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[11 It was suggested in a recent statistical correlation
analysis that predictability of monthly-seasonal
precipitation could be improved by using coupled singular
value decomposition (SVD) patterns between soil moisture
and precipitation instead of their values at individual
locations. This study provides predictive evidence for this
suggestion by comparing skills of two statistical prediction
models based on the coupled SVD pattems and local
relationships. The data used for model development and
validation are obtained from a simulation over East Asia
with a regional climate model. The results show a much
improved skill with the prediction model using the coupled
SVD patterns. The seasonal prediction skill is higher than
the monthly one. The most remarkable contribution of soil
moisture to the ‘prediction skill is found in warm seasons,
opposite to that of sea surface temperature. INDEX
TERMS: 1854 Hydrology: Precipitation (3354); 1866 Hydrology:
Soil moisture; 1869 Hydrology: Stochastic processes; 3322
Meteorology and Atmospheric Dynamics: Land/atmosphere
interactions. Citation: Liu, Y., Prediction of monthly-seasonal
precipitation using coupled SVD patterns between soil moisture
and subsequent precipitation, Geophys. Res. Lett., 30(15), 1827,
doi:10.1029/2003G1L.017709, 2003.

1. Introduction

[2] With the capacity to retain anomalous signals over a
long period [Delworth and Manabe, 1988; Vinnikov et al.,
1996], soil moisture can contribute to long-term variability
of the surface temperature and precipitation by passing its
relatively slow anomalous signals to the atmosphere. Obser-
vational and modeling studies have indicated close relation-
ships of initial soil moisture conditions with anomalies in
subsequent monthly and seasonal surface temperature and
precipitation [e.g., Huang et al., 1996; Eltahir, 1998]. Thus,
it is possible to improve predictability of long-term variabil-
ity of the two atmospheric variables by using soil moisture.

[3] Kari[1986] illustrated the great value of soil moisture
to monthly and seasonal objective forecasts of the surface
temperature. However, it is difficult to determine soil
moisture’s role in improving predictability of long-term
precipitation. Precipitation is controlled by large-scale at-
mospheric circulations, whose long-term variability is in
turn related to other factors such as sea surface temperature
(SST), and by local land-atmospheric interactions. The
atmospheric circulations play a predominant role in most
cases, while soil moisture becomes important only under
certain circumstances. Therefore, identification of such
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circumstances using both dynamic [e.g., Koster et al,
2000] and statistical techniques [e.g., Wang and Kumar,
1998] is of essential importance for demonstrating and
developing a capacity in making long-term precipitation
prediction using soil moisture.

[4] In a recent study concerming the above issue [Liu,
2002], the coupled patterns between soil moisture and
precipitation were identified using singular value decompo-
sition (SVD) [Bretherton et al., 1992; Ting and Wang,
1997]. 1t was indicated that the correlation with soil mois-
ture preceding precipitation is much more significant for the
SVD expansion series than original data series, suggesting
that predictability of monthly-seasonal precipitation could
be improved by using soil moisture in the form of its
coupled SVD patterns with precipitation. The present study
provides predictive evidence for this suggestion by com-
paring skills of statistical forecasts using SVD patterns and
local relationships.

2. Method

[s] Prediction models are developed for both the SVD
pattern (SVD model) and local relationship (local model).
The SVD model is derived from a linear regression rela-
tionship between soil moisture [u(x, 7)] and precipitation
[V(x, t + n)] with application of a lag SVD analysis, where x
and 1 are space and time indices, respectively, and n is a
period of time (see the Appendix A for the derivation). The
precipitation series for the SVD analysis lags the soil
moisture series by one month/season (ie., » = 1). The
resulting SVD patterns therefore represent spatial relation-
ships of soil moisture with subsequent precipitation. In the
prediction model, precipitation of a coming month/season is
determined mainly by the SVD expansion coefficients of
soil moisture of the current month/season, and SVD spatial
patterns of precipitation.

[6] The local model is composed of a set of linear
regression between soil moisture and precipitation at indi-
vidual locations, v(x, t + n) = D(x)u(x, 1), where u and v are
normalized and D is the regression coefficient. The local
model has two major differences from the SVD model: it
has a separate regression relationship at each location x, and
its regression coefficient at a location is obtained indepen-
dent of soil moisture and precipitation at other locations.

[7] The method to build the SVD model is similar to that
using canonical correlation analysis (CCA) [e.g., Barnett
and Preisendorfer, 1987]. Mo [2002] combined CCA with
an assemble technique to predict U.S. rainfall with soil
moisture and other predictors. Major features are common
between SVD and CCA. SVD is adopted mainly consider-
ing that SVD is favored when a predictor and a predictand
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Figure 1. Skill of seasonal precipitation prediction with SVD model. Panels (a—d) represent winter through fall. The
contour interval is 10 and the unit is %. The areas with skill above 50% are shaded.

participating in each pattern linkage are similar to those
found in the individual data set empirical orthogonal func-
tion (EOF) patterns [ Barnston, 1994].

{8] A prediction with the SVD model is made in the
following steps: (1) to construct a validation data set
UpatiahX, 1) and viua(X, 1 + n) by extracting data of the kth
year (k =1, 2, ..., K; K = 10 for this study) from the
onginal data set u(x, 1) and v(x, 7), and a modeling data set
UmodelXs 1) and Vpoqex, ¢ + n) from the remaining data in
the original data set; (2) to build the SVD model using the
modeling data AsJet; (3) to calculate the SVD time coefficient

using a;(1) = 3 vaiia (J, 1)pi( j) and to predict precipitation
=1

of the validatijon period using equation (A7) in the Appen-
dix A; and (4) to repeat the above steps for k = | through K,
which generates K separate data sets for each of modeling,
validation, and prediction. For a specific month/season at
each location, vi./(x, ¢ + 1) and the corresponding pre-
dicted values each are equally divided into normal, above
and below normal categories. A prediction is regarded as
correct if it has the same category as Vyugx, 1 + n). The
prediction skill is measured by the ratio of correct to total
number of prediction made.

[¢9] Because of the unavailability of systematic measure-
ments of soil moisture, this study uses model output data. As
used by Liu [2002], soil moisture and precipitation over East
Asia simulated with the National Center for Atmospheric
Research regional climate model (RegCM) [Giorgi et
al.,1993] are used in this study. The simulation has a domain
of 90 x 79 grid points with a horizontal resolution of 60 km,
and is integrated for the period from January 1987 to
December 1997 with the first year regarded as a spin-up time.

[10] A regional climate model (RCM) like RegCM is
usually integrated over a short period up to a few years

[Liu, 2002], which makes it difficult to use its output data
assessing statistical significance of prediction skill. Longer
simulations have been performed with some global climate
models coupled with land-surface processes [e.g., Bonan et
al., 2002]. These models could be an alternate tool to produce
soil moisture and precipitation needed for the SVD analysis.
A RCM has been used mainly in the consideration that, with
the boundary conditions updated every 12 hours during the
integration period primarily using meteorological obsgwa—
tions, it is expected to produce relatively realistic regional
circulation patterns and hydrological processes.

[11] A major difference in the validation method stated
above from the one used in, e.g., Barnett and Preisendorfer
[1987] is that, because the original data set for this study has
a short period of 10 years, continuous monthly/seasonal
data are used to build models or to validate result§. Thus,
the serially uncorrelated condition required by a strict cross
validation is not met here. A significance test does not make
much sense for the same reason. Thus, the results obtained
here are used only as a criteria to judge which model (the
SVD or local model) has better skill. In addition, the
prediction models are built using all months/seasons of a
year in a modeling data set, while validation is made for
each month/season of a year in a validation data set to
briefly look at seasonal dependence of the prediction skill.

3. Results and Discussion

[12] Monthly and seasonal precipitation forecasts are
made separately, using monthly soil moisture and seasonal
soil moisture as predictors, respectively. Four leading SVD
patterns are used. An experiment with the pattern numbers
from 2 10 10 indicates that the results are not sensitive to the
number of patterns. Figure 1 shows geographic distribution
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Figure 2. Frequency percentage of various skill levels of precipitation prediction. Panels (a—b) represent seasonal and
monthly forecasts with the SVD model, and (c—d) the corresponding forecasts with the local model. The seasonal values in
panels (c—d) are averages of Dec—Feb (winter), Mar—May (spring), June—Aug (summer), and Sept—Nov (fall).

and seasonal dependence of the SVD model prediction skill
of seasonal precipitation. The areas with a skill greater than
50% are shaded. This skill level, selected arbitrarily, is
considered remarkably different from the skill level of 33%
for a random prediction. The skill exceeds 50% over two
areas. One is in northern China, which covers the westemn
corner of the region in winter, extends eastward in spring and
summer, and retreats in fall. The other is in southern China,
which is limited in the western corner of the region in winter,
and extends northeastward in three other seasons.

[13] The skill of the local model (not shown) is much
lower than that of the SVD model. The spatially averaged
skill for the seasonal prediction is 46% with the SVD
model, but only 36% with the local model. To have a more
detailed comparison, the entire range of skill is divided into
Levels 1-1V (<33, 3350, 50-67, and >67%, respectively).
The higher the frequency percentage for Level 1, the worse
the prediction skill. It is opposite for Level 1V. For seasonal
prediction (Figure 2), the frequency percentages of Level |
with the SVD model are about 50 (winter) and 10s—20s
(other seasons and annual average), compared with the
corresponding values with the Jocal model of nearly 70
and 40s-50s; Those of Level 11l or IV for all seasons except
winter are about 20 with the SVD model, compared with
only about 10 with the local model.

[14] For monthly prediction, the overall skill of the SVD
model s also higher than that of the local model. The annual
frequency percentages of Level I are 59 and 72 for the SVD
and local models, respectively, while those of Level 11 are
36 and 25, respectively. The difference between the two
models is the most significant in summer and fall. The skill is
lower for monthly than seasonal prediction. Its annual
average frequency percentage with the SVD model is twice
as much as that of seasonal prediction for Level I, while only
about half of that of seasonal prediction for Level 111 or IV.

[15] Based on the results for the case of this study, the
predictability of monthly and seasonal precipitation is
indeed improved by using the coupled SVD patterns of soil

moisture and subsequent precipitation, which therefore
supports the suggestion made in Liu [2002]. As pointed
out by Barnston [1994], precipitation at a given location is
determined by the combined effects of systematic relation-
ships, which mostly are of large spatial scale, and identifi-
cation of its patterns as wholes can enhance predictive skill
at individual locations.

[16] The seasonal dependence of the skill of precipitation
prediction using soil moisture is opposite to that using SST,
whose contribution to prediction skill of long-term precip-
itation was found profound in winter [Barnston, 1994).
Because of little water exchange on the land surface and
weaker land-atmospheric interactions, the impact of soil
moisture on precipitation variability is small in winter. The
East Asian monsoon may also have an adverse impact on
the prediction skill. The skill is low in northern China
during the cool seasons and southeastern China during the
warm seasons, where the winter and summer monsoon
circulations prevail, respectively.

[17] The typical length of timescale of soil moisture
variability is about 2-3 months [Vinnikov et al., 1996]
and is longer in an interactive land-atmospheric system
[Liu and Avissar, 1999], suggesting that the role of soil
moisture in precipitation variability may be more important
at seasonal than monthly scale. In fact, the correlation
coefficients of the four leading SVD expansion series with
soil moisture preceding precipitation are 0.765, 0.835,
0.735, and 0.779 for the seasonal data series, compared
with 0.658, 0.777, 0.574, and 0.653 for the monthly data
series. This may explain the higher prediction skill for
seasonal than monthly precipitation.

Appendix A: SVD Prediction Model
[18] A regression equation is built to predict w(z + n) =
[v(x, 1 + n)] with u(t) = [u(x, 1)] (both normalized),

vt +n) = Dul(i) (A1)
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where x = 1, 2, ..., M with M being the number of space
locations; 1= 1,2, ..., N(= Ny — n) with Ny and n being the
length of the original data set and a period of time (one
month/season for this study), respectively. Determining the

coefficient matrix D using the least squaresd approximation
(LSA), we have,

N

DZu(l)u(z :Z v(t + nju

r=1 =}

(A2)

Applying SVD [Bretherton et al., 1992] to u(f) and v(t + n),

M
u(t) = i, (43)
k=1
M
v(t+n) = Z br(1+n)g, (A4)
k=1

where p, = [pix)] and g, = [gu(x)] are spatial patterns,
and a(1) and bt + n) temporal coefﬁcients Applying the

properties Za (Dbt + n) = a; 6,1 and po = 6y, where o
is singular Value, and devoting a?= }:a (1), we have,

M

g/ > &

= i=1

v(t+n) = (A5)

:[\Qf]s

An empirical factor f; is adopted to approximate the
summation using M, (<M) leading patterns,

'LZ

=

t+n)—~cha (A6)

and applying LSA again, we have the final form of the
prediction model,

My

vit+1) = Z lOiai(l‘)‘]i/a_?J

i=1

(A7)
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