analysis designed to provide insights into dynamical properties. . . . ~ -- . .  , 

a systematic process of developing progressively more analytically tractable- models , ,  

. . simulation models is the development of composite models Gogan 1982, , - . . 

1987). This approach has been successfully applied for - - . . 

several important insect pests (Logan 1982, Ludwig et ai. 1978, Wollkind et al. 
Application of the composite modeling paradigm for analysis of a spider , I  , . I N '  
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more complex aperiodic cycles that appear to be chaotic (J. A. Logan, unpublished). 
significance of this . . : .  . . : I  ; . . . . . . .  . . , .  , ,  . , . I . :  . . 
ecologicalanalysis. ' . I ,  .:.., I . , .  I 1 8 1  . . . .  ~ , l ' . ~ ~ i . ' . , .  I i f  ,.; j : .  1 : 1 1 ,  . .. . . I  ,I : 

elucidate the role of temperature on the prey-predator interaction and the resulting 
control of T. mcdanieli (Logan 1976). 
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based on real life interactions. As indicated in the previous section, the potential for chaos is 
ubiquitous in the generally accepted ecological models. Therefore, demonstration of chaos in a real 
system through use of a model is credible only if the model is a reasonable representation of the 
system and if parameter values are in a realistic range. In any case, due to the difficulties I have 
discussed with empirical data analysis, simulation-generated data will continue to play an 
important role in analysis of insect population dynamics. 

Since neither empirical data analysis nor model results have definitively demonstrated the 
importance of chaos in insect population dynamics, the issue provides fertile grounds for 
theoretical debate and conceptual conjecture. On one side lies the evidence that ecological structure 
abounds in characteristics that lead to complex dynamics and chaos, and on the other side is the 
historical tradition that stability (consistency) is a desirable (i.e. has positive selection value) 
ecological trait (Berryman and Millstein 1989). The arguments against chaos (and by implication 
complex nonlinear dynamics) being expressed in extant ecological associations are based on the 
assumption that chaos would lead to population extinction. This assumption is based on the 
observation that for some models oscillations in the chaotic parameter region lead to a high 
probability of extinction (Berryman and Millstein 1989, Thomas et al. 1980). The counter to this 
argument is that the behavior of one class of equations does not generalize to all ecological models 
(Rogers 1984). In particular, systems of equations, including simple prey-predator equations, can 
exhibit chaotic behavior that is tightly bounded (Stone, these Proceedings). In fact, for some 
ecological models the dynamics of populations in chaotic regions are more closely bounded than 
those in nearby non-chaotic regions (Allen 1989). Examples from laboratory (Pimentel and Al- 
Hafidh 1965, Pimentel and Stone 1968) and field experiences (Fenner and Myers 1978) can be cited 
to support the view of selection for stability. Conversely, the body of literature on the dynamics 
of "outbreak insects (e.g. Barbosa and Schultz 1987) provide numerous examples of populations 
with violent density fluctuations that are none-the-less persistent. 

In summary, the empirical search for chaos in ecological systems has involved three 
approaches: (1) use of time series data to estimate parameters in simple population models, (2) 
phenomenological construction of a multidimensional attractor from time-lagged data, and (3) the 
construction of statistical models (RSM technology) from time-lagged data. All three approaches 
are Iimited by large data requirements or potential inconclusiveness of results. Related to these 
purely empirical approaches has been the use of validated simulation models to generate data that 
are then subjected to dynamical systems analysis. Although data sets generated from simulation 
models are not restricted by the constraint. of real-world time frames, results from these studies are 
subject to the limitations and criticisms of simulation studies in general. Therefore, much of the 
evidence for or against chaos and complex dynamics has a basis in conceptual or theoretical 
arguments. Once again a convincing case (using selected examples) can be made either for or 
against chaos. From this diffuse information, however, one consistent pattern does emerge: and 
that is, the deeper one looks into the dynamics of insect populations, the more likely one is to find 
evidence for complex nonlinear effects. 



Important Issues 

The difficulty in empirically demonstrating chaos in ecological data leaves the 
question of the existence of chaos in ecological systems unresolved. k&&M of* 
important for reasons both philosophical and practical. 'I'b lW@nhg &qHEtSh dli6 
address both the conceptual and the practical issues relating to chaos in ecology. 

equilibrium systems. 

that are truly unpredictable. If, h@UW8r, Lhis 

~ ~ h ~ f a o e a b ~ y c a e h a t i t i 9 a d , h v c r , i t  
between time series that are chaotic from those that are simply noisy. 



al.'s work was the a priori assumption of a single species model4. He then proposes a 
multidimensional, time-lag-based model and applies this model to time series from several 
important forest insect pests. Turchin concludes that complex dynamics are more common that 
has previously been recognized. Following Turchin's contribution, Ellner provides a thorough 
review of some of the dangers of looking for chaos in short time-frame data sets that are 
characteristic of ecological studies. In particular, he demonstrates that many of the characteristics 
of chaotic systems can also arise from simple, non-chaotic stochastic models. Ellner's work serves 
to emphasize the necessity of placing the analysis of ecological time series within the ecological 
context of the system under examination. In other words, what are the plausible controlling 
mechanisms of the system under consideration and are they consistent with (or counter to) chaos as 
an explanation for the observed time-series? Ellner concludes his contribution by noting that 
significant progress has been made toward development of analytic tools for distinguishing chaos 
from random noise in the types of data sets typical to ecology, but that the task is by no means 
completed. His paper is an eloquent plea for further development of such techniques. 

The papers of Turchin and Ellner serve to point out the challenges of empirically 
demonstrating chaos in ecological systems. Their contributions provide motivation for the 
empirical analysis of time series that result from well considered ecological models in which the 
underlying governing rules are uniquely defined. Due to the accessibility of powerful personal 
computers, it is now possible to construct models of ecological associations that are far more 
detailed than has previously been reasonable. In the final chapter of these proceedings, Stone takes 
a novel approach to simulation of prey-predator dynamics. He departs from traditional modeling 
approaches by developing an object-oriented programming simulation of the behaviors of I 
individuals that comprise the population. Through this approach, Stone is able to examine the i 
dynamics of the prey-predator interaction at an unprecedented level of resolution. In a further 
departure from previous individual-based simulations, Stone bases behavior entirely on if-then 

! 
rules that contain no random or stochastic elements. This latter point is particularly germane to 
the topic of this symposium since any dynamics that emerge from the model could be attributed 
solely to deterministic forces. Since the model was not cast in the traditional difference or 
differential equation model, analysis of model results can follow approaches similar to those used 
for the analysis of real ecological data. However, since large, long-term data sets can be easily 
generated through computer simulation, the typical constraints of ecological data are avoided. In 
other words, through simulation, results from Stone's work meet the conditions in Ellner's paper 
for reliable detection of chaos (i.e. (1) abundant data, (2) small (nil) measurement error, and (3) data 
result from a purely deterministic system). Stone's work identifies a chaotic strange attractor that 
is an emergent property from his simulated prey-predator system. Stone further notes that 
dynamics resulting from motion on this strange attractor would be diagnosed as resulting from 
stochastic forces acting on non-chaotic, logistic growth. The basic result from Stone's paper is, 
therefore, in some sense the mirror-image to that of Ellner's; it is also quite easy to misclassify 
chaotic behavior as stable. 

4 Hassell et al. acknowledged that real-world population dynamics result from complex trophic 
interactions and that their results should be viewed with caution for this reason. This caveat has largely 
been ignored in subsequent work that has cited the Hassell et al. paper. 
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Chaos in Ecology and Resource Management: 
What Causes It and How To Avoid It 

Alan A. B e r r y m a n l  

Nowadays, as Logan notes in the first chapter of this volume, there is "much ado about 
chaos." Articles regularly appear in the major journals, books are published in profusion, chaos is 
hailed as a "new science" (Gleick 1987), ranking in importance to "relativity and quantum 
mechanics" (Fisher 1985). Despite all this excitement, however, chaos remains mysterious to 
many people. The purpose of this paper is to provide ecologists and resource managers with an 
elementary understanding of the phenomenon called chaos. In the first section I describe chaotic 
motion and explain what causes it. Then 1 address three important questions about chaos in 
ecology and resource management - Does chaos occur naturally in ecological systems? Can human 
actions cause chaos? How can chaos be avoided in managed ecosystems? 

What is Chaos? 

In the book Chaos: Making a New Science, Gleick (1987) cites several definitions of chaos, 
e.g., "complicated, aperiodic, attracting orbits of certain dynamical systems; a kind of order 
without order; apparently random recurrent behavior; irregular, unpredictable behavior of 
deterministic, non-linear dynamical systems." 

Most experts would probably agree that chaos is a type of behavior that emerges from 
dynamic (time-varying) systems containing non-linear relationships (as most biological systems 
do). Classical dynamics recognizes two major types of deterministic (non-random) behavior - 
equilibrium points or point attractors (Fig. la), and periodic orbits or cyclic attractors (Fig. lb). I 
should explain that attractors are regions in the phase-space of two or more variables (the inserts in 
Fig. 1) that attract nearby trajectories; i.e., a magnet is a point attractor to an iron nail. Chaos is a 
third kind of behavior in which the trajectories are not drawn towards a single point or orbit but 
rather to a definable region of phase-space called a "strange attractor" (Fig. lc). Because orbits on a 
strange attractor do not repeat themselves, or repeat only after long time intervals, they sometimes 
appear to have random motion. In fact, if we take a system that has a cyclic attractor (Fig. lb) and 
place it in a noisy (variable) environment, we obtain behavior that is difficult to distinguish from 
chaos (Fig. Id). A major problem, therefore, is to separate chaos from non-chaotic noisy 
trajectories (see Ellner's contribution in this volume). 

1 Departments of Entomology and Natural Resource Sciences, Washington State University, 
Pullman. WA , 99164-6432. 
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What Causes Chaos? 
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growth parameters as well as to parameters determining the strength and inertia of the feedback 
response, both of which create the deviation-amplifying requirements for chaotic motion. 

In summary, it is possible for ecological systems to exhibit the major types of equilibrium 
behavior - point equilibria, periodic cycles, and aperiodic chaotic motion. The behavior around 
equilibrium becomes more irregular and unpredictable (more chaotic) as time-lags get larger and as 
the intensity or strength of the negative feedback reactions increase and, of course, as the positive 
feedback growth parameters become large. 

Does Chaos Occur Naturally in Ecological Systems? 

Following May's (1974) observation of chaos in simple ecological models, an obvious 
question was: "Do ecological systems display this complex and unpredictable deterministic 
behavior?" In other words, is the irregular and apparently random behavior observed in many 
natural populations (Fig. 3) due to chaos (Fig. lc), or to random disturbances of non-chaotic 
trajectories (e.g., Fig. Id)? For a number of technical reasons, the usual methods of attractor 
reconstruction cannot be applied to most ecological data (e.g. see, Ellner's contribution in this 
volume and the discussions by Nisbet et a1. 1989 and Berryman and Millstein 1989b). 

An alternative approach is to fit theoretically reasonable ecological models to the data and then 
determine if the parameters fall into the chaotic domain. When this approach is applied to data 
from natural and laboratory populations, chaotic parameters are rarely encountered (see Hassell et 
al. 1976, Thomas et al. 1980, and Turchin's contribution in this volume). I have analyzed 
numerous sets of field data in a similar way and have only once found parameter values in the 
chaotic domain. For example, when the data in Figure 3 are fit to a theoretical two-species model, 
the estimated parameters give rise to point attractors (Fig. 4, left), even though the model, with 
different parameters, is capable of producing chaotic motion (Fig. lc). However, the trajectories 
are very similar to the observed dynamics when the models are run in a variable environment [c.f. 
Figs. 3 (left) and 4 (right)]. Thus, although some see chaos in ecological data (e.g., Schaffer and 
Kot 1986), the empirical evidence suggests that ecosystems are usually quite stable and that the 
irregular fluctuations often observed are due to external random perturbations rather than to internal 
chaotic motion. 

Besides the empirical evidence, there are strong evolutionary reasons why ecosystems should 
not behave chaotically. First, chaotic population trajectories often spend considerable time far 
from their equilibrium points, sometimes declining to extremely low densities where extinction is 
likely (Thomas et al. 1980, Berryman and Millstein 1989a). Conventional wisdom argues that 
species should evolve parameter values that minimize the likelihood of extinction; i.e., 
non-chaotic parameters. This viewpoint is supported by modeling exercises (Nisbet et al. 1989, 
Mani 19891, and by laboratory and field experiments. For example, Pimentel and his associates 
grew populations of houseflies and parasitic wasps in the laboratory and observed that the 
amplitude of population fluctuations decreased significantly over time (Pimentel and Al-Hafidh 
1965. Pimentel and Stone 1968). Examples of evolving stability can also be found in the 
biological control of pest organisms. One of the best documented cases is the biological control 
of rabbits in Australia by the myxoma virus (Fenner and Myers 1978). Shortly after introduction 











of the virus a virulent strain generated an epizootic that killed most of the rabbits. ~'il:.r I_! : -  
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continuously disturb them frhm their steady states. 

Can Human Actions Cause Ecological Chaos? 

Although most natural co-evolved ecological systems do not seem to behave chaotically, Ihc 
fact remains that all ecosystems contain the "seeds of chaos" in their feedback sirucrures and, 
therefore, it is always possible to push them into their chaotic domains (Berryman and Mill stein 
1989a, Allen IY9)) .  Inslability can Ix in t rducd  ir~lu any system containing pnslhve a r ~ r l  rtcgailvc 
feedbacks by increasing the time lags in the negative feedback loops or by chmgirrg the vduts  of 
certain parameters, particularly the birth and death rates. For example, I have argued thal 
instability in Dungeness crab populations in the rlccans off Nnrllicrn Calilbmia could have f m n  
induced by delayed feedback between the crab population and the economic system IRcrryrnim 
1991); i.e., Ihe abun&ulcc of cri lb~ 3ffC~ls  harvest succcss, which in turn afkcu profils, which xe 
then used to purchase new boats and gear, which then impact crab abundance in Ihc following 
fishing season (= time lag) (Fig. 5). Many more examples of human actions that could inducc 
delayed negative feedback on future populations could be cited, i nc lud i~~g  glalul w m i a g  , u;l.oe 
depletion, destruction of tropical forests, and buildup of radioactive waste. Feedbacks such as 
these, which may not have an impact for a long time, ~ h ~ k l d  k- CXI!SLU! L o  dccrc;rs subi l i ly 
of ecological systems, and could create an environment in which chaos reigns (see Box II). 

Instability can also be introduced by modifying certain ecological parameters. For cxamp[c. 
species-specific growth rates can have very $lri}ng cl'fcctr on s u b i l i ~ y ~  w i ~ h  large ic~~rurllrcl ivc. nw. 
giving rise to greater instability (Fig. 2). Growth rates can be increased by improving prowng 
conditions for the species in question (habitat improvement) or hq' breeding I'aswr-growirrg or nium 
fecund strains (genetic improvement and biotechnology) (Berryman and   ill stein IVXu;l), 
Instability can also be induced by increasing the strength of the interactions between species (a. 
Box 11), i.e., increasing the efficiency or virulence of predators, parasites and piilllt~gcns, m: 
increasing the degree of competition or cooperation (mutualism) between species. 'I'hus, l e  
ilnginecring of more cffisicnl or v i ru l l r~~ i  p t h q c n s  can inducc mnlngicel itislnbiliry m11. p r l i ~ p ,  

even chaos. This message should not be lost to biotechnologists who are currently cllgioccfing:, 
more virulent viruses for use in insect pest control. 







Berryman, A. A. 1991. Can economic forces cause ecological chaos? The case of the 
northern California Dungeness crab fishery. Oikos (in press). 

Berryman, A. A. and J. A. Millstein. 1989a. Are ecological systems chaotic - and if not why 
not? Trends in Ecology and Evolution 4: 26-28. 

Berryman, A. A. and J. A. Millstein. 1989b. Avoiding chaos. Trends in Ecology and 
Evolution 4: 240. 

Berryman, A. A. and J. A. Millstein. 1990. Population Analysis System. POPSYS Series 1, 
Single-Species Analysis (Version 2.5). Pullman, Washington: Ecological Systems 
Analysis. 

Buller, R. J. 1979. Lesser and Canadian sandhill crane populations, age structure and harvest. 
Special Science Report No. 221. Washington D.C.: U.S. Department of the Interior, Fish 
and Wildlife Service. 

Fenner, F. and K. Myers. 1978. Myxoma virus and myxomatosis in retrospect: The first 
quarter century of a new disease. pp. 539-570 In Viruses and Environment, ed. E. 
Kurstak and K. Maramorosch. New Yo& Academic Press. 

Fisher, A. 1985. Chaos: The ultimate asymmetry. Mosaic 16: 24-33. 

Gleick, J. 1987. Chaos: Making a new science. New York: Penguin. 

Hassell, M. P., J. H. Lawton and R. M. May. 1976. Patterns of dynamical behavior in 
single species populations. Journal of Animal Ecology 45: 471-486. 

Korpimai, E. and K. Norrdahl. 1989. Predation of Tengmalm's owls: numerical responses, 
functional responses and dampening impact on population fluctuations of microtines. 
Oikos 54: 154-164. 

Mani, G. S. 1989. Avoiding chaos. Trends in Ecology and Evolution 4: 239-240. 

Mattson, W. J. 1980. Cone resources and the ecology of the red pine cone beetle, 
Conophthorus resinosae (Coleoptera: Scolytidae). Annals of the Entomological Society of 
America 73: 390-396. 

May, R. M. 1972. Stability and complexity in model ecosystems. Princeton, New Jersey: 
Princeton University Press. 

May, R.M. 1974. Biological populations with nonoverlapping generations: Stable points, 
stable cycles and chaos. Science 186: 645-647. 

Morris, R. F. 1959. Single-factor analysis in population dynamics. Ecology 40: 580-588. 



Nisbet, R., S. Blythe, B. Gurney, H. Mertz and K. Stokes. 1989. Avoiding chaos. Trends in 
Ecology and Evolution 4: 238-239. 

Peterson, R. D., R. E. Page and K. M. Dodge. 1984. Wolves, moose, and the allometry of 
population cycles. Science 224: 1350- 1352. 

Pimentel, D. and R. Al-Hafidh. 1965. Ecological control of a parasite population by genetic 
evolution in the parasite-host system. Annals of the Entomological Society of America 58: 
1-6. 

Pimentel, D. and F. A. Stone. 1968. Evolution and population ecology of parasite-host 
systems. Canadian Entomologist 100: 655-662. 

Schaffer, W.M. and M. Kot. 1986. Chaos in ecological systems: The coals that Newcastle 
forgot. Trends in Ecology and Evolution 1: 58-63. 

Thomas, W. R., M. J. Pomerantz and M. E. Gilpin. 1980. Chaos, asymmetric growth and 
group selection for dynamical stability. Ecology 6 1: 13 12- 1320. 

Berryman, A. A. 1991. Chaos in Ecology and Resource Management: 1't'lh;rr 

Causes I t  and How to Avoid It, p. 23-38. In Chaos and Insect Ecology, ed. . I .  
A. Logan and F. P. Hain. Virginia Experiment Station Information Series ' 2 1 .  

3. Blacksburg: Virginia Polytechnic Institute and State University. 



Nonlinear Modeling of Time-Series Data: Limit Cycles 
and Chaos in Forest Insects, Voles, and Epidemics 

Peter Turchin 1 

Although the emphasis of this conference is on chaotic population dynamics, in this paper I 
will address the broader issue of complex dynamical behaviors in ecosystems. "Simple" refers to 
dynamics whose endogenous (density-dependent) component is characterized by a stable-point 
equilibrium. In such systems fluctuations around the equilibrium point are primarily, or entirely, 
due to exogenous (density-independent) factors. Thus, "complex" dynamics are bounded, 
endogenously-driven fluctuations that do not settle to a stable-point equilibrium. Examples 
include limit cycles, quasiperiodic dynamics, and chaos. It is important to consider limit cycles 
and chaos together because both dynamical behaviors have the same implications for the 
population-regulation debate (more on this later). Another source of complexity is the interaction 
between the nonlinear endogenous component and the environmental noise. My main argument 
will be that both ecologists and forest managers need to pay more attention to the possibility of 
complex dynamical behaviors in natural ecosystems. 

The current debate about complex population dynamics revolves around the issue of whether 
or not such dynamical behaviors are found in nature. A small, but vocal, group of ecologists 
(notably W.M. Schaffer and coworkers) have argued that complex dynamics, and chaos in 
particular, are commonly found in nature. On the other hand, many ecologists appear to subscribe 
to the view that if populations are regulated at all, they are characterized by stable-point equilibria. 
and complex dynamics are no more than a mathematical curiosity. This view has been expressed 
by both experimentalists, e.g. "the rarity with which populations fluctuate cyclically in nature ..." 
(Hairston 1989, p. 6), and theoreticians, e.g. "deterministic stability is the rule rather than 
exception, at least with insect populations" (Nisbet and Gurney 1982, p. 55). 

Whether or not complex dynamics are common in nature has a bearing on one of the central 
issues in population ecology: the perennial debate about population regulation. Willingness to 
ignore the possibility of complex dynamics leads to a certain mind set with which many ecologists 
view the debate, which I will call "the one-dimensional paradigm of population regulation." 
According to this view, all natural populations lie within the spectrum ranging from completely 
unregulated populations at one extreme to tightly regulated populations at the other extreme. 
Since "regulation" is usually limited to "regulation around a stable-point equilibrium," any 
population fluctuations around the mean must be due to lack of regulation, in other words, to 
exogenous (density-independent) perturbations. Clearly, complex dynamical behaviors do not fit 
within this framework; thus violently fluctuating populations, even if the fluctuations are caused 
by endogenous (density-dependent) factors, are by default classified as poorly regulated. 

If complex dynamics were rare or absent in nature, then there would be no need to modify the 
one-dimensional paradigm. The most frequently cited empirical evidence for rarity of complex 
population behaviors comes from the paper by Hassell, Lawton, and May (1976). Hassell et al. 

1 Southern Forest Experiment Station, USDA-Forest Service. Pineville, Louisiana, 71360. USA. 
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(1976) used a simple one-species model to assess the frequency of various dynamical behaviors 
among 24 natural insect populations. They concluded that all but one population were stable (22 
cases of exponential and 1 case of oscillatory damping). There was only one case of a limit cycle, 
and no cases of chaos. 

A major flaw in the Hassell et al. (1976) analysis is that they used a single-species model 
without delayed density dependence. Using such a simple model biases the results in favor of 
stability, since complex dynamics are much more likely in higher-dimensional systems, and 
mistakingly analyzing such systems in fewer dimensions will tend to hide this complexity 
(Guckenheimer et al. 1977, Schaffer and Kot 1985a). Natural populations are multidimensional 
systems, since any given population typically affects, and is in turn affected by, other populations 
in the community (i.e. resources, competitors, and natural enemies). Additional dimensionality 
may arise as a result of population structure (e.g. age-structure). Hassell et al. (1976) 
acknowledged this problem, but lacked the tools for dealing with it. Despite this caveat, the 
results of Hassell et al. (1976) are still being used as evidence against complex dynamics and, in 
particular, chaos (Berryman and Millstein 1989; Berryman, this volume). 

Nonlinear modeling of time-series data 

The above discussion highlights a major difficulty associated with assessing the type of 
dynamics in natural populations. In order to understand and predict population change, we need 
information about the abundances of interacting species. The problem is, usually data are available 
only for the target population, and we never have the complete data for all species in the 
community. It turns out, however, that actions of other species in the community can be detected 
by considering the influence of lagged (past) population densities on the current rate of population 
change. To illustrate this idea, consider a very simple community consisting of a single predator 
and a single prey species, both species having one generation per year (see Fig. 1). The 
population density of the next generation of prey, N t + l ,  will be influenced directly by the current 
density of prey, N,. This influence will consist of the effect of reproduction, and any direct density- 
dependent effects such as intraspecific competition. In addition, there is going to be an indirect 
effect of the lagged density N , -1  mediated by the predam population. If N 1 was high, then 

Figure 1. Delayed density regulation in a predator-prey system. 



predators at generation t-1 had plentiful prey, and predator numbers have increased between t-1 and 
t, negatively impacting the prey population at t+l. Alternatively, if Nh1 was low, then predator 
population has been decreasing, which will have a positive effect on N,+l. Thus, the system of 
two equations describing the dependence of NN1 and (predator) on N, and P, can be rewritten 
as a single equation describing the dependence of N,+l on N, and N, -1 : 

In general, if there are p interacting species in a community, then N,+l will depend on p 
previous lags (Royama 1977). In addition to species interactions, lags can arise as a result of age 
structure, maternal effects, and other kinds of population structure. Fortunately, in practice a few 
lags (2 or 3) may be sufficient in many situations (Schaffer and Kot 1985a). Analyzing lag 
structure of population regulation is a venerable tradition in population ecology (Hutchinson 1948, 
Moran 1953, Royama 1977,1981, Benyman 1978,1986, Turchin 1990). 

The method of reconstruction with lags provides the basis for recapturing the dynamics of a 
multivariate system when only a univariate time series is available. I will call this approach, 
described below, "the nonlinear time-series modeling" of data. Nonlinear time-series modeling of 
ecological data was independently proposed by Ellner and coworkers (Ellner, this volume; see also 
Ellner et al. 1991, McCaffrey et al. 1991, Nychka et al. 1991), and by Turchin and Taylor (1992; 
see also Turchin 1991, 1992). This approach is similar to the methods of Eckmann and Ruelle 
(1985, Eckmann et al. 1986) and Farmer and Sidorowich (1987, 1988) that were proposed for 
physical applications. Its major departure from the physical methods is its explicit treatment of 
noise (the exogenous component) as an integral part of dynamics. 

The general model underlying the approach is: 

where El is the exogenous component, or the noise term. Note that I have changed the subscripts 
to reflect the fact that we are fitting a model to the observed change for the year t as a function of 
previous lags t-1, t-2, and so on. The basic idea of the approach is to use the time-series data to 
approximate F. If F has been accurately approximated, then the dynamics of the studied system 
can be characterized by simply iterating F on the computer, or more formally by calculating the 
dominant eigenvalue and the dominant Lyapunov exponent. The function F can be approximated 
in a variety of ways. One approach that seems to work well is the response surface methodology 
(RSM) of Box and Draper (1987). RSM is similar to fitting polynomials to data, but both the 
response (dependent) and predictor (independent) variables are transformed using the Box-Cox 
transformation (Box and Cox 1964). For biological and technical reasons (see Turchin and Taylor 
1992) it is better to use the realized per capita rate of population change r, = ln(N,/N,-l) as the 
predictor variable. This variable was fitted with a quadratic surface using the first two lags: 



8 1 8 2 
where X = N t - 1 and Y = N t _ 2 are transformed lagged densities, and the parameters of the Box- 
Cox transformation are estimated from data (for more details see  urchin and Taylor 1992). I 1 
emphasize that nonlinear modeling is a phenomenological approach, since parameters ai have no 
biological meaning apart from defining a response surface. The goal is to develop an objective 
method for extracting endogenous dynamics from data, rather than gain understanding into the 
mechanisms that generate fluctuations. Nevertheless, visually examing an estimated response 
surface, as well as calculating the dynamical quantities described below, provides a useful 
diagnostic tool that may suggest possible mechanisms for subsequent study (for an example see 
Turchin et al. 199 1). 

Once the shape of F has been approximated (by fitting r, ), we can characterize its dynamical 
behavior with two numbers: the dominant eigenvalue of the Jacobian of F evaluated at the 
equilibrium, h, and the dominant Lyapunov exponent, A. The dominant eigenvalue characterizes 
the stability of the endogenous component of dynamics when the level of noise is set to zero: if its 
magnitude Ihl I 1 then the point equilibrium is stable; otherwise it is unstable (see Edelstein- I 
Keshet 1988 for a readable introduction to the stability analysis). The Lyapunov exponent is a 
generalization of h for dynamics that do not settle on a stable point attractor. It measures the 
"sensitive dependence on initial conditions," so that a system with bounded fluctuations and A > 0 - 
is chaotic. The definition of the Lyapunov exponent can be extended to cover noisy systems 
(McCaffrey et al. 1991, and Ellner, this volume). I calculated A numerically, using a modified 
method of Wolf et al. (1985). The Wolf et al. (: 1983, m r h d  tsljmates A as dl17 r m  1~1 '  tr~jcct~ry I 
divergence averaged over all points on the attractor (in practice, one needs only to follow tine 
trajectory long enough to "sample" the attractor). 'Ihis rnethnd assurt~cs dbsr data wcrc gcncrr~tcrt 
by a dc~cmninis~k systcin wiihiru~ nnrsr: (dacrc can tn- n.uhs,scnr;riil~n errors. hul no {iy n;tln i c i ~  t ~loisc). 
Including an exogenous component, however, affects the amount of time the system svnrls in 
various regions of the phase space. I r i  ibdrcr wr~rrfs, rh~: shapz of the atuxior is cllailrgcii. ant! 111c 
rdrc o f  hljc.vlor)' t l iv~!r~cncc wi l l  nccd tu he 31~cr3gcd over 3 dil'l'c.rcnl sci u f ' ~ > i n r s  cclniprcd tr) 11le 
attractor of the deterministic system. To measure A of a stochastic system, I IIILKI~ l i t 4  ~lbr  Wcilj' c1 
al. (1985) method by adding noise to the equation for generating trajectories. In the ~r l~~ t l i i . i r i t  
method, A is dlc ;~vcr;igc. rille of r l i v c? rpn~~ :~  l>ci*~en two r w h y  ~ a j ~ c ~ c x i ~ s  g~nr'r;lli'it tly ~1.14: 1114 ~ i k l  
(1) with a random but identical sequence of errors ( E ,  ) . When defined this way, A I ~ I L - : I S L I ~ C ~  

trajectory divergence due only to the endogenous component of dynamics. That is, in syslcrns 
with positive A, trajectories diverge both as a result of arltl c~irlugsnults a l~d  c.l;~g<i~r>us ~YIL~I I I ICS.  

In systems with negative A, endogenous dynamics will cause trajectories to converge, ~liis 
tendency being counteracted by divergence due to noise. In order to estimate A ~rsirrl: l11 i s  olcr ti<!tl, 
in addition to an estimate of the endogenous component one also necds an cstinlnrc oC tll>isc. 1 
modelled the exogenous component as a Gaussian random variable with mean zero, and !ha 
variance estimated by the variance of the residuals from fitting the model (1) to data. Eurh 
estimate of A was an average of three values obtained by starting with random initial c{urirliric~ns, 
discarding the first 100 iterations, ;lnd thcrr I I I C . ~ . S U ~ I ~ ~ ~  d i v ~ r g c ~ ~ ~ c : / ~ i ~ n v e ~ ~ ~ n r : r  riltr Cur thr: n u t  
1000 iterations. 'l'hc ulbirs rlr h ;~rr: binary l l i is prr iroiad{bn, and dlc n ~ ~ r i w r i s d  sthsoic n~i:;rsurcrj :I 
with a standard error of approximately 0.01 bitliteration. 

In the following section I will discuss the .rr~slysis r,f ppuT;rl tnu t l n ~  %wr~ccl~ Ln LIICCG clam X L ~ ,  

First, I will discuss time series data for 13 tree and forest insects (this is largely a subset of  he 



data analyzed in Turchin and Taylor 1992). Nonlinear modeling of these data leads to a conclusion 
very different from that reached by Hassell et al. (1976). Next, I will analyze two other data sets, 
for which the evidence indicates chaotic fluctuations: small rodents in the Arctic, and measles in 
American and European cities. 

Forest insects 

Unlike the results of Hassell et al. (1976), our analysis revealecl a complete spectrum of 
dynamical behaviors in the forest insect data set, ranging from stability to chaos. Of the 13 forest 
insect cases, only 2 were classified as exponentially stable (Table 1). Six cases were classified as 
damped oscillations. However, in one of these cases, Bupaluspiniarius , increasing the number of 
lags from two to three indicated quasiperiodicity, suggesting that this case may be characterized by 
higher-dimensional dynamics, that were misclassified by the two-lag response surface. Another 
case, Dendroctonus frontalis , exhibited oscillations of increased amplitude that appear to become 
chaotic during the second half of the series (see below). There were one limit cycle and three cases 
of quasiperiodic dynamics (these are similar to limit cycles, but have an irrational period, so that 
the solution never repeats itself; see Schaffer and Kot 1985a for a classification of various 
dynamical behaviors). Finally, one case was classified as chaos. In sum, almost half of the cases 
exhibited evidence of complex dynamics. I will now examine several selected cases in greater 
detail with the goal of checking on how plausible these results are. 

Choristoneura fumiferana (spruce budworm) is the only case for which the extracted dynamics 
(exponential stability) did not resemble the observed dynamics (Fig. 2). It has been suggested that 
this population undergoes periodic outbreaks as a result of some delayed density-dependent process 
(Royama 1977, 1984). However, a regression analysis did not detect any signs of density- 
dependent regulation, either direct or delayed (Turchin and Taylor 1992). One alternative to 
Royama's hypothesis of endogenously generated cycles is that the population may be tracking a 
long-term periodic trend in its food base (Turchin and Taylor 1992). It is too early to attempt to 
distinguish between these two (or any other) explanations, since the quantitative data are available 
for only one outbreak. 

In another case, the population of Dendroctonusfrontalis (southern pine beetle) in East Texas, 
there is a well-documented environmental trend. During the last 30 years this beetle's food base 
has grown several-fold (Turchin et al. 1991). It is possible that such a resource enrichment led to 
an increased instability in the southern pine beetle populations in the South. Note that during the 
recorded history of SPB outbreaks the mean population density did not change much, while the 
amplitude of outbreaks has increased, with the peaks getting progressively higher and the troughs 
progressively lower (Fig. 3). Since the environmental conditions have changed over the observed 
period, fitting the response-surface model to these data directly may have led to overestimating the 
degree of stability in this population (non-stationarity tends to bias response-surface results in 
favor of stability; see Turchin and Taylor 1992). Fitting a response surface to the first and second 
halves of the series separately, we obtained diverging oscillations and chaos, respectively. This 
result is consistent with the idea that the SPB population is becoming progressively more 
unstable as its environment changes. 







The populations of Drepanosiphum platanoidis (sycamore aphid) and Zeiraphera diniana (larch 
budmoth) provide arguably the best examples of periodic dynamics among insects (Fig. 4 and 5). 
Both visual examination and more formal analyses (e.g. estimating the autocorrelation functions; 
see Turchin and Taylor 1992) suggest that these two populations are characterized by complex 
periodic dynamics. Such cyclic populations provide an opportunity to test the ability of nonlinear ' 
modeling to accurately reconstruct complex dynamics from time series of real insect populations. 
The logic here is that if the method is not capable of reconstructing limit cycles and 
quasiperiodicity from data, than there is little hope that we can use it to detect chaos. If, on the 
other hand, we can accurately reconstruct complex dynamics such as limit cycles and 
quasiperiodicity, then confidence in our ability to reconstruct another kind, chaos, is 
correspondingly enhanced. Thus it is encouraging that the method accurately classified both 
populations (Fig. 4 and 5). Moreover, the extracted dynamics were very similar to the observed 
time series. First, RSM correctly indicated the period of dynamics: 2 years for sycamore aphid, 
and = 8 years (observed: = 9 years) for larch budmoth. Second, the relative amplitude of the 
oscillation was also accurately represented, especially when a stochastic exogenous component is 
included (Fig. 4 and 5). 

The final case is that of Phyllaphis fagi (beech aphid), which was classified as chaotic. As in 
the case of limit cycles, the pattern of extracted dynamics has many features resembling the actual 
time series. E x ~ l ~ d  dynani~cs wcrc c h a r x a n ~ e d  by expancorial grtrwlh fur 3-4 y e a s  Ft~Jlr>wcd 
by crashes, interspersed by periods of rapid oscillations (Fig. 6). T l ~ c  ol~scrvcd scrlcs cxhibiwd a 
similar pattern. Hnwcvcr, Lhc ht? d ~ d  ML exhibi~ a r~gid rcgulalary wiling rhnt charac~rizcd drc 
response surface simulations. Wc cr+ncltldc that while [he response-surfacc rcsul~s arc suggesuvc, 
the case for chaos in the beech aphid population is yet far from proven. Clearly. more ycars uF 
observations, and possibly manipulative experiments, w ~ l l  k nLu%sary bcforc this quesuo~i can bc 
settled. 

Voles in the Arctic 

Violent fluctuations in microtine population density have long attracted :itrcnllnn of nnimsl 
ecologists (e.g. Elton 1942). Subarctic and arctic voles and lemmings seem to be wicularly 
prone to such "boom and bust" dynamics (for example, cyclicity indices for vole ppulalians i n  
Fennoscandia increase from south to north; see Hansson and Henttonen 1985). There is much 
controversy surrounding the mechanistic causes of cycles in arctic rodents (Krebs and Myers 1974, 
Stenseth 1985. Hansson and Henttonen 1988). Same have even d i s g u d  the reality of rn~crulinc 
cycles (e.g. Getz et al. 1987). Thus the question of whether the endogenous dynamics of nnrthcm 
voles are stable, periodic, or possibly even chaotic remains unresolved. 

Several long-term trapping programs have now generated time-series data of suffic~enl lcnglh 
for the analysis of population fluctuations in northern microtines. I analyzed time series from 
three localities: Kola Peninsula (Koshkina 1966). Alaska (Pitelka 1976), and Finnish LaphId 
(Henttonen et al. 1984, and Henttonen, personal communication). The l i ~ l  LWU ~ R L D  $115 rnmsured 
vole abundances twice a year: in the spring and in the fall. Having two observations pCr YCW 
creaks two poMuns for umc-mcs rndcling or these dam (I) h c  data arc no1 taken oi q w l  d m  
intervals, and (2) the population change reflects within-year seasonal fluctuations in a h ~ k m ;  
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of simulated data sets that were correctly classified as chaotic from 80% to 30%. By contrast, 
increasing noise level in the generating model with stable endogenous dynamics did not increase 
the proportion of data sets that were misclassified as chaotic; this proportion stayed below 1%. In 
short, it appears that any mechanism that increases the scatter of data points around the response 
surface will bias the results in favor of stability. Thus finding two of the five real-world data 
series classified as stable is perhaps not surprising. 

A close examination of one of the data series, the fall numbers of voles in Finnish Lapland, 
provides further insights into the nature of vole population fluctuations. Between 1964 and 1986 
the population underwent four well-defined outbreaks (Fig. 7a). However, the outbreak duration 
varied from three to six years (Fig. 7a). The autocorrelation function rapidly decays to zero, 
indicating that periodicity is not very strong (Fig. 7a). A two-lag quadratic response surface fits 
the data very well (Fig. 8). suggesting that a large proportion of variation in population change is 
explained by the action of endogenous factors (R 2 = 0.81). The intrinsic rate of increase of this 
population, ro,  is estimated as 5.5. This is very high -- for example, simple one-dimensional 
models such as the Ricker model become chaotic at ro = 2.7 (May and Oster 1976). The dynamics 
generated by the estimated response surface without noise are very similar to the observed 
dynamics (Fig. 7b). The Lyapunov exponent of the system without noise is relatively small at 
0.10. Adding noise to the system further decreases it to 0.03, suggesting that in this case noise 
makes the system more stable. Interestingly, the attractor characterizing the estimated 
deterministic dynamics consists of four distinct pieces. In short, these results suggest a case of 
"weak chaos": a system not very far from a bifurcation point between a four-point limit cycle and 
chaos, with strong periodicities still evident in temporal dynamics (see Fig. 7b). 

Measles epidemics 

Measles epidemics have recently received much attention as possible cases of chaos in ecology 
(Schaffer and Kot 1985b, Olsen et al. 1988, Olsen and Schaffer 1990). The case for chaos in 
measles is supported by two complementary lines of evidence: analyses of time-series data using 
the reconstruction technique, and a priori modeling using the SEIR (susceptibleexposed-infectious- 
recovered) framework (for review see Schaffer et al. 1990). Olsen et al. (1988) have also calculated 
Lyapunov exponents for a number of data sets. However, they defined the Lyapunov exponent as 
the rate of trajectory divergence due to combined effects of endogenous dynamics and noise. This 
definition is not very useful, because noise will always cause trajectory divergence, and therefore 
positive Lyapunov exponents. Thus, Olsen et al. (1988) estimated positive Lyapunov exponents 
both for measles and for the disease that is not chaotic, chicken pox. The definition of A that I use 
here does not suffer from this problem, and thus it could be instructive to apply the method of non- 
linear modeling to measles data sets. 

Measles data sets consist of monthly cases reports. Analyzing monthly data directly, 
however, has a disadvantage in that the generating process is not stationary, since there is a 
systematic seasonal variation in contact rates. Seasonally driven variation in contact rates causing 
annual peaks is well understood (London and Yorke 1973). The interesting question is whether 
interannual fluctuations are chaotic (at least in part), or whether the irregularity in fluctuations is 
due entirely to exogenous factors. Accordingly, I aggregated monthly cases into the total number 









Figure 10. The response surface estimated for the Baltimore measles data (1928-1952). 

Conclusion 

In summary, nonlinear modeling of ecological time series reveals a rich spectrum of complex 
dynamical behaviors. In two data sets, voles and measles, the frequency of positive Lyapunov 
exponents appears to be too high to be easily explained away as spurious. There is also a real 
possibility that many higher-dimensional complex dynamical behaviors have been misclassified as 
noisy stability. On the other hand, the data sets analyzed here represent organisms with high 
intrinsic rates of increase, whose dynamics frequently exhibit violent fluctuations in population 
density. It is likely that complex dynamics will be more frequent in such systems. 

It is often argued that populations characterized by chaotic dynamics will be eliminated by 
natural selection, because such populations would go through periods of low density, during which 
population extinctions would be likely (Berryman and Millstein 1989). One can argue in the same 
fashion about populations characterized by limit cycles, since they would also go through periods 
of low density. This argument is suspect because it is basically a group-selectionist argument. 
Individual selection, by contrast, is expected to favor high intrinsic rates of increase, thus 
promoting the possibility of limit cycles and chaos. 

The danger of extinction in chaotic populations is more apparent than real, especially for 
populations of abundant organisms (such as insects that are characterized by high average 
population densities). In many population models chaotic fluctuations can have a relatively low 
amplitude of fluctuation, e.g. two orders of magnitude. Populations of real insects typically 
fluctuate with much higher amplitudes: 10 out of the 13 insects in Table 1 undergo fluctuations 
with amplitude of 3 orders of magnitude or higher. One of these populations, the larch budmoth, 
oscillates with more than 5 orders of magnitude! Nevertheless, despite such extreme fluctuations, 
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Detecting Low-Dimensional Chaos in 
Population Dynamics Data: a Critical Review 

Stephen Ellnerl 

Introduction 

Methods of analyzing time series data for evidence of chaotic dynamics have been extensively 
developed and applied over the last ten years, and as a result chaos is now recognized as a frequently 
occurring phenomenon in physical, chemical, and physiological systems (for surveys see, e.g., 
Olsen and Degn 1985, Mayer-Kress 1986, Schuster 1988, Glass and Mackey 1988, Krasner 1990). 
These methods have been applied to data on the dynamics of natural populations, with the 
conclusion that there is evidence for low-dimensional chaotic dynamics (Schaffer 1984; Schaffer 
and Kot 1985a, b,1986, Kot et al. 1988; Schaffer et al. 1990; Olsen et al. 1988; Sugihara and May 
1990). but the validity of these analyses remains controversial (May 1987a, b; Pool 1989a, b; 
Berryman and Millstein 1989; Kot et al. 1988). 

In this paper, my goal is to show by example that many of the features that have been 
presented as evidence for chaos in population dynamics can also be observed in simulated data from 
non-chaotic, stochastic population models. I also identify the qualitative properties that create the 
spurious impression of chaos. In brief, population fluctuations with a constant period (e.g., one 
outbreak each year) but variations in amplitude (some outbreaks larger than others) can easily have 
features that have been interpreted as evidence for chaos, even in cases where chaos is not actually 
present. 

These results leave moot the question of whether or not the populations are actually chaotic. 
Their implication is simply that methods of "detecting" chaos imported from other disciplines 
should not be accepted uncritically, without examining their ability to tell the difference between 
true chaos, and plausible alternative explanations. What is plausible depends on the system under 
study, so a method that is perfectly reliable when treating chemical reactions or fluid dynamics in 
the laboratory, may be unreliable when applied to the dynamics of natural populations in the field. 
Population dynamics may be expected to exhibit unambiguous temporal structure for reasons 
unrelated to the presence or absence of chaos -- e.g., overlapping generations, limits to rates of 
increase or decrease, seasonality and other gradual trends in environmental conditions -- and it is 
necessary to determine if a method for detecting chaos can be fooled by these other sources of 
regularity. My contention here is that some methods that have been, and are currently, in use are 
unreliable for exactly this reason: the non-random structure they reveal is genuinely present, but it 
may not be a sign of chaos. I also review more careful uses of current methods, and describe 
methods now in development whose assumptions are more realistic for applications to population 
dynamics. 

1 Biomathematics Program, Department of Statistics, North Carolina State University, Raleigh, 
North Carolina 276958203. USA 
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Reconstructing Chaotic Attractors 

Much of the evidence for chaos in population dynamics 
rccQwmhiP-y- 

b). To illustrate this method and its potential effectiveness in unmasking chaos, Fig. 1 
~ m I h e R f W u r d a r w t n t i d a q ~ , a ~ w a m p k d ~ h a ~ k n m  
system (Schuster 1988). The RUssler equations are the three-variable system 

= -z-y, = x+O.l5y, dl = 0.2+z(x-10). 
a? d d 

but the simulated "data set" consists of only x(t), tQ R l h k  & a w i Q n  h whkh dara &PC 

on only one species out of a multi-species community. To obtain a chaotic attractor 
visual appearance of population outbreaks, the values of x(t) were exponentially 
~ p ( u t h x ) ) , b a i t h c ~ f o c m a t i w r h a s n r , ~ o n ~ @ W ~ ~ ~ l c e d s s  
of chaos (Eckmann and Ruelle 1985). 

When the data are plotted as "population" abundance x(t) versus t (Fig. la), 
periodicity in tl# hlhg  d W l b & U  bU& no m&Uk paQcrn in tkrfr tlY@lihUh, 

easily conclude that the fluctuations in outbreak magnitude are random. Howev 
reconstruction demonstrates that the fluctuations are entirely deterministic. (Here "ran 
W t f u a u a ~ ~ - b b ~ . ~ s n b v c r a g ~ l g a ~ t B c p q c  
~ ~ ~ s l c ~ y l j l l t x d e ~ ~ ~ ~  
pcwsigomwhkb in pciaciplecanbcpdimxtiuadwm,~ 
events up to the present).   or reconstruction in 3- 
. . .N] are used to construct the points X(t) = (x(t), x(t+L), x(t 
delay. Thast p h l m  an mntcud k E I I ~ ~  by a srmw 
interpolation) to draw the "reconstructed trajectory 

appears to lie within a Zdimensional surface. 

This visual impression is strengthened by t 
Poincare' section, shown in Fig. l b  as a vertical plane 
the trajectory crosses the section (Fig. lc). The points all BI h 
dimensional intersection between the attractor and the Poincar6 section. A W~lp 
intersection with zero thickness would h @ p  t h l  h attnctor d n b d  h @ 
surface (in fact the fractal dimension of this attractor is slig 
determination of the dimension requires more data than are shown here). 

Finally, graphing the relationship between successive poi 
Poincare' map, Fig. Id) generates points that lie on a single curve. The 
such a simple PoincarB map, rather than a haphazard scatter 
underlying deterministic rule for the dynamics: given exact 
abundance in the past, future changes in abundance can be predi 
essential last step is the conclusion that these same propertie 





system. Takens' Theorem (Takens 1981, Schuster 1988) asserts that this is true, IT n s~sl'firicrtdy 
large number of lags are used. 

How does reconstruction fare with real-world population data? Apparently, quite well. Fig. 2 
repeats Schaffer and Kot's (1985b, 1 Wri) alrr;lc.tnr mnncfnicl~nn fm D:~viYidsnn md Andrcut:rtlia's 
(1948) frequently-cited study of outbreaks of the apple blossom thrips Thrips imaginis. U s l n ~ :  ttrc 
monthly census data (shown in Fig. 2a) as x(t) and reconstructing in 3-dimensional space, 3n 
apparently low-dimensional attractor is obtained (Fig. 2b). Lhni resembles zhc RRsslcr ;rllrilcIt>r i n  
Fig. la. The points on the Poincar6 sections lie in a thinband, suggesting a nearly 1-dimcnsinnnl 
intersection (Fig. 2c), and the Poincar6 map for Thrips (Fig. 2b) suggests a single smnnlll curur 
and hence a deterministic explanation of the fluctuations. On Lhc hns~s of his c~tidencr. Sch;llfcr 
and Kot (1986) list Thrips among "apparent examples of real-world chaos," and rcjccl Davidscvn art11 
Andrewartha's earlier conclusion that the magnitude of outbreaks is essentially random. 

Spurious chaotic attractors in a stochastic population model 

The results in Fig. 2 reveal some regular structure in the outbreaks of Thtps: but i r  docs nnl 
necessarily follow that the outbreak n~agrrituder: are cliao~ic rathc.r rhan raorlnm, hccauw cqunily 
convincing "evidence" for chaos can be generated by non-chaotic models for this population. T$\ 
illustrate this claim, I use a simple stochastic population model inspired by Bulmer (19741, ill 
which seasonality and bounded rates of change produce temporal structure that mimic Fmt~lrns i l t  

, ,I!I chaos. The specific model is 
"D ,I"\' ' , , 

I , l r f # .  

,, where x(t) is the population density (# of individuals or #/area) at time t. If A rcrnains cortstani 
I )  I I over time, then (1) i s  a convenr~onal-tyw rn&l fnr dcnsi~y-dcflcndent population .ttwlh, who<:: 

solutions converge to the stable equilibrium x = All(l-/9. The fluctuations in rcprcx;enr Lultr 

sources of variation in LLic ~ ~ ~ p u l a ~ i ~ n ' s  vitnl mtc~.: pcrindis (c.2 ~ o w a e l )  vsriations, and yc'ar-to- 
year environmental variability. These are not ad hoe assumptions for the sake of nlitnickiny 
chnns, hut hnve hccn rccr~gnlzcd by other mnd~lrm fnr p p r ~ l a ~ i n n s  nn whirl1 1n11g-krnl d313 wrrt 
available (Bulmer 1974, London and Yorke 1973, Yorke and London 1973) and which wrr :  
subsequently analyzed for evidence of chaos (Schaffer 1984; Schaffer and Kot 1985a. b. lL,86: 
Schaffer et al. 1990; Sugihara and May 1990). For example, models or iniccGous disease? in 
human populations often include seasonally trmy ing santac r mtm; i d  Biul rn c r [I T)75), apply i np 
model (1) to Canadian wildlife, invoked periodic variations in prey abundance to explain ths 
periodic component in predator growth rate. However, like many "strategic" mdcls in popula~icln 
biology, model (1) is uc;cd here ns a hauricbc rlcvice in hclp clucid3tc general pruprries of morc 
complicated systems, without claiming that it is quantitatively accurate for any spccirjr 
population. 

Following Bulmer (1974), I used the log-additive form 





for the input function I(t). p+p(t) is the periodic component of the input, consisting Trl l -  

1aprilhmic scale) 013 lang-term avcmge (ji). v r i t ) t l i ~  ~rc,r~t$i it1 V~LA m m  w i ~  ;lvtr;lgc V ; L ~ I I C - ~ ~  

(p(t)). Z(r) is a wqtlcncc ai'indcprnc!t:z~.t n n d m  v:irLhIcc u*ii_h_ m-cm nnd u ~ n n c p  1 {hcrl~c OJ'I I 

has variance az), representing random deviations from the "seasonal" trend. h L rr  in^ vI f ) = 111 TI ii 

and substituting (2) into (I), gives 

This is a linear equation; hence, the asymptotic (t+-)' solution is easily obtained: 

where 

and E(t) is a first-order autoregressive process with autocorrelation P, atksfying dj+l)=P6ri+r: 
Z(t). Thus solutions to (3) consist asymptotically of two components: a stable pcrirxj~c 
oscillation yp(t), and superimposed "noise" ~ ( t )  generated by a :implfi I~near stochastic prwcc; 
The solutions are never chaotic, and there is no underlying chaos in vithct rnmgnnrnl nT thr 

solution. 

, 1111lt' To fit the Thrips data, the euuation 

was used with periods Ti = 12,6, and 3 months. Thr T ? -  2nd 6-monlh tcrnls nrc nrcdcd rn Ecncr;lr: 

rlllema.ting t~uthrca): anlplitudcq; thc third tcrm rniprovcs die quanri~rivc Sir bur has rro cfrcc~ 11: 

the qualitative results. Pnrnmrlcr vnltlcs wrrc eslirnatcd hy o lwo-ss r! 
Fig. 3 legend). Sincr ~ht-xc prlrnetrrc an* slric~ly n pnvt~rinri C~LF II 1r5 

to the data are not evidence that (1) is the correct model for Thrips. 11 17 I 

outbreak magnitudes has been "built in" via ($). nrhcr t h an  resulting Tmm a me~hmrsnr nl 
population regulation subject only to annual forcing. Such s mrarlcl wt~utrl tw prtfcrob h - 
information needed to build it (e.g., dcn~ity  r r spnwt .  lntcracuon~ wirh ohcr nrgnnis II 

lacking. The point of using (6) with parameters estimated from the data is that purir)us evrurnc: 
of low-dimensional chaos is not found only at biologically implausible or carefully hand-picbt~' 
parameter values. 

: mdel 
Ic., bur rl 
ms, .... j 
. 

Fig. 3 shows reconstruction applied to a typical simulation of model (1) with csrim;r!cC 
parameters for Thrips (Fig. 3a), duplicating the analysis of the real census data in Fig. 2. W~rb 
similar length time-series, the model produces an equally convincing vi~~nI_ impt&f>_rln n i  ;I Il[iu 
dimensional attractor (Fig. 3b), even though it does not have a finite-dimensional attractor. I n  3'aLr 
with a suitable choice of time-delay L, very similar "~fractors" am rasily oh~?ined b m  vinu3llr 
any data x(t) in which (i) there are large outbreaks that I I ~ :  cimil:w rn ch:rp :in{! rlr~r:~linci hut I]:!\ 





twying amplitudes; md ( i i)  there are e ~ t e n d d  periods ar time klweerr outbreakq. during whi::lr 11: 
is small compared to the outbreaks (e.g., Fig. 4). 

As in Figs. 1 and 2, the points on a Poincart section (Fig. 3c; compare with Fig. 2c5 l i c  tn . 
thin band. A quantitative measure of thickness, appropriate far thc ncady lincar rrsle~iflnsl;~? 
among the points on the section, was obtained by fitting the points with a qunrlral~c cunc 
regressing zn (the vertical co-ordinate of the points shown in Fig. 3c) on rm (the trorizonul :I. 
ordinate). The measure of thickness was 8 = (.sundid tlcvhtion 0fi-midt114~) ill- 
of r,  values). In 250 simulations of model (I), loglo@ had a vsry nearly C IP 

with mean -1.15, standard deviation 0.33. The thickness for the actual Thrips dam, Lup: Inv = 

0.98, is entirely consistent with these values; i.e.. the model and the data are equally "lm- 
dimensional". 

Finally, the Poincart map for the model (Fig. 311) is essenlial[y [he same ns that seen in rk: 
data (Fig. 2d). Fitting the points with the equation r,l =mnb ix siynificanl in h t h  c m s  
.001, R2 = .77, .83 for the Thrips data and model output shown, respectively, in a lolr-lt, 
regression), but at least for the model, the appearance of a single smooth map is spurious. hfmit, 
( I )  actually generates two separate clouds of points near the axes, one showing the mlarions!:~.~ 

Random Ampli tudes 

Figure 4. The reconstructed "attractor" in 3-space for a model with "white-noise" outbrc;!l 
amplitudes, N = 200 values for 0 5 t 140, L = 0.4. The data were generated by the equation 

which produces outbreaks of duration = 1, at times t = 4, 8, 12, . . . 40. The nmplitudc~ ,r, scr 

independent random draws from a normal dismbution with mean 0, variance 0.25. 



between a Fall outbreak and the following Spring outbreak, the other the relationship between a 
Spring outbreak and the following Fall outbreak. The elongated shape of the clouds results from 
the greater variation in the amplitude of large outbreaks compared to small outbreaks. 

Model (1)'s ability to generate data with features of low-dimensional chaos is not limited to 
short data-sets. When the simulations are extended from 7 to 70 years of monthly values (Fig. 5). 
there still appears to be a low-dimensional attractor. In 500 simulations, the Poincar6 section 
remained thin [log 10 8 = -1 .OO + 0.17(SD)], and the fit of the apparent Poincar6 map by the 
equation r + l  = a r,b was still highly significant [P < .001 in all cas'es for a log-log fit; average 
R2 = -31 f .067(SD) for all crossings, 0.53 _+ .061(SD) for crossings n+l and n less than 9 
months apart: see Fig. 5 legend]. Simulations extended to 200 years gave nearly identical results 
[loglo8 = -0.97 f 0.13(SD); R2 = .31+ .OQl(SD) for all crossings, 0.53 f .036(SD) for crossings 
less than 9 months apart, P < .001 in all cases]. 

Why does this model mimic chaos? 

The example shown above is not just a fluke, because there are identifiable qualitative features 
of model (1) which allow it to produce spurious signs of chaos. The apparent one-dimensionality 
of the Poincar6 section points in Figs. 3 and 5 is a consequence of the specific choice of Poincar6 
section and of the time-lag L used in plotting the attractor. The Poincar6 section is typically 
chosen to be the vertical plane defined by the equation x(t)-x(t+L) = 0 (Schaffer 1984; Schaffer and 
Kot 1985a, b,1986; Kot et al. 1988; Schaffer et al. 1990; Olsen et al. 1988). Intersection points 
are recorded whenever x(t)-x(t+L) goes from negative to positive (crossing from behind the plane to 
in front of it, in the perspective of Figs. 3 and 5). These crossings occur at times t, when x(t,) 
and x(t,+L) are equal and straddle the peak of an outbreak (Fig. 6a, b). Thus the radial coordinate 
of the point of intersection (r, in Fig. 3c, d) is roughly prbportional to the outbreak amplitude. 
The vertical coordinate of the intersection point (z, in Fig. 3c), is x(tn+2L). For the value of L 
used in this reconstruction, z, sits very near to the next trough between outbreaks. As a result, z, 

t shows little variation relative to the outbreak amplitudes, and all points of intersection lie near the 
one-dimensional curve z, = 0 on the section. 

This bias toward a low-dimensional appearance is most pronounced if z, sits exactly at the 
bottom of the trough between outbreaks. If outbreaks are symmetric about their peaks, with 
troughs occurring halfway between peaks, then the choice of L that achieves this is L* = TI3 
where T is the time between peaks. Reconstructions of population dynamics (and many other 
systems: e.g. Roux et al. 1983, Mpitsos et al. 1988) have often used values of L near Tl3, based 
on the generalization (Schaffer 1984, Schaffer and Kot 1985a) that values between TI5 and TI2 
usually give the best results. For example L* = 2 months for Thrips (L = 2 months used here and 
by Schaffer and Kot 1985b,1986), L* z 3.2 years for the Canadian lynx cycle (L = 3 years used by 
Schaffer 1984, Schaffer and Kot 1986). Reconstructions of measles and other childhood disease 
data (T = 12 months, L* = 4 months) are often cited as examples of low-dimensional attractors 
(e.g. Olsen and Degn 1985,1988, May 1987a, Stewart 1989, Schaffer et al. 1990, Sugihara and 
May 1990). In these studies usually L = 2-3 months has been used; consequently x(tn+2L) 
precedes the trough, but it is still negligibly small compared to the outbreaks on an arithmetic 







scale (Fig. 6c, d). Thus, the one-dimensional appearance of the Poincark sections does no 
"confirm the approximately two-dimensional nature of the flows" (Scrhnffcr and Kol 1985n), rmrl 
not reliable evidence for low-dimensional dynamics. 

The spurious appearance of a one-dimensional Poincar6 map results from h e  p m n r c  nl  t:vr 
dominant frequencies in the periodic component yp(t): one outbreak each 6 months, une tars- 

outbreak each 12 months. As crplaincd aMw, Lhe altcmar'ron of ot!tbmk rnagnilurles praducr: 
the two clouds of points in Figs. 3 and 5, which the eye (and statistical curve fitring) can c3sil: 
interpret as a smooth curve plus random errors. For dam h a v i n ~  n singTz dominnn~ frcqarncy wi.11 
superimposed random noise, the Poincark "map" is jusl a sinplc nndom .xartcr of p i n L q  [c,.g., KF 
et al. 1988). The reason for alternating outbreak magnitudes in Thrips is not known. SrhaTfcr an1 
Kot's (1985b, 1986) hypthesis of chaoric intmcoons wih orher nrganisms is s wssibility, sin<< 
models of multispecies inlcractinns can oscillrllc wi[h scrcrii3 fn-qucncy compnent- .  Hunrcvcr J 

wand fqucncy  might a l . ; ~  rcsull from sa~,wnali~y [c.g.. Iwa pcrimJseih )Ic:e when tenlpcnttrri, 
moisture, abundance of food or paucity of natural enemies, etc. allow a period of populuti5ll1 
growth). Moreover, random environmental fluctuations can interact with ngc-bmciurc nr niln- 
chaotic mechanisms of population regulation, to produce oscillations with several dislina 
frequency components (Nisbet and Gurney 1982). This counterintuitive behavior - 3 nnnpcrifil~; 
perturbation producing a periodic response -can occur because inlrinric ppulntion r c ~ u l a ~ i o n  
act as a "filter" on the environmental "noise," am~,lirying mnle fcqrsncics while rlan~ping ~>thrti 
Thus there are plausible alternatives to chaos as an explanation for the alternating outhx.lI. 
magnitudes. - 

"Stretching and folding" (Roux et al. 1983). a feature of chaotic attractors seen In dix;is!- 
(Schaffer and Kot 1985a) and lynx (Schaffer 1984) population data, can also occur in model (I!. 
Stretching (divergence of nearby trajectories) occurs at values ofx and t where 

is > 1, while folding (convergence of trajectories) will tend to occur if the same expression is < I 
Since 1-P > 0, (1) wi l l  have: bath srctching nnd folding i l  p:unrnetcw are such tha~ au~hrcaks st 
sufficiently large and rapid: stretching during the increase (x small, l.(t) large) and folding durinc 
the decrease (x large, A(t) small). 

Nonlinear forecasting methods 

Sugihara and May (1990) have recently suggested a graphical approach hascd an nonlinmr 
forecasting for identifying chaos in short, noisy time-series. Their method is based ntt !II: 
sensilivc dcpmdencc on initid mndirims [ha[ B ~ a w c L a n ? ~ ~  chaotic syslcms: mjectntics thai sun 
near to each other diverge exponentially. Hcnce nzlcmpls ro prcdicl furarc vnluts hcconle Ccss :m.l 
less accurate as one tries to predict further into the future. S u ~ i h m  mr[ May ( 1  9N1) s u ~ ~ e s ~  uslag 
this property to test for chaos, by using the first half of the data to construct 3 wits t.li 

nonparametric time-series models for predictions Tp = 1, 2. 3, . . . time-units ahcad, an11 
determining the models' accuracy when applied to the second half of the data. Ae&ardin_e 1 ~ 1  





values as the measure of prediction accuracy. Thc pmdcrian-accuracy criterion clwrlv diffcrcntin!~ 
hlwcr?n chaotic rhm {imm L ~ C  Ingistic map) sntf nrli~v pcrinrlic ri:rm ($1 wne-wnvc wirh nd r t~~ \vc  

noise). 

However, chaos versus "uncorrelated additive noise" is an unrr.~ n m w  m n p  of 
alternatives to consider for population dynamics. Onr,c nnnlimr stoch:! Is nrc :tdrnirtrd zz 
alternatives, the property used as the sign of chaos - d ~ l i n i n g  predicticrl~ X L U ~ ~ C ~  wid1 inrr~~qin: 
prediction interval - is not at all unique to chaotic systems. M:iny finite-order Mzrrknv pnsccwDi 
have the "mixiqg" p ~ r r t y .  thnt prcsenl snd  ftlrurc values arr asymptotically indcpendenk as t l ~ c  
temporal separation increases. Thc n r c  3t which prediction accuracy dccnys fur such procc.i<ci 
therefore depends strongly on how well the short-term prediction model matches the 31-rual 

dynamics; hence alternate treatments of the same data may give contradictory results. 

sfics Ihe c 
curacy 6 ---- ." .-. 

Rather than construct hypothetical examples of this phenomenon, 1 hsvc u ~ d  snmc of Ihc dnln 
analyzed by Sugihara and May (1990). Measles incidence in New York City sati 
for chaotic behavior: prrdicr Inn nccuroc y onc rnonrh ahcncl is high. preilicriora BC 
months ahead is low (Fig. 8a). Hou~cvcr, :&cr lag-uansform~tirion Ihc prcdiclion c l r u r  LrsrraLdllL, 

satisfying the criterion for nonchaotic periodic oscillations. The intermediate sqoore-mtrr 
rnnsformntion givce rewltr  nf the rnrr thg: Sugihnm 2nd M:3y (10W) interpret nx A mix n f  

and random measurement errors. Of course only one of these descriptions can be correct. Thc 
same cnn lw d r i n ~  in rpvrnf tn r:hickmpnx inriiirnrr. rha ~inrrnnsfnrmrrl dwn arc irllcrprctcd ns 
nonchaotic with measurement errors (Sugihara and May 1990), but after c~poncnlial  

C1' transformation there is declining prediction accuracy, inrlirm!inr a rniu of chnn.~ nnd mnrla~t~ rmlrs 

I!' (Fig. 8b). 

Sugihara and May (1990) acknowledge that their method may be unable to r ! i ~  I 

between chaos and autocorrelated noise. The point of the cxarnplcs hcrc is thnl this covtV.t.ar mny 
often be fatal for applications to population dynamics. Rolh chaotic ancl s~whnstic dynamics ran 
hrrxrc .ca~tr.rrrwl?rt;i~ns, nnrl the: cltorl-ll'm~ bul1wnml:ltinns th:lt r l ~ ' t c rmin~  t f l ~  ~h:tpc of an olllh~:lk 
are affected by data transformations; e.g., log tnn3fcrmalion convcns rnul~ipl~cativc noise no 
additive noise, and rounds off "spiky" outbreaks. The rclntivc accuracy c ~ f  ~!lorl-[crm vs, I n n ~ - ~ c m  
predictions, therefore, will be r ~ n s i ~ i ~ r  In [hr crnlc or mrasrrr~mcnl. 2nd m 3 V  nnl prnvirlr :, rlrx 

indication of chaos. 

More quantitative approaches to detecting chaos 

Q l l ~ n ~ i ~ ~ l i v e  mrlhrwl< tnr rhnnct rn71r t~  chdwtic-Innking & I L ~  h-ive h r n  drvtlnp-d ovrr thc Inst 
decade by theoretical physicists (e.g., Eckmann and Ruelle 1985, Schuster 1988). Ths rnrlhmh 
most commonly used in applications (Krasner 1440) arc bawd on c;~lculn!ir~~ a fcw kc? 41 
that characterize a system's dynamics - pnman[y !k 1 ynpunnv rqmnrnw (drfincd b-ln~~) 
dimension of the attractor (Eckmann and Ruelle 1985). Accessible surveys of the ill 
methods and their limitations can be found in the physics literature (Mayer-Kress 1986, a41h;~nu c[ 
al. 1987, Abraham et al. 1989, Theiler 1990). and their uses for ~ n n l  y ~ i n g  p p l l n t  Inn d y  nnrnirs 
data are examined by Godfray and Blythe (1990). 





These methods are reliable if the data are abundant (103- 1@ vnlt~es], if mmwmncnt ermr 1 %  

nil, and if the data really come frnrn n ilrrr.minir;tir syrrrm [ M a y r r - k s q  1 YH6, Abrul~:~nt cr d 
1989). With careful fine-tuning some methods can be also applied 1-9 morlr,~t~ts-r,lx datq scrc 
(several hundred values) with small measurement errors (e.g. Albano et al. 1987, Ellner I f JX* ,  
Grassberger 1988, Rapp et al. 1988, Havstad and Ehlers 1989, Smith 1991). Hnwcvcr. if dam 3.: 
spme, hnuc  lim~tcd arcllmcy. orcornr frnm a yst r rn  r r p s d  mndnm prflurhadon$, h e  cmlr; 
may be ambigous or simply incorrect if taken at face value (e.g., Ramsay and Yuan tqX9. Rurll: 
1990, Smith 1991). 

Nonetheless, the option remains of using the physicists' methods anyway, paired wiL  
extensive simulations to determine their behavior under non-ideal conditions. This np~iun 1 6  

critically dependent on having a limited "universe" of credible competing models l o  11sc as tr~al 
cases. 5av.w ( 1 W O )  crlrnmnri~~$ rrmonomctriri-n~' u.;~ o i  cr*114 Tmm cliaos llicnry in this way, 1 , )  

evaluate the adequacy of linear models for macroeconomic data. The rleiinir~ rrwlrq nrp rnmlev - 
in several cases low-order linear models are not able to account for features of the data - hl~r 
are as reliable as any other statistical test of a null hypothesis. 

Schaffer and co-workers have taken this line in arguing the "case for chaos in ch i l dhml  
diseases" (reviewed by Schaffer et al. 1990). The class of SEIR models is the univrrrsc nr 
:~l!em;lrivcs, and ~irnlrl;itinnr: nr ch;lrrric vr nnis-pmlrhccl nnn-chmlic SElR rndrls are used t~ 

establish a baseline for interpreting results on empirical data. Ap:!in. Illis ripproacll m@:lrra thai 1h.1 
dcfinire conrll~sinns flw rnorr ~ C H ~ C S L  thnn  rmc wrl~lcl like: b r  cxample. mcaslas incidrncc da~q arc 

l!t' consistent with a chaotic seasonal SEIR model, and not consistent with a non-chaotic slc;~wn:~l 
11' SEIR model with additive Gaussian perturbations representing finite-population effects. Tlierci'nn 
I there is a possibility that other stochastic models, perhaps incorporating environmental vnrirrhilaly 

n l h r r  thr~n ITnire-ppulntion cfkcu, cauld p r d u c c  dimension and cxpncnl wlirnnh cnn.;isrcnl 
with the data. Noncrhclcsv. rhr: C ~ J O S - ~ ~ S C ~  amly  scs have discovcrcd a s ~ s t s  uf tthc data hat ~ c r c  

1 not nppsmn~ using mom !mdilinn;ll R ~ J ) ~ ~ c ~ P s ,  und 1 1 3 ~ ~  crf i~[ ivz ly  rllrnrrra~ml Cmm ivnfcrt~inn 
~i ir l icr h p !  hews invoking finite-ppulntiori rffcct.; to sxplnin hRc emGc tirnisr~; and mnpni~tlr'lc [rf 

outbreaks. 

For population studies, however, i t  i s  r;uc to have the inlbrmation needd rn dclinc n Iirnilnl 
class of plausible models. To gf t  w ~ ~ o n t l  [hi, prnhlcrn, nnc wnulrl nc~r l  ii s~ilrislicnl ~hcory h r  
cstrrnntcs nCnrrrnclnr dimrnqirsn. I.y:rptinnv rxplnentq. nr rsth~r nleacbirrp nF rh:~nc, rsnc whic.-li i~ 
valid over a very broad class of models (Sayers 1990). In particular, the universe nF nlrernnriver 
must include both noise-driven and chaotic nonlinear dynamics. 

A surprising finding in recent years is that statistical rncdrm1.c; a l  Gmc-scrics mmtcliny; can hc 
successful at identifying the "rules" (i.e.. the equations of motion) gauemin~  a tl~rrrniinitrir 
chaotic system (e.g. Farmer and Sidorowich 1987, 1988a. b; Casdagli 1989; Abarbanel c! al 
1990; Abraham et al. 1989). The "moral" of chaos is that apparently complicated dynamics c;m 
be produced by simple rules, such as the density dependence described by the logistic map. In sucli 
cases, often more can be learned from limited data by estimating the rules, rather than try 
estimating quantities indicative of chaos directly from the data. 



Motivated by these findings, I and several colleagues have been developing statistical theory 
for estimates of Lyapunov exponents based on nonlinear time-series models (McCaffrey et al. 
1991, Ellner et al. 1991). Lyapunov exponents quantify the sensitive dependence on initial 
conditions that is the defining feature of chaos: a system with bounded fluctuations is chaotic if its 
largest Lyapunov exponent A is positive. Lyapunov exponents are defined at any level of noise 
(Kifer 1986) and therefore provide a very general criterion for identifying chaos when a stochastic 
component may be present. However the predominant method for estimating A from data (Wolf et 
al. 1985) assumes apriori that the data were generated by a deterministic system, as does Wales's 
(1991) method based on forecasting (which uses relationships between A, entropy, and prediction 
errors that break down if noise is present). 

The basic model we consider is 

where f is an unspecified nonlinear function, and ~ ( t )  is a sequence of uncorrelated random 
perturbations to the dynamics. When o = 0 (no noise) this model is equivalent to standard attractor 
reconstruction in d-dimensional space, but our methods allow for o > 0, acknowledging the 
possible importance of random variation in factors affecting the system. Of course (7) has a roster 
of questionable assumptions (the noise is uncorrelated over time with constant variance; 
measurement errors are ignored), but it is a first step and certainly more realistic than setting o = 0 
a prion. 

Because f is unknown, we are using nonpararnetric (e.g., spline) or "semi-nonparametric" 
(SNP) estimates off. SNP estimates are based on truncated series expansions, 

in which X is the state vector (x(t-L), x(t-Z), . . . x(t-dL), gi is a specified set of "basis" functions, 
and 8; is a set of estimated parameters. SNP shares the advantage of nonparametric methods that 

one need not choose a specific functional form for 3 which reduces the problem (recently re- 
emphasized by Moms 1990) that the results of fitting a model to time-series data may be highly 
dependent on the model chosen. The number of terms in the expansion (k) can be chosen 
objectively on the basis of the data (Gallant and Tauchen 1990), much like choosing the order of a 
polynomial regression. Parametric approaches using local polynomial models have been proposed 
independently by Briggs (1990). and Bryant et al. (1990). Turchin and Taylor (1991; see Turchin. 
this volume) have proposed a method specifically for population dynamics based on global 
polynomial models. 

Given an estimate off and the observed values of X(t) ,  estimates of the Lyapunov exponent 
can be derived from its mathematical definition in terms of the partial derivatives off (McCaffrey 
et al. 1991). Under some reasonable qualitative assumptions about (7), we have proved that these 
estimates are consistent (i.e., the estimates converge to the true value as the sample size increases), 



and have derived their asymptotic rate of convergence (McCaffrey et al. 199 1. Ellner et al. 199 1) 
These rixults b c m o n s m ~  lhar ntlr rncfl~rds am opplicahle LD qsrcrns wih a slmhastic cornpnenr. 1 

In simulation trials, estimates based on (7) have worked quite well when thc nerrnhr of l a ~ s  
(4 and the timedelay (L) are known (McCaffrey et al. 1991, Nychka et al. 1991). For exarnplc ir 
20 trials with N = 100 values each from the Henon map (d = 2, L = 1) wilh Gausqian adtljlrvc 

h 

measurement errors (o= .05), we obtained 2 = 0.386 f 0.04 (standard deviation), using a "newid 
net" SNP model (Gallant and White 1991; McCaffrey et al. 1991). The correct value is A = 0.4 I F  
(Vastano and Kostelich 1986). To conclude that a system i s  chaotk, we only nceds IQ know LIWL 
X ia pslt ivc;  h e w  his degree of xcuracy i s  rnm &an ndqua~e. Allowing for noisc in khe m d c l  
does not necessarily degrade the performance in noise-free situations. Again, using the Hen011 

h 

system, with local spline estimates off, we obtained estimated exponents i- = 0.4 16 + O.fli4X 
h 

(standard deviation) with N = 500 data values, and 1 = R 420 k 0.0102 {sundad devisoon) with A 
= 1000 (n = 20 repetitions in each case). With the standard methods, results with LO24 &LI mluc.< 
were "poor", and reasonable eimates (within 10%) required ~cvetal t h m m d  data painu (V.asunn 
and Kostelich 1986). Briggs (1990) reports similarly gnrld resuk using local ~lq.oorrri;~l rnndcls 
based on 200 - 2000 noise-free data values. 

Unfortunately, d and L are generally unknown. The problem of identifying "cmrcct" CT 
"optimal" values of d and L for attractor reconstruction has pemived considamble aucntion, but 
there is no generally accepted solution (Abraham et al. 1989). Earl;y sugges~irmns Tor chtming d 
and reducing noise (Broomhead and King 1986) hsvc proved urtsuccessful in pncral (Mccs: et 31. 
1987, Fraser 1989). More recent suggestions include Sugihara and May's (1990) prediction 
accuracy criterion, the BIC Bayesian criterion for irlentifying tbc order nf tine-qcrres mudels ( c . ~ , ,  
Potscher 1989, Gallant and Tauchen 1990), and information-theoretic criteria based on "muru:ll 
information" and "minimal redundancy" (Fraser and Swinney 1986, Fraser 1989, Liehrl: and 
Schuster 1989). These all try to quantify the intuitive idea thae a gmd cho~ce of d rind L g i m  
maximum ability to predict the system's future from a minimum number uf mcasraemcnts nf irt 
past, but they often give different results. For example, h e  Sugihm-May nnrl mutual infarmatian 
criteria choose L = 1 month and L = 4 months respectively for the NYC measles data, anrl L = 
1/24 and L = 116 of the time between outbreaks for the Rtissler equations (250 x-values wrrh 
values recorded every 1/24 of the inter-outbreak interval). BIC give< consiclknt estirnarts of m&l 
order in autoregressions under certain assumptions (Potscher 1989), but with small data qcrs ~t 

tends to be conservative, choosing a model with slightly too few poramctcrs (Gdlao~ and Tauct~cn 
1990, Nychka et al. 1991). 

In theory the true value of A is the same for all sufficiently large d's, so one can simply 
increase d until a plateau appears, as is usua tly donc to es trmare attractcia dimensions whcn d i:. 
unknown. The success of this ploy may depend on the method used to estimate f: lacs! 
polynomials (Briggs 1990, Brown et al. 1991) and scvcml standard nonlinear rcgredon mt?dcl% 
including local splines (McCaffrey et al. 1991) onen gtncraa sq?rlrioas mponcnrs wlicn the nia~lcl 
includes extraneous lags (model d > true 4, while n c u d  nck appear FairPy robus1 tu exmncous 
lags (McCaffrey et al. 1991, Nychka et al. 1991). Thus a value of 2- may h csrimatc-&l roughly 
when a plateau exists for an increasing number of lags in the model, and is constant nvct 
reasonable choices of L. 



Figure 9 shows results for a neural net regression model with the time-delay L chosen by 
several different criteria: mutual information (MI, Fraser and Swinney 1986). BIC with the same 
time-delay for all values of d, and "local BIC" in which the optimal time-delay is found separately 
for each value of d. Because BIC is conservative (as noted above), estimates are shown for the BIC- 
preferred model (solid lines) and also for models with the order [the value of k in equation (8)] 
increased by 1 (dashed) and by 2 (dots). 

The results are cleanest for NYC measles, where all choices of L give a plateau with 
increasing d and an estimated 1 near 0.15fyr. This is roughly half the value estimated by Schaffer 
et al. (1990), which is understandable given that the methods of Schaffer et al. (1990) will tend to 
over-estimate 1 when o> 0. Thrips is estimated to be chaotic (1  > 0) by the MI and BIC criteria, 
but the local BIC is inconclusive. The large effects of changing the model order suggest that the 
positive values would not be statistically significant, so while these estimates favor the hypothesis 
that Thrips is chaotic they should not be taken as proof. The results for marten are similar, except 
that both BIC criteria choose chaotic models while MI is inconclusive. 

These results indicate the importance of deriving confidence intervals to attach to the estimated 
values of 1. Repeated nonlinear function minimizations are required to obtain least-square 
parameter estimates for each (d, L) examined, so the sort of replication (e.g., bootstrapping) needed 
for statistical inference, and serious explorations of the method's ability to distinguish between 
chaos and plausible alternative models, appear to be a job for the supercomputer. Taken 
pessimistically, these results might suggest that SNP estimation of 1 is too data-hungry for use 
on most population data sets: n = 432 is enough (NY measles), but n = 80 isn't. However much 
of the variability in current estimates of 1 may simply reflect the numerical inaccuracy of 
nonlinear least-squares for the underlying regression model, and more careful parameter estimation 
algorithms (now being coded) may give estimates that are less sensitive to changes in the time- 
delay and model order. The progress to date indicates the potential for developing statistically 
rigorous estimates of Lyapunov exponents for nonlinear stochastic dynamics, but that potential 
remains to be realized. 
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Figure 9. (Continued) 
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where n is the number of data points, P is the number of parameters in the model, and RMS is the 
root mean square one-step-ahead prediction error; see Gallant and Tauchen (1990) or P6tscher 
(1989) for the general form. The solid line shows estimates from the BIC-preferred model; the 
dashed and dotted lines are for models with 1 and 2 additional units, respectively. 



Conclusions 

The main point of the results presented here is that claims for evidence of chaos must bc 
accnmpanirrl 13y R conqidcrition of rhc plausible alternative cxplmatinns, and an examination a l  
whether the methods being used are able to distinguish between chaos and the alternatives. In 
applications to population dynamics data often these have not occurred, or have h P ~ n  camcd n~ 
within an unrealistically narrow range of alternatives. 

This level of caution 1s especl~lly mpnmt whcn usingmerhcds i m p m d  rmm f l~c  phys~cal 
~ i r .nces,  which csftcn c ) r  L I I C  imvlici~ aw~rrnprinn nf n ~ ~ r l ~ - ~ . r f c c ~  mPa[ l rc rnen t~  on a ~ r f c c l l y  
deterministic system. These methods are highly effective on accurate data from a dctcrrn inistic 
chaotic system--we are far from the situation of 15 y c m  ago. when i r  a p p d  rhar dr~emn~inisbc 
chaos could never be distinguished from random noise. However, the problem [or pbpte1;~tinn 
biologists is to detect a chaotic component in a real-world population that almost certainly iq alsn 
subject to random perturbations, if only by the vagaries of climate. 

The potential now exists for a second generation of methods that explicitly allow for Lhc 
stochastic as well as the nonlinear components of population dynamics. Several groups nr? 
developing the use of time-series modeling to characterize complex dynamics and cstimarc 
Lyapunov exponents (Turchin and Taylor 1991, Bryant et al. 1990, Brown et al. 1991). Atention 
is being given to dealing with noisy measurements or stochastic dynamics (MUller et al. 19R3, 
Hammel 1990, Kostelich and Yorke 1990, Farmer and Sidorowich 1991, Smith iWl),  and though 

, ~ 1 1  
current noise-reduction methods still require abundant data (thousands of values) and very Iuw 
levels of noise (<< lo%), work in this area is only beginning. The hope for rcolagica[ 
applications is that methods with more realistic assumptions, currently in development, lwill hc 

I applicable over a broader range of situations and harder to fool than the current generation. 
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Individual-Level Simulation: 
New Evidence for Chaos in Population Biology 

Nicholas D. Stone1 

TWO FACTS are readily apparent from the recent debate on chaos in population biology. 
First, natural systems often exhibit very complex dynamics that, despite their irregularities, appear 
to contain some order. Second, there is a large class of differential and difference equation models 
that produce similar dynamics. These mathematical models that produce chaos have been 
extensively analyzed so that we know how chaotic systems ought to behave: they are 
deterministic; they are highly sensitive to initial conditions; and they are seemingly random. 
However, the fundamental question remains: do natural systems display complex dynamics because 
they are chaotic or merely because of stochastic influences and system complexity? The work 
described here sheds some new light on this issue. 

The finding that initially interested population biologists in chaos was that many of the most 
basic models of population growth, single-species models like the logistic model, would produce 
chaotic dynamics over specific ranges of parameter values. However, as many researchers have 
demonstrated in the last fifteen years (e.g., Hassell et al. 1976, Stubbs 1977, Thomas et al. 1980, 
Bellows 1981), the required parameter values have almost always proven to be biologically 
unreasonable. As a result, population biologists as a whole have lost their optimism about 
finding chaos in natural ecosystems. 

Two aspects of this waxing and waning of interest in chaos were unfortunate. First is the 
focus on single-species models. These models are universally understood to be extreme 
simplifications. They are useful in a descriptive way; that is, they show the general pattern of 
population growth expected in populations governed by a density-dependent effect on birth and 
death rates. However, these models barely begin to approach biological realism. Furthermore, the 
chaotic behavior of these models is highly irregular and unnatural (see Berryman in this volume, 
Fig I), giving the impression that chaos implies wildly fluctuating populations with numbers 
frequently crashing to levels near zero. In fact, higher order systems can exhibit chaos without 
biologically u~ealistic parameter values or any apparent trend toward self-extinction. 

The second regrettable aspect is the focus on the model itself as the item of interest. Most of 
the attention in studies of chaos in biological systems has been on developing and analyzing 
difference and differential equation models of low order, specifkally to test those models for chaotic 
dynamics. This emphasis is or ought to be foreign to population biologists. As a rule, their 
focus should be on accurately identifying and representing the key biological elements and 
interactions in the system. The type of model chosen should then be dictated by the biology. 
Research in chaos has been constrained by an a priori choice of model form and type. 

1 Department of Entomology. Virginia Polytechnic Institute & State University, Blacksburg, 
Virginia. 24061. USA 
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The work described here takes a different approach, one that evolved from a project studying 
the interaction of a parasite, Campoletis sonorensis, and one of its hosts, Helicoverpa virescens. 
In that study (Makela et al. 1988), we wanted to simulate the population-level effects of changes in 
the individual searching behavior of the parasite. Each individual host and parasite adult was 
simulated individually in an event-driven simulation. Each individual maintained its identity and 
history and acted as an autonomous entity in the model. Population dynamics were simulated as 
the sum of individual actions, oviposition, and death. As in nature, population dynamics was an 
emergent property of the system, not determined by rate equations as in models of the form &/dt = 
f (N, P).  

The host-parasite model produced dynamics that were extremely complex and apparently 
realistic. However, because the model included random choices in the selection of individual 
behaviors, determining the underlying causes of the complexity was inhibited by noise. 

The model of predator-prey interaction presented below was constructed specifically to examine 
the emergent population dynamics of a behavior-driven, individual-level simulation with all 
random elements removed. The model is therefore unlike most individual-level models or 
behavior-based models in that the behaviors of individuals are chosen deterministically with if-then 
rules, rather than through the random choice of behaviors with different probabilities of occurrence. 

The model is object-oriented (Stefik and Bobrow 1986). a style of programming that has only 
recently been applied to model biological systems (Graham 1986; Saarenmaa et al. 1988; Makela 
et al. 1988; Crosby and Clapham 1990; Sequeira 1990). It was written in an object-oriented 
programming language, Smalltalk-802, in which it is very easy to create computer representations 
of the individual actors in a complex system. 

Understanding the model description requires familiarity with object-oriented programming, so 
it is reviewed briefly here. More complete discussions abound in the popular and scientific 
computer-related literature, and excellent summaries can be found in Stefik and Bobrow (1986) and 
in the introductory chapters of Goldberg and Robson (1983). 

Object-Oriented Programming3 

Traditional procedural computer programming involves defining data structures to represent 
system state and procedures to operate on the data structures to reflect changes in system state. 
Procedures are like mini-programs. They perform operations on a set of arguments passed to them 
and they can return values to the calling program. For example, to compute the area of a 
rectangle, one could define a procedure, calculate-area, which requires arguments for the lengths 
of the rectangle's base and height. The area of a square with sides 3 units long would be calculated 
by the statement, calculate-area (3, 3). Internally, the procedure would multiply the values 
specified for base and height and return the result. 

2 Smalltalk-80 is a registered trademark of ParcPlace Systems, Inc. 

3 This section is virtually identical to a similar section in Stone (1990). 

92 



In object-oriented programming, one creates structures called objects that contain both 
information on state varibles and procedures for operating on that data. The state of an object 
(i.e., the values of its state variables) can be accessed or modified only by the procedures defined in 
that object. Procedures are called methods and are invoked by messages sent by one object to 
another or to itself. Methods may return the value of a variable or calculation to the calling 
object. For example, one could define an object called mysquare with one state variable, 
sideLength = 3, and a method called calwlateArea that computes the length squared and returns 
the value to the object sending the message. Finding the area of this square would be 
accomplished by sending the message, mysquare calculateArea. Notice that the. message name 
is the same as the method name and that the message makes no reference to the size of the square. 

Classes, Hierarchies, and Inheritance 

Objects are specific instances of an object class and object classes are organized into 
hierarchies. For example, the object, mysquare, would be a particular instance of the class, 
Square, with sides of length 3. The class definition includes all variable declarations and code for 
methods. It also includes a special method (called a class-method) for creating instances of itself, 
with appropriate initial values for variables. Creating the object, mysquare, for instance, would 
be accomplished by the code, mysquare e Square newwithside: 3, which sends a message to 
the Square class, causing the class to create and return a new object with SideLengt h equal to 3, 
after which the new object is assigned to the name, mysquare. This process is called 
instantiation. 

Object classes may also be subclasses of other classes. Subclasses inherit variable 
declarations and methods from their parent classes, just as an object inherits from its class. 
However, subclasses may add variables, add or redefine methods, and specify static class variables. 
For example, if there were a class, Rectangle, with two variables. 'base and height, and a 
method called calculateArea that returns the value of base height, then the class, Square, 
could have been created as a subclass of Rectangle. The only coding required would be to redefine 
the class method for instantiation so that the message, Square newwithside: X, would return a 
new instance of Square with both base and height set equal to X. 

Despite the semantic conflict, one could also create a class called Triangle as a subclass of 
Rectangle by modifying the calculateArea method to return 0.5 base height. Instances of 
Triangle would respond appropriately to the same message, calculateArea, as would instances of 
Square and Rectangle. The sender of the message need not know what the appropriate 
algorithm is for a particular polygon. This characteristic of object-oriented systems, that different 
objects can respond in different ways to the same message, is termed polymorphism. 

Object-Oriented Simulation 

Writing an object-oriented simulation involves creating classes to represent the types of actors 
in the simulation, creating specific instances of those classes with appropriate state variables, and 
letting them interact by sending messages to one another. The objects in the computer model and 



the actors in the natural system are in one-to-one correspondence, and the interactions among actors 
in the natural system likewise correspond to messages sent among objects in the computer model. 
In designing an individual-level population dynamics model, the actors clearly include the 
individual organisms, as well as the physical objects with which they interact. 

The Model 

The individual-level model of predator-prey interaction was designed to be very simple in that 
all individuals were created with the same default values for state variables and the environment 
was likewise completely uniform at the outset, consisting of identical habitat patches. 
Furthermore, there was no individual variation in the methods used to select behaviors by 
individuals. 

Nevertheless, the simulation was also fairly complex, since many fundamental aspects of each 
individual's daily life needed to be mimicked. Aging, eating, moving, hiding or hunting, and 
dying all had to be described in methods, along with behavioral rules to stimulate these actions at 
appropriate moments. 

Object Classes 

The classlobject hierarchy of the model as well as the relationships among the different object 
types are shown in Fig. 1. The simulation environment included 225 patches arranged in a 15 x 
15 grid, and each patch represented a suitable habitat for the prey. The environment's boundary 
was closed. Except for the initialization of the model, no migration was allowed. 

Each patch was modeled as an instance of the class, Patch. All Patch objects contained their 
Cartesian coordinate in the grid, but the overall spatial arrangement of the patches was recorded in 
another object, a single instance of the class, Environment. The Environment object also 
maintained a list of all the live predators and prey in the simulation. Each day of the simulation 
consisted of the Environment object sending each actor (instances of the classes: Patch, 
Predator, and Prey) the message, act. Each object receiving the act message responded as 
specified by the act method defined in its class. This use of polymorphism allowed the 
Environment object to treat all the actors identically. 

Patches 

The state variables in the Patch class included: xycoord, a pair of integers describing its grid 
position within the environment; food, an amount of food for the prey; and shelters, a list of 
refuges in which the prey could escape predators but could not eat. In this analysis, all Patch 
objects were assigned the same default values, including a single shelter. The Patch class also had 
variables called prey and predators, which were lists of all prey and predators in that location 
(Fig. 1). 



Environment . -  - - - - anEnvironrnent 

Figure 1. Class-object hierarchy of the predator-prey model and a listing of the linkages among 
objects in the simulation (box). In the hierarchy, solid lines indicate class-subclass relationships; 
dashed lines indicate class-object relationships. Class names are shown in bold type on the left. 
In the box, double-headed arrows indicate that the objects are associated. For example, each 
predator is associated with one patch and one environment. 

Methods defined in the Patch class included: act, which added a constant increment to the 
amount of food available for the prey up to a maximum value; and remove Food, which decreased 
the food in a patch and was triggered by a message from Prey objects to simulate eating. Other 
methods allowed patches to respond to objects requesting information about the patch. An 
immature prey, for example, sensed the presence of predators within its patch by sending the 
message, predators size, to its patch. The Patch object responded to this message by returning 
the length of its list of Predator objects. Finally, there were messages for keeping track of 
individuals as they entered and left the patch. 



Predators and Prey 

Because predators and prey shared many aspects of biology and behavior, their object classes 
were defined as subclasses of an abstract class, SimBug. It had no instances; it was defined for 
convenience so that shared characteristics of the predators and prey could be coded once and 
inherited by both subclasses. 

Predators and prey were modeled after simple arthropods in their biology. The SimBug class 
description included variables to hold the name of each individual's Environment and current 
Patch objects, its age, stomach content (metabolic supply), and the number of eggs ready to 
oviposit. Males were not included in this simulation. Behaviors implemented in the SimBug 
class included act and move methods, as well as two messages announcing an individual's arrival 
in and departure from different patches. The act method (Fig. 2) in turn sent messages like die, 
eat, and reproduce that were defined differently for each subclass. 

The act method was based on the motivational model of animal behavior described by Packard 
et al. (1990). At each time step, individuals updated their age, chose a motivational mode of 
behavior (e.g., ingestion, reproduction, escape), and chose an action based on their behavioral 
mode. Mortality occurred by predation, starvation (defined as going two time steps with exhausted 
reserves), or by aging past a fixed maximum age. Individuals were always given the opportunity 
to eat and reproduce if possible. Specific methods for these actions were defined in the subclasses, 
Prey and Predator. 

1.. . *I 
The Prey class inherited all the variables and methods of SimBug. It also added a variable 

I .  called inshelter, which was true when a prey was in a shelter. Also, variables that were constant 
for all Prey instances were defined in the Prey class. These included the metabolic loss rate, 
maximum age of the prey (20 days), and the age at reproductive maturity (10 days). Methods for 
choosing motivational modes and actions were also defined at this level in the hierarchy. These are 
described below. In addition, methods that allowed the prey to act were defined at this level, 
including methods for eating, ovipositing, dying, and entering and leaving shelters. 

Predators were instances of the Predator class, which also inherited variables and methods 
from SimBug. In addition, all predators shared a maximum age of 30 days and became 
reproductively mature at 20 days. Predators' metabolic loss rate was also higher than that of prey. 
Other behaviors and methods were similar to those of the prey. 

Eating was more complicated for predators because it involved capturing and consuming a 
prey. Predators chose prey items from the list of Prey objects recorded in their current Patch 
object. They had an age-preference for prey that was a function of their own age. Predators chose 
the first prey in the list that was an acceptable age. Their stomach contents were increased after a 
kill as a function of the age of the prey they took. 





Behavior 

Behaviors were chosen deterministically by if-then rules based on the individual's current state 
(e.g., hunger, position, and age). Rules were developed in an ad-hoe manner, in an attempt to 
model as simply as possible the motivational model of animal behavior described by Packard et al. 
(1990). These rules were coded in two methods, chooseGoal and chooseAction. First a 
motivational mode or goal was chosen, then actions were chosen to meet those behavioral 
objectives. This implementation of an animal's decision-making scheme was based on the general 
model developed by Saarenmaa et al. (1988). Prey goals included: Food, Rest, Escape, Dispersal, 
and Reproduction; actions included: Eating, Resting, Hiding, Moving, Staying, Reproducing. The 
behavioral repertory of immature prey was more restricted than that of adults. Adults could 
disperse or sense the approach of predators. Immatures could not. They sensed predators only in 
their current patch. Adults also attempted to oviposit when they reached reproductive age. 

The goal, Dispersal, was triggered when the Prey object's patch became crowded or low on 
food, and Food became a goal when the Prey object's stomach was nearly empty. Once a set of 
goals was decided, the Prey object's chooseAction method was triggered, which selected an 
action and then sent messages to carry out the actions chosen. Rey could decide to enter a shelter, 
remain in their current location, or move. If they moved, they picked one of the adjacent patches 
in the environment to move to. This selection involved narrowing down the potential locations to 
a subset that best satisfied the Prey object's goals, then selecting the first member of this subset. 
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Even though there might be more than one suitable patch to move to, patch selection was not 
implemented as random choice. Instead, all neighboring patches were placed into an ordered list, 
always in the same order, and then inappropriate patches were eliminated. The first patch 
remaining in the list after elimination was always selected. This procedure did put some bias into 
the direction that prey and predators tended to move; however, it also eliminated any randomness. 

Predator behavior differed from that of prey in the following ways. Their goals included Food, 
Rest, Hunting, and Reproduction. They fed only by killing prey. They could not eat the food in 
patches, and they were not able to kill prey in shelters. Predators could sense the presence of prey 
in patches up to three steps away from their current location. When hunting, predators moved as 
directly as possible toward the highest concentration of prey nearby. This sensing ability is 
analogous to insect predators keying in on kairomones or chemical cues in the environment that 
relate to prey density. In the model, a hunting Predator object sent a message to the 
Environment object requesting the direction toward the highest prey concentration nearby. Recall 
that the Environment object was the only object in the simulation with any knowledge of the 
spatial arrangement of the patches. 

Simulation Results and Analysis. 

The model was initialized by placing newborn predators and prey into the simulation 
environment at one edge of the grid (Fig. 3). Prey were placed first, ten per day for five days after 
which two predators were added per day for 20 days. Subsequently, no individuals were added except 



by individuals giving birth. In each day of the simulation, every location updated its food supply, 
and each predator or prey was allowed to act. 

A time-series from a run of this model is shown in Fig. 4. The system clearly exhibits 
complex dynamics. The system ran for several thousand days (hundreds of generations) without 
any indication of repeating or stabilizing. A phase plot (Fig. 5) from the simulation shows a 
complex or strange attractor in two dimensions. From Fig. 3, one can see also that the dispersion 
of predators and prey in the environment went from patterns that were easy to follow (a wave of 
prey spreading out before a wave of predators), to a more complex and jumbled situation after 
approximately 200 days. 

Fig. 6 shows the effects of very small variations in the initialization of the model. By adding 
11 prey on the fifth day of the model initialization instead of 10, for a total of 51 instead of 50, the 
model's trajectory was totally changed so that 50 days later, the two trajectories bore no 
resemblance, except that in phase space they were constrained within the same attractor. 

To summarize, the simulation was deterministic, it produced pseudo-random but bounded 
population dynamics; and it exhibited extreme sensitivity to initial conditions. This combination 
of characteristics defines chaotic behavior. There is some chance that the pseudo-random 
oscillations produced by the model would eventually stabilize to some periodic or quasi-periodic 
pattern. Still, the output from the model is remarkably realistic; it is unpredictable within a 
bounded region of phase space; and it is completely deterministic. This is exactly the kind of 
system behavior that, when observed in nature, sparks arguments about whether it is chaos or the 
influence of stochastic events that is responsible. In this case, randomness has been eliminated. 

To obtain some confiiation of the chaotic nature of the model's dynamics, two analyses were 
undertaken based on the time series data. However, since the model is not in the form of 
differential equations, testing for chaos is complicated. The methods used were the same one 
might use to'test whether a time series observed in the field is chaotic. The Lyapunov exponent 
and fractal dimension of the system were estimated using algorithms from the Dynamical Software 
program (Schaffer et al. 1988). Calculation of the Lyapunov estimate employed Wolf et al.'s 
(1985) method, and calculation of the fractal dimension was by the method of Grassberger and 
Procaccia (1983). Both estimates used a univariate time series of just the total prey numbers over 
time. Over a wide range of parameter values for sampling interval and delay, the estimate of the 
Lyapunov exponent was positive (appx. 0.04), and the correlation dimension was approximately 
4.7, indicating a fairly high-ordered chaotic system. 

If 
model 
driven 

the two-species system was chaotic, one obvious question was whether the single-species 
would behave similarly. That is, is the complexity coming from the interaction, or is it 
by the prey dynamics? To examine this question, the model was run with no predators. 

The results are shown in Fig. 7. At first glance, it seems that no chaos is present. The prey 
population increased in a sigmoidal pattern and seemingly stabilized at a carrying capacity of about 
K=1095 individuals. Fitting the Ricker (1 954) equation 
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Figure 3. The spatial pattern of predator-prey dynamics is shown in a series of charts. The 
environment is represented by the 15 x 15 grid. Prey population density in each grid cell or patch 
is indicated by the intensity of blue color. Predator population density is indicated by the intensity 
of red color. Thus, a black cell is empty; a bright blue cell contains only prey at a high density; 











Day of Simulation 

Figure 7. A time-series plot (solid line) of simulated prey population initialized as in the 
simulation shown in Fig. 1, but with no predators. The dashed line was generated by a simple 
logistic model with -0.08 and K=1095 (see text). Inset is a plot of the system dynamics about 
equilibrium for 500 days after day 100, showing chaotic cycles about K. This system had a fractal 
dimension of approximately 4.9. 



Conclusions 

If one were to examine this simulated interaction as though it were a natural system, one 
would very likely conclude that the single-species system is well modeled by a Ricker or logistic 
model, that the intrinsic rate of increase in the prey population is in a very normal range, and that 
the two-species system exhibits the typical limit-cycle dynamics predicted by the Lotka-Volterra 
equations. The noise in the data, one would argue, is just thatevidence of stochastic influences 
on the system that we do not understand or cannot measure. In fact, however, there are no 
stochastic influences acting on this system. There are no forces that we do not understand. The 
model is simple; it is deterministic. 

The chaotic dynamics produced by this model were generated by allowing individuals to 
behave and interact. Many attributes could have been added to the model to increase the system's 
complexity. There could have been individual variation in factors like aging rates, fecundity, or 
metabolism. There could have been spatial heterogeneity, variation in the characteristics of the 
patches. There could have been random choice involved in decision making or even variation in 
the rules used by individuals to make decisions. There could have been periodicity in food 
availability. None of these complicating factors existed in the model, yet the system dynamics 
was still remarkably realistic and complex. 

That this elementary model of individual's interacting produced chaotic dynamics indicates that 
there is something fundamental about population interactions that results in chaos. Perhaps it is 
the spatial or compartmental aspect of the environment. Perhaps it is the fact that individuals are 
affected by the decisions of others so that populations are inherently non-linear systems. In any 
case, high-order chaos may well be the foundation upon which we study population dynamics. 

As we have seen here, even though a system is chaotic, it need not be wildly fluctuating or 
unpredictable. It may, in fact, be well enough bounded to be modeled effectively by a simple 
logistic function. However, this work suggests that arguments discounting the role of chaos in 
population dynamics are premature. 

This study also suggests that chaotic population models can be constructed based directly on 
observation of individual behaviors and actions. Furthermore, such models can be experimentally 
validated by comparing emergent properties from the models with emergent properties of the 
natural populations: survivorship and natality functions, functional response relationships, and 
dispersion patterns, for example. This type of modeling and its relationship to chaotic dynamics 
warrant further attention. 
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