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Abstract. Recognition and analysis of spatial autocorrelation has defined a new par-
adigm in ecology. Attention to spatial pattern can lead to insights that would have been
otherwise overlooked, while ignoring space may lead to false conclusions about ecological
relationships. We used Gaussian spatial autoregressive models, fit with widely available
software, to examine breeding habitat relationships for three common Neotropical migrant
songbirds in the southern Appalachian Mountains of North Carolina and Tennessee, USA.

In preliminary models that ignored space, the abundance of all three species was cor-
related with both local- and landscape-scale habitat variables. These models were then
modified to account for broadscale spatial trend (via trend surface analysis) and fine-scale
autocorrelation (via an autoregressive spatial covariance matrix). Residuals from ordinary
least sgquares regression models were autocorrelated, indicating that the assumption of
independent errors was violated. In contrast, residuals from autoregressive models showed
little spatial pattern, suggesting that these models were appropriate.

The magnitude of habitat effects tended to decrease, and the relative importance of
different habitat variables shifted when we incorporated broadscale and then fine-scale
space into the analysis. The degree to which habitat effects changed when space was added
to the models was roughly correlated with the amount of spatial structure in the habitat
variables.

Spatial pattern in the residuals from ordinary least squares models may result from
failure to include or adequately measure autocorrelated habitat variables. In addition, con-
tagious processes, such as conspecific attraction, may generate spatial patterns in species
abundance that cannot be explained by habitat models. For our study species, spatial patterns
in the ordinary least squares residuals suggest that a scale of 500—-1000 m would be ap-

propriate for investigating possible contagious processes.

Key words:

CAR model; habitat model; landscape effects; Moran’s |; Neotropical migrant song-

birds; spatial autocorrelation; spatial autoregressive model; trend surface analysis.

INTRODUCTION

Spatial autocorrelation is frequently encountered in
ecological data, and many ecological theories and mod-
els implicitly assume an underlying spatial pattern in
the distributions of organisms and their environment
(Legendre and Fortin 1989). Typically, species abun-
dances are positively autocorrelated, such that nearby
points in space tend to have more similar values than
would be expected by random chance. This pattern is
often driven by multiple causes that may be exogenous
(e.g., autocorrelated environment, disturbance) and/or
endogenous (e.g., conspecific attraction, dispersal lim-
itation, demography) (Sokal and Oden 1978b, Legen-
dre 1993). In addition to its ecological significance,
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spatial autocorrelation is problematic for classical sta-
tistical tests, such as ANOVA and ordinary least
squares (OLS) regression, that assume independently
distributed errors (Haining 1990:161-166; Legendre
1993). When the response (e.g., species abundance) is
autocorrelated, the assumption of independenceis often
invalid, and the effects of covariates (e.g., environ-
mental variables) that are themselves autocorrelated
tend to be exaggerated (Gumpertz et al. 1997).
Legendre (1993) suggested two general frameworks
for incorporating space into ecological analysis. In the
“raw data approach,’” species—environment relation-
ships are modeled by partial regression analysis (uni-
variate case for individual species) or constrained or-
dination (multivariate case for community analysis;
Borcard et al. 1992, Legendre and Legendre 1998); in
both cases, the effect of space is partitioned out by site
variables or trend surface analysis. In the *“matrix ap-
proach,” species and environment data are represented
by matrices of ecological distances between sample
locations, and spatial data are contained in a matrix of
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geographic distances. The correlation between species
and environment, while controlling for space, is cal-
culated by a partial Mantel test (Manly 1986, Legendre
and Legendre 1998). The above methods have impor-
tant limitations. For example, the raw data approach
accounts for broadscale spatial trend but not for the
fine-scale autocorrelation that induces nonindependent
errors. Improvements to the methods of Legendre
(1993) have been suggested by Legendre and Borcard
(1994), Legendre and Legendre (1998), and Borcard
and Legendre (2002), but few ecological studiesto date
have incorporated fine-scale autocorrelation into spe-
cies—environment analysis.

One approach to analyzing species—environment re-
lationships in the presence of fine-scal e autocorrelation
is the class of spatial autoregressive models (Haining
1990, Cressie 1993). These models can be thought of
as two-dimensional extensions of one-dimensional au-
toregressive models popular in time-series analysis
(Cressie 1993). Spatial autoregressive models have
been known for decades in the statistical literature (Be-
sag 1974), but have been used by ecologists in only a
few studies (Pickup and Chewings 1986, Augustin et
al. 1996; Klute et al., in press). Theoretically, auto-
regressive models can be fit to a variety of response
distributions, including normal (auto-Gaussian), binary
(autologistic), and Poisson (auto-Poisson). However,
the auto-Poisson model can only have negatively au-
tocorrelated errors (Besag 1974, Cressie 1993:553—
555) and is therefore of limited practical use. The au-
tologistic model has been used in several ecological
applications (Augustin et al. 1996; Klute et al., in
press). ““ Pseudolikelihood” parameter estimatesfor the
autologistic model can be obtained with standard lo-
gistic regression software, but the standard errors tend
to underestimate the true sampling variability (Gum-
pertz et al. 1997). Parameter estimates for the auto-
Gaussian model cannot be obtained with ordinary re-
gression software, because the estimated mean function
and spatial covariance matrix interact so that an iter-
ative fitting procedure is necessary (Haining 1990:
128). Recent development of software for fitting auto-
Gaussian models (Kaluzny et al. 1998) significantly
expands the tools available to ecologists for analyzing
autocorrelated data.

In this paper, we use auto-Gaussian models to extend
the single species raw data approach of Legendre
(1993) to account for fine-scale spatial autocorrelation.
We develop models of species abundance as a function
of local- and landscape-scale habitat variables using
datafrom a 3-yr breeding bird study in managed forests
in the southern Appalachian Mountains, USA. Thisre-
gion supports a diverse assemblage of Neotropical mi-
gratory songbirds (Passeriformes), many of which are
thought to be experiencing long-term population de-
clines (Robbins et al. 1989b, Askins et al. 1990). While
degradation of wintering (Robbins et al. 1989b, Sherry
and Holmes 1996) and migratory (Moore et al. 1995)
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habitats are likely important, habitat change on the
breeding grounds remains a prominent hypothesis in
explaining population declines of Neotropical migrants
(Brittingham and Temple 1983, Wilcove 1985, Temple
and Cary 1988, Robinson et al. 1995). Numerous
breeding studies have documented reduced abundance
(e.g., Ambuel and Temple 1983, Robbins et al. 1989a),
pairing success (e.g., Gibbs and Faaborg 1990, Villard
et al. 1993), or nesting success (e.g., Donovan et al.
1995, Robinson et al. 1995) in highly fragmented for-
ests, and the conservation of Neotropical migrant song-
bird populations is thought to depend, in part, on the
preservation of large forest tracts in North America
(Wilcove 1985, Donovan et al. 1995, Robinson et al.
1995). Despite this widely held belief, little is known
about nesting success or habitat use by breeding Neo-
tropical migrants in large forests (Simons et al. 2000).
Recent studies in both Europe and North America sug-
gest that landscape structure may affect breeding song-
bird habitat use even in large forested areas (e.g.,
McGarigal and McComb 1995, Edenius and Elmberg
1996, Jokimaki and Huhta 1996, Hagan et al. 1997,
Schmiegelow et al. 1997).

The present analysis seeks an understanding of how
southern A ppal achian songbirds respond to their breed-
ing habitat at local and landscape scales. Our results
arerelevant to Neotropical migratory bird conservation
(Hagan and Johnston 1992, Martin and Finch 1995),
as well as to the more general ecological question of
how organisms respond to environmental variation at
different spatial scales (Wiens 1989). We hope that our
discussion of statistical methods will be valuable to the
many ecologists who are currently analyzing spatially
autocorrelated data.

METHODS
Sudy area

The southern Appalachians, USA, region is 70% for-
ested (SAMAB 1996), including remnant old-growth
stands and extensive tracts of second-growth forest that
have regrown following industrial logging from the late
1800s through the 1930s (Eller 1982, Yarnell 1998).
The U.S. Forest Service manages most of the public
lands in the southern Appalachians. Our study area
(35°40'00"-36°07'30" N, 82°37'30"-83°07'30" W) en-
compassed 60000 ha of previously logged forest from
380 to 1460 m elevation in the French Broad Ranger
District of Pisgah National Forest (North Carolina) and
the Nolichucky Ranger District of Cherokee National
Forest (Tennessee). Current forest cover in the study
area, by stand age, is. =9 yr, 5%; 10-19 yr, 4%; 20—
39 yr, 5%; 40—69 yr, 27%; and =70 yr, 59% (Hermann
1996). Most younger stands (<20 yr old) were created
by small (~10 ha) clearcuts, which are scattered
throughout the landscape. The majority of the study
area consists of deciduous mesic hardwood forests. Xe-
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TaBLE 1. Habitat variables used in regression models.
Variable Description

Local habitat variables

ELEV elevation

ELEV? (elevation)?

TOPO (4) topographic position (ravine, flat, slope, or ridge)

EDGE (6) edge category (early-early, early-mid, early-late, mid-mid, mid-late, or late-late)

RD/TR/OFF (3) point located on road, trail, or off-road

RDVEG (3) road bordered by Rubus, other shrub species, or no shrubs

CAN percentage of canopy cover

SUBCAN percentage of subcanopy cover

TALLSH percentage of tall shrub/sapling cover

LOWSH percentage of low shrub/seedling cover

HERB percentage of herbaceous cover

DBH25-50 number of 25-50 cm dbh trees in wedge prism sample

DBH>50 number of >50 cm dbh trees in wedge prism sample

MAXHT height of tallest tree

NMDS1 NMDS axis 1: Quercus rubra and Acer saccharum (negative axis 1 scores) to Q. coccinea

(positive scores)
NMDS2 NMDS axis 2: Liriodendron tulipifera (negative axis 2 scores)
NMDS3 NMDS axis 3: Tsuga canadensis and Rhododendron maximum (negative axis 3 scores) to Q.

prinus (positive scores)
Landscape variables

proportion of core area (=40-yr-old forest that is >100 m from edge with younger forest and

LS=9 proportion of =9-yr-old forest
LS=9? (proportion of =9-yr-old forest)?
LSMESIC40-69 proportion of 40—69 yr-old mesic hardwood forest
LSMESIC=70 proportion of =70-yr-old mesic hardwood forest
LSCORE

>100 m from non-National Forest land)
LSDIV

Simpson’s diversity index (1/2p?), where p, refers to the proportion of six landcover catego-

ries (stands =9, 10-19, 20-39, 40—69, and =70 years old, and non-National Forest land)

Notes: For categorical variables, the number of categories is given in parentheses. All landscape variables were measured
within 250 m radius circles, centered on each sample location. Abbreviations: dbh, diameter at breast height, 1.4 m above
the ground surface; NMDS, nonmetric multidimensional scaling.

ric hardwoods and pine (Pinus spp.) occupy dry slopes
and ridges.

Bird counts

Our database consisted of 1177 point locations sam-
pled from mid-May to the end of June in 1997-1999.
Each point was sampled in two different years of the
study under favorable weather conditions. Points were
spaced ~200 m apart along low-traffic roads (n = 570),
hiking trails (n = 557), and off-road transects (n =
50). The location of each point was recorded with a
differentially corrected global positioning system
(GPS; GeoExplorer 11; Trimble Navigation, Sunnyvale,
California, USA). At each point, we recorded the num-
ber and identity of breeding pairs, along with a hori-
zontal distance estimate from the observer, during a
10-min period using the variable circular plot method
(Reynoldset al. 1980). Counts were conducted between
sunrise and 10:15 h. In our analysis, we only included
detections with distance estimates =75 m from the ob-
server. Using this distance cut-off, detectability (the
probability that a present bird is detected), which was
estimated with the computer program DISTANCE
(Thomas et al. 1998), was roughly equal across the
different habitats sampled. Additional details concern-
ing bird counts can be found in Lichstein et al. (2002).

Local scale habitat

Vegetation data were recorded within 10 m radius
plots at each samplelocation (Table 1). Nonmetric mul-
tidimensional scaling (NMDS), arobust nonparametric
ordination method (Minchin 1987), was used to gen-
erate axes representing gradients in floristic composi-
tion. Stand age was assigned to one of three succes-
sional stages (early, mid, or late) for both sides of the
road or trail, yielding six edge categories: early-early,
early-mid, early-late, mid-mid, mid-late, and late-late.
Additional details on local habitat data can be found
in Lichstein et al. (2002).

Landscape scale habitat

L andcover maps of the southern Appal achiansregion
are available from the Southern Appalachian Assess-
ment GIS Data Base (Hermann 1996). This database
includes forest stand coverages (digitized from 1:
24000 scale aerial photographs) for all National For-
ests in the SAMAB (1996) assessment area. We used
ARC/INFO (ESRI 1998) to quantify landscape com-
position within a 250 m radius circle centered on each
sample point (Table 1). Because adjacent points were
separated by ~200 m, landscape circles overlapped
considerably, ensuring some spatial autocorrelation in
landscape variables. The present analysis is restricted
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to simple landscape composition variables measured at
a single scale. A more thorough landscape analysis
does not qualitatively change our results (Lichstein et
al. 2002).

Satistical analysis

Our general goal was to evaluate how the apparent
importance of different habitat variables changed de-
pending on the scale(s) of spatial dependence account-
ed for by the regression models. We began by fitting
models that ignored both broadscale spatial trend and
fine-scal e autocorrel ation. We then examined how these
models changed after accounting for broadscale trend,
and we partitioned the explained variation in species
abundance to nonspatially structured environment, spa-
tially structured environment, and broadscal e trend fol-
lowing Legendre (1993). Finally, we examined models
that also accounted for fine-scale autocorrelation. All
analyses were performed with S-PLUS (Kaluzny et al.
1998, MathSoft 1999). S-PLUS codes and detailed in-
structions for performing all analysesin this paper may
be found as a supplement available in ESA’s Electronic
Data Archive.

Study species and preliminary analysis—We ana-
lyzed point count data for three species of Neotropical
migrant warblers (Parulidae) that are common in our
study area: the Chestnut-sided Warbler (Dendroica
pensylvanica), the Hooded Warbler (Wilsonia citrina),
and the Black-throated Blue Warbler (Dendroica ca-
erulescens). These species were selected because they
represent a range of habitat preferences: the Chestnut-
sided Warbler is an edge/early successional specialist,
the Hooded Warbler is an edge/mature forest generalist,
and the Black-throated Blue Warbler is a mature forest
specialist. In addition, these species were the focus of
a concurrent nesting success study. Although patterns
in bird abundance do not necessarily reflect habitat
quality (Van Horne 1983), all three species reproduce
successfully in our study area (~50% nest success rate;
Weeks 2001; J. W. Lichstein, T. R. Simons, and K. E.
Franzreb, unpublished data); therefore, patternsintheir
abundance are likely to have some adaptive signifi-
cance.

In all regression models discussed below, the re-
sponse variable was the square-root-transformed count
(Sokal and Rohlf 1995) for each species, summed
across the two samples at each of the 1177 point lo-
cations. Quantitative explanatory variables were stan-
dardized to mean zero and unit variance, and categor-
ical variableswere coded as zero/one dummy variables.
Plots of ordinary least squares (OLS) partial residuals
against each explanatory variable (Rawlings et al.
1998:350) indicated constant variances for all three
species. These plots suggested nonlinear responses to
ELEV (Hooded and Black-throated Blue Warbler) and
LS=9 (Chestnut-sided Warbler), and the appropriate
quadratic terms were added to these models. Frequency
histograms of residuals and normal probability plots
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(Rawlings et al. 1998:357) indicated normality for the
Black-throated Blue Warbler, while residuals for the
Chestnut-sided and the Hooded Warbler were not nor-
mal (although both distributions were roughly sym-
metric). To investigate how nonnormality would affect
our results, we compared OL S models, for which clas-
sical parametric tests assume normality (Rawlings et
al. 1998:325), to Poisson and negative-binomial mod-
els for count data using generalized linear models
(McCullagh and Nelder 1989). Resultsfrom OL S, Pois-
son, and negative-binomial models were qualitatively
similar (Lichstein 2000), and we therefore proceeded
with the normal errors model due to its greater flexi-
bility in fitting spatial autoregressive models (Cressie
1993; see Introduction).

Habitat (‘*“OLS environment’’) models.—For each
species, we fit OL S multiple regression models to hab-
itat variables (hereafter, **OLS environment models’),
ignoring both broadscale spatial trend and fine-scale
autocorrelation. For each species, we began with a
model that included all of the habitat variables listed
in Table 1 and sequentially eliminated by hand vari-
ables with P > 0.01.

Habitat + trend (‘*OLS trend/environment’’) mod-
els—We used trend surface analysis to model broad-
scale spatial pattern in the species data. This analysis
has two primary aims (Legendre 1993, Legendre and
Legendre 1998): (1) to guard against false correlations
between species and environment, as may arise when
an unmeasured environmental factor causes a common
spatial structure in the species and in the measured
environmental variables; and (2) to determine if there
is a substantial amount of broadscale spatially struc-
tured variation in the species data that is unexplained
by the measured environmental variables.

Wefit atrend surface to bird abundance by regressing
the species data on all third-degree polynomial terms
of the spatial coordinates of the sample locations:

z= by + byx + by + byx? + b,xy + bgy? + bgx®
+ byx2y + bgxy? + byy?

where z is the response variable (sguare-root-trans-
formed species counts), b—b, are parameters, and x and
y are the spatial coordinates of the sample locations.
Prior to analysis, x and y were centered on their re-
spective means to reduce collinearity with higher order
terms (Legendre and Legendre 1998:527) and stan-
dardized to unit variance. Nonsignificant trend surface
terms were removed by stepwise selection.

Following Legendre (1993), the proportion of vari-
ation in the species data explained by nonspatially
structured environment, spatially structured environ-
ment, and spatial trend (independent of environment)
was partitioned using partial regression analysis (Le-
gendre and Legendre 1998). The total variation in the
species data explained by trend and environment com-
bined was obtained from ‘““OLS trend/environment
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models,”” which included both the trend surface terms
and the habitat variables from the OLS environment
models.

Habitat + trend + autocorrelation (‘*‘CAR trend/
environment’’) models.—Because trend surface anal-
ysis only accounts for broadscale spatial pattern (Le-
gendre and Borcard 1994), we next examined how OL S
trend/environment model s changed when we accounted
for fine-scale autocorrelation using auto-Gaussian
models. Spatial auto-Gaussian models take on one of
two common forms (conditional and simultaneous), de-
pending on how the spatially correlated error structure
is specified (Haining 1990, Cressie 1993). Cressie
(1993:408) recommends the conditional autoregressive
(CAR) model over the simultaneous model. We fit both
models, and the results were nearly identical. We report
results for the CAR model only. The ‘** CAR trend/en-
vironment model’’ accounts for both broadscale trend
(via inclusion of trend surface terms) and fine-scale
autocorrelation (via the correlated error structure; see
below).

The difference between OLS and CAR models can
be understood by considering the expected value and
distribution of Y, the vector of observed responses. For
both models, Y is assumed to have a multivariate nor-
mal (MVN) distribution:

Y ~ MVN[u, V]

where ., the vector of means, is equal to X (X isa
matrix of independent variables, and B is a vector con-
taining their slopes), and V is an n X n covariance
matrix (n is the number of observations). In the OLS
model, the expected value of an observation Y at a
location i is simply w;, and the covariance matrix is

V = lg?

where | is the identity matrix (ones on the diagonal
and zeros elsewhere) and o2 is a constant. Thus, every
Y, has the same variance (¢?), and the covariance be-
tween Y; and VY, is zero for all locations i # j (Rawlings
et al. 1998:87).

In the CAR model, the conditional expectation of
Y,, given the response at all other locations, is p; plus
a weighted sum of the mean-centered counts at |o-
cations j:

E(Y, | all Yia) = m + sz;siWij(Yj - W)

where p is a parameter to be estimated that determines
the direction (positive or negative) and magnitude of
the spatial neighborhood effect, w; are weights that
determine the relative influence of location j on loca-
tion i, and Y; — u,; are the mean-centered counts at
locationsj (Haining 1990:88, Cressie 1993:407). Thus,
CAR models, and autoregressive models in general,
assume that the response is a function of both the ex-
planatory variables (. in the equation above) and the
values of the response at neighboring locations (the
summation in the equation above). In the context of
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species-environment analysis, and assuming positive
autocorrelation (p > 0), the CAR model has the fol-
lowing interpretation: if location i is surrounded by
locations j, which, based on the habitat at j, have higher
(or lower) species abundance than expected, then i will
also tend to have higher (or lower) species abundance
than expected from the habitat at i. This framework is
well-suited for modeling the abundance of species
whose distributions are controlled by a combination of
exogenous (e.g., habitat) and endogenous (e.g., clonal
growth, conspecific attraction) factors. In most cases,
it is reasonable to assume that distant locations will
affect each other less than nearby locations; therefore,
the weights (w;) inthe CAR model aretypically defined
to decrease with increasing distance between i and j
(e.0., w; = 1/distance;) and are zero if i and j are not
within each other’s spatial neighborhood (zone of in-
fluence). An appropriate neighborhood size is the max-
imum distance at which the residuals from an OLS
model are autocorrelated. This distance may be judged
from a semivariogram or correlogram of the OLS re-
siduals (Cressie 1993:557). See Haining (1990), Cres-
sie (1993), and Gumpertz et al. (1997) for further dis-
cussion of weight definitions.

The above expression for the expected value of Y;
in the CAR model implies the following covariance
matrix:

V =( - pW) M

where W isan n X n matrix with zeros on the diagonal
and the neighbor weights (w;) in the off-diagonal po-
sitions, and M isan n X n matrix with the conditional
variances (0%, .., 02 of Y (i.e, the variances of Y
given the realized values of the spatial neighbors) on
the diagonal and zeros in the off-diagonal positions
(Haining 1990:88, Cressie 1993:433). In contrast to the
OLS model, covariances in the CAR model (off-di-
agonal elements of V) are nonzero and increase the
closer locationsi and j are to each other. In the present
analysis, we assumed that the conditional variances of
Y were constant (i.e., M = l¢?), which is a special
case of the general model described above. (See Hain-
ing [1990:129] for a discussion of nonconstant vari-
ances in auto-Gaussian models.) The unconditional
variances in the CAR model (diagonal elements of V)
are generally not constant and depend on p and the
locations of the spatial neighbors (see Haining 1990:
Fig. 3.8), but not on the realized values of the neigh-
bors.

Prior to fitting CAR models, we examined directional
correlograms (+180° azimuths = 0°, 45°, 90°, and 135°;
angular tolerance = +22.5°) of OL Strend/environment
residuals to determine if autocorrelation was isotropic
(the same in all geographic directions; Haining 1990:
66, Legendre and Legendre 1998:721). Anisotropy was
not detected for any of the three species. Based on
correlograms of OLS trend/environment residuals and
empirical trials, we selected a 750 m radius spatial
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neighborhood for all three species. We fit CAR models
with three different neighbor weight definitions: w; =
1, ldistance;, and (1/distance;). We selected an ap-
propriate weight function based on model fit (maxi-
mized likelihood) and by how well the model accounted
for autocorrelation in the residuals. We selected w; =
(1/distance;)? for the Chestnut-sided Warbler and w;; =
L/distance; for the Hooded and Black-throated Blue
Warblers.

We calculated R? for the CAR models using the fol-
lowing formula (Nagelkerke 1991):

R =1—exp[—2/In(l, — 1y)]

where n is the sample size, 1, is the log-likelihood of
the model of interest, and |, is the log-likelihood of the
null model containing only an intercept (which fits the
mean response and ignores autocorrelation). For OLS
models, this formula yields the identical value as the
traditional R? (the proportion of the mean-centered re-
sponse sum of squares that is explained by the inde-
pendent variables).

Habitat effects—To provide a common ground for
assessing the importance of habitat variables in OLS
and CAR models, we evaluated the contribution of each
variable to model fit with a likelihood ratio test for
nested models (Haining 1990:142), with the reduced
model containing a subset of the variables in the full
model:

LR = —2(lieq — ltu)

where LR is the likelihood ratio test statistic, and |,y
and l;,, are the log-likelihoods of the reduced and full
models, respectively. Under the null hypothesis that
the reduced and full models fit the data equally well,
LR has an approximate x? distribution with degrees of
freedom equal to the number of additional parameters
in the full model.

Finally, we wished to gain some insight into how
spatial pattern in the habitat variableswould affect their
apparent importance in the three types of regression
models. We assumed that the probability of observing
“false correlations” (Legendre and Legendre 1998:
769) between the species and habitat data would in-
crease when the two were spatially structured at similar
scales. For a given habitat variable, we predicted that
the change in its apparent importance when trend and
autocorrelation were incorporated into the models
would be related to the degree to which the habitat
variable was structured at broad and fine spatial scales,
respectively. For example, if a habitat variable showed
little broadscale trend but strong fine-scale autocorre-
lation, the importance of the variable should be similar
in OL S environment and OL S trend/environment mod-
els, but might decrease in CAR trend/environment
models.

For each habitat variable, we calculated the change
in its effect due to incorporating broadscale trend in
the model as:

JEREMY W. LICHSTEIN ET AL.

Ecological Monographs
Vol. 72, No. 3

ALR,eq = LR(OLS environment)

— LR(OLS trend/environment)

where LR(OLS environment) and LR(OLS trend/en-
vironment) are LR statistics for agiven habitat variable
in OLS environment and OL S trend/environment mod-
els, respectively. We predicted that ALR,,q would be
positively correlated with the degree to which each
habitat variable was spatially structured on a broad
scale. To describe the broadscal e structure of the habitat
variables, we performed OL S trend surface regressions
(separate regression for each habitat variable) on all
third-degree polynomial terms of the spatial coordi-
nates of the sample locations. Nonsignificant trend sur-
face terms were removed by stepwise selection. We
used the R? from these trend surface models ("’ Reg'”
as an index of broadscale structure in each habitat var-
iable.

We cal culated the changein the effect of each habitat
variable when fine-scale autocorrelation was added to
the model as

ALR iocor = LR(OLS trend/environment)

— LR(CAR trend/environment)

where LR(OLS trend/environment) and LR(CAR
trend/environment) are LR statistics for a given hab-
itat variable in OLS trend/environment and CAR
trend/environment models, respectively. We predicted
that ALR,..cor WOuld be positively correlated with the
degree to which the habitat variables were autocor-
related on a fine scale. To describe this fine-scal e au-
tocorrelation, we used the residuals from the trend
surface analysis of each habitat variable to compute
Moran's | correlograms (see Spatial autocorrelation
below). Trend surface analysis removes broadscale
structure, so any spatial pattern remaining in the re-
siduals is due to fine-scale autocorrelation. For each
habitat variable, we calculated "' |,,..,,”’ the averageval-
ue of Moran's |y, (standardized version of |; see Ap-
pendix) out to alag distance of 775 m (the approximate
size of the spatial neighborhood in the CAR models),
as an index of fine-scale autocorrelation.

In order to calculate RZ..q and | ,,..,, categorical hab-
itat variables were transformed into pseudo-quantita-
tive variables (see below).

Spatial autocorrelation.—We used Moran’s | cor-
relograms (Sokal and Oden 1978a, Legendre and Le-
gendre 1998) to evaluate spatial pattern in the (square-
root-transformed) bird counts, in the residuals from the
three types of species—environment regression models,
and in the residuals from the trend surface models of
the habitat variables. Under the null hypothesis of no
spatial autocorrelation, | has an expected value near
zero for large n, with positive and negative values in-
dicating positive and negative autocorrelation, respec-
tively. Because | does not vary strictly between —1 and
+1, we standardized | by dividing by its maximum
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TaBLE 2. Ordinary least squares (OLS) and conditional autoregressive (CAR) models of bird abundance.
RZ
oLS CAR Nei ge'}?gcrpo‘)d
OLS trend/ trend/

Species env trend env autocor env p 200 mt 400 mf
Chestnut-sided Warbler 0.48 0.26 0.53 0.17 0.55 3361.6 0.25 0.06
Hooded Warbler 0.20 0.08 0.22 0.12 0.25 17.3 0.26 0.13
Black-throated Blue Warbler 0.36 0.22 0.39 0.26 0.46 19.0 0.29 0.14

Notes: R? values are given for the following models: ““OLS env’’ = habitat only; “‘trend” = broadscale spatial trend
surface; ““OLS trend/env’’ = habitat + trend; ‘‘autocor’”’ = fine-scale autocorrelation (conditional autoregressive [CAR]
model with only intercept and p); ‘‘CAR trend/env’’ = habitat + trend + autocorrelation. In CAR models, neighborhood
effects are modeled by the estimated spatial parameter, p, along with the neighbor weights: w; = (1/distance;)? for the
Chestnut-sided Warbler and 1/distance; for the Hooded and the Black-throated Blue Warblers. ** Neighborhood effect’” is the
expected increase in the response (square-root-transformed count) at location i where the sum of the mean-centered responses
at locations j in i's spatial neighborhood is +3. Neighborhood effect was calculated as pX; . w;(Y; — u;), which is the
autoregressive component of the conditional expectation of Y, in the CAR model. As an arbitrary but realistic example, we

assumed that (Y, — ;) = 3 for locationsj in i’s spatial neighborhood.
T Neighborhood effect was calculated assuming all j in i’s spatial neighborhood are 200 m away from i.
¥ Neighborhood effect was calculated assuming all j in i’s spatial neighborhood are 400 m away from i.

attainable value to yield |y, (Haining 1990:234-235;
see Appendix). Significance tests of | for raw data(i.e.,
bird counts), OLS residuals, and CAR residuals are
distinct and are explained in detail in the Appendix.
The first lag distance interval in the correlograms in-
cluded all pairs of points separated by =250 m, and
subsequent intervals (out to a maximum distance of
3100 m) were 150 m wide. All intervals contained at
least 1000 pairs of points, providing high power to
detect spatial pattern.

For each lag distance, we used a randomization test
with 999 permutations (see Appendix) to determine the
probability, under the null hypothesis of no spatial au-
tocorrelation, of observing a value of | as large as the
observed value (one-tailed test for positive autocor-
relation; Haining 1990:231, Legendre and Legendre
1998:720). For each correlogram, we tested for global
significance (i.e., the correlogram contains at least one
positively autocorrelated val ue) using aBonferroni cor-
rected o* of 0.05/20 = 0.0025 (nominal « of 0.05; 20
lags; Legendre and Legendre 1998:721). Within each
correlogram, the significance of | for each lag distance
was assessed using the progressive Bonferroni correc-
tion suggested by Legendre and Legendre (1998:671
and 721-723), in which the ith lag is tested at a* =
a/i, with « = 0.05. This procedure is appropriate when
autocorrelation is expected at the shortest lags and one
wishes to know the range (maximum lag distance) of
autocorrelation (Legendre and Legendre 1998:721).

In order to calculate |, categorical habitat variables
(TOPO, EDGE, RD/TR/OFF, and RDVEG; Table 1)
were transformed into pseudo-quantitative variables by
assigning integer values to classes ranked along eco-
logical gradients: the four TOPO classes were ranked
from driest to wettest (ridge = 0, slope = 1, flat = 2,
ravine = 3); the six EDGE classes were ranked in in-
creasing order of disturbance due to recent logging
(late-late = 0, mid-late = 1, mid-mid = 2, early-late

= 2, early-mid = 3, early-early = 4); the three RD/
TR/OFF classes wereranked in order of increasing veg-
etation disturbance (off-road = 0, trail = 1, road = 2);
the three RDVEG classes were ranked in increasing
order of use by early successional birds as nesting hab-
itat in our study area (J. W. Lichstein, T. R. Simons,
and K. E. Franzreb, unpublished data; none = 0, shrubs
other than Rubus = 1, Rubus = 2).

Significance tests for the presence of spatial auto-
correlation require the condition of second-order sta-
tionarity (Legendre and Legendre 1998:718). Broad-
scale trend in the unmodeled bird counts violated sta-
tionarity assumptions; significancetests of | for the raw
bird counts should therefore be interpreted as testing
for the presence of spatial pattern that may reflect trend
rather than fine-scale autocorrelation.

REsULTS
OLS environment models

OL S environment models explained 48, 20, and 36%
of the variation in the counts for the Chestnut-sided,
Hooded, and Black-throated Blue Warbler, respectively
(Table 2). All models included both local- and land-
scape-scale habitat variables (Fig. 1, Table 3). OLS
environment models explained much of the broadscale
spatial pattern in the counts for all three species, as
seen in the overall shift in the correlograms towards
zero (Fig. 2: compare correlograms for counts to those
for OLS environment residuals). The OL S environment
model for the Chestnut-sided Warbler also explained
some of the fine-scale spatial pattern in the counts, as
seen in the more rapid declinein Moran’s | for the OLS
environment residuals compared to the counts (Fig. 2).
In contrast, OLS environment models explained little
of the fine-scale autocorrelation in the counts for the
Hooded and the Black-throated Blue Warblers: the
shape of the correlograms for the counts and OLS en-
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Fic. 1. Likelihood ratio (LR) statistics for habitat variables in ordinary least squares (OLS) environment, OLS trend/

environment, and conditional autoregressive (CAR) trend/environment models. Larger LR values indicate a greater contri-
bution to model fit. P values and parameter estimates are given in Table 3. See Table 1 for descriptions of habitat variables.

vironment residuals were similar for these two species
(Fig. 2). For all three species, OLS environment resid-
uals were positively autocorrelated (global Bonferroni
test for correlograms significant at «* = 0.0025), in-
dicating that the assumption of independent errors was
violated.

OLS trend/environment models

Trend surface analysis explained 26, 8, and 22% of
the variation in the counts for the Chestnut-sided,

Hooded, and Black-throated Blue Warbler, respectively
(Table 2). OLS trend/environment models, which in-
cluded both the trend surface terms and the habitat
variables, explained only slightly more variation than
OLS environment models: 53, 22, and 39% for the
Chestnut-sided, Hooded, and Black-throated Blue War-
bler, respectively (Table 2). The reason for this mar-
ginal improvement is clear from the partitioning of
explained variation due to trend, spatially structured
environment (‘‘trend/environment’’), and nonspatially
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TaBLE 3. Parameter estimates for habitat variables in re-
gression models.

OoLS CAR
OLS trend/envi- trend/envi-
environ- ronment ronment
Habitat variable ment model  model model
Chestnut-sided Warbler
ELEV 0.18**** (. 13**** 0.13****
EDGE * k kK * kK k * kkk
Early-early 0.39 0.40 0.44
Early-mid 0.28 0.28 0.24
Early-late 0.34 0.33 0.34
Mid-late 0.11 0.10 0.10
Late-late -0.05 -0.06 -0.07
RDVEG * Kk k*k *kk*k *kk*k
Rubus 0.52 0.39 0.37
Other shrubs 0.09 0.04 0.05
LOWSH 0.05** 0.05*** 0.05***
HERB 0.05*%** 0.03ws 0.03ws
LSng 0.05**** 0.05**** 0.04****
LSCORE —0.10**** —0.06**** —0.07***
Hooded Warbler
ELEV —0.15%*** —(Q.15**** —(Q,15****
ELEV? —0.09%*** —0.09**** —(0.08***
EDGE *kkk *kk *kk
Early-early 0.19 0.21 0.16
Early-mid 0.05 0.05 0.05
Early-late 0.28 0.25 0.23
Mid-late -0.13 -0.15 -0.13
Late-late -0.04 —-0.04 —-0.03
RD/TR/OFF * k% %k * %k k * %k Kk
Road 0.19 0.22 0.23
Trail -0.05 -0.02 0.00
TALLSH 0.06** 0.05ns 0.04ns
LOWSH 0.08****  0.08**** 0.08* ***
LSMESIC40-69 0.09*** 0.08** 0.06ns
LSMESIC=70 0.13%*** (. 12%*** 0.09**
LSCORE —0.11%*** —0.08** —0.06ns
Black-throated Blue Warbler
ELEV 0.34****  (0,28**** 0.23****
ELEV2 _0.12**** _0.15**** _0.14****
TOPO * kkk * % * kk
Flat 0.42 0.30 0.28
Ravine 0.31 0.23 0.21
Slope 0.09 0.07 0.03
MAXHT 0.16%***  (Q.15**** 0.13****
LSMESIC40-69 0.13**** (. 13**** 0.15****
LSMESIC=70 0.14%***  (0,16%*** 0.16****

Notes: A singlesignificancelevel isreported for categorical
variables. Parameter estimates for the levels of TOPO are
relative to ‘‘ridge,” those for EDGE are relative to ‘‘mid-
mid,” those for RD/TR/OFF are relative to ‘** off-road,” and
those for RDVEG are relative to ‘‘no shrubs.” Quantitative
variables, except for quadratic terms (ELEV? and LS=9?),
were standardized to mean zero and unit variance prior to
analysis, so their parameter estimates are referenced to acom-
mon scale. OLS = ordinary least squares; CAR = conditional
autoregressive.

**pP < 0.01; ***P = 0.001; ****P = 0.0001; Ns = not
significant (« = 0.01).

structured environment (Fig. 3): after controlling for
environmental (habitat) effects, broadscale trend ex-
plains only a small amount of additional variation in
the species data. While much of the variation explained
by the habitat variables was correlated with spatial
trend (trend/environment fraction in Fig. 3), there were
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substantial nonspatially structured habitat effects for
all three species (environment fraction in Fig. 3).

Incorporating broadscale trend into OL S models had
little effect on the fine-scale spatial pattern in the re-
siduals: the overall shapes of the OL S environment and
OL Strend/environment correlogramswere nearly iden-
tical within each species (Fig. 2). Thisisto be expected:
athird-degree polynomial trend surface cannot explain
spatial variation on the scale of hundreds of metersin
astudy areathat spanstens of kilometers. Aswith OLS
environment models, correlograms for OLS trend/en-
vironment models showed that the OL S assumption of
independent errors was violated (global Bonferroni test
significant at «* = 0.0025 for all three species). OLS
trend/environment residuals were significantly auto-
correlated out to 625 m for the Chestnut-sided Warbler,
325 m for the Hooded Warbler, and ~1500 m for the
Black-throated Blue Warbler. While incorporating
trend did not account for fine-scale autocorrelation,
there was an overall shift in Moran’s | toward zero in
the OL S trend/environment compared to OL S environ-
ment correlograms (Fig. 2). The amount by which each
correlogram shifted toward zero reflects the amount of
additional broadscale variation in the species data ex-
plained by OLS trend/environment over OLS environ-
ment models (trend fraction in Fig. 3): the addition of
trend surface termsimproved OL S models more for the
Chestnut-sided and the Black-throated Blue Warbler
than for the Hooded Warbler (Fig. 3); accordingly, the
shift in the correlograms towards zero was more no-
ticeable for the Chestnut-sided and the Black-throated
Blue Warbler (Fig. 2).

As expected, LR statistics for many habitat variables
were reduced in OLS trend/environment models com-
pared to OL S environment models, although in the case
of the Black-throated Blue Warbler, the reduction in
LR was large only for ELEV (Fig. 1). The reduction
in LRs indicates that the habitat variables had less im-
pact on model fit after controlling for broadscal e spatial
trend. In most cases, parameter estimates (Table 3) re-
flected LRs (Fig. 1), tending to be lower in magnitude
in OLS trend/environment than in OLS environment
models for variables with reduced LRs in OLS trend/
environment models.

CAR trend/environment models

CAR trend/environment models explained 55, 25,
and 46% of the variation in the species data for the
Chestnut-sided, Hooded, and Black-throated Blue War-
bler, respectively (Table 2). These R? values represent
a modest but significant improvement in CAR over
OLS trend/environment models. Likelihood ratio tests
for the spatial parameter (p) were significant for Chest-
nut-sided (p = 3361.6, LR = 57.6, P < 0.0001), Hood-
ed (p = 17.3, LR = 41.7, P < 0.0001), and Black-
throated Blue Warbler (p = 19.0, LR = 1315 P <
0.0001), indicating that, after controlling for habitat
effects and broadscal e trend, species abundance at sam-
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Fic. 2. Moran's Iy, correlograms of (square-root transformed) bird counts, residuals from ordinary least squares (OLS)
environment models, residuals from OLS trend/environment models, and residuals from conditional autoregressive (CAR)
trend/environment models. |y, (I standardized to vary between +1 and —1; see Appendix) has an expected value near zero
for no spatial autocorrelation, with negative and positive values indicating negative and positive autocorrel ation, respectively.
Each point represents the value of |y, calculated from all possible pairs of sample locations that are separated by the lag
distance (150 m wide intervals) on the x-axis. Closed circles indicate values of |, that are significantly larger than the value
expected under the null hypothesis of no positive autocorrelation (one-tailed test with « = 0.05 adjusted using progressive
Bonferroni correction of Legendre and Legendre [1998:721]; see Methods: Statistical analysis: Spatial autocorrelation); open

circles are not significantly larger than the null expectation.

ple points was significantly positively correlated with
abundance at nearby points. The relatively high p for
the Chestnut-sided Warbler results from defining the
neighbor weights (w;) as (1/distance;)?, as opposed to
l/distance; for Hooded and Black-throated Blue War-
blers. When p is adjusted for w;, the spatial neighbor-
hood effect is similar for all three species (Table 2).
To determine how much of the variation in the spe-
cies data could be explained by autocorrelation alone,
we fit CAR models containing only an intercept (over-
all mean response) and p, where the w;; were the same
as in the CAR trend/environment models. These pure

autocorrelation CAR modelsexplained 17, 12, and 26%
of the variation in the species data for the Chestnut-
sided, Hooded, and Black-throated Blue Warbler, re-
spectively (Table 2).

In contrast to OLS models, residuals from CAR
trend/environment models showed little spatial pattern
(Fig. 2), suggesting that the CAR models were appro-
priate (Pickup and Chewings 1986). Of the three spe-
cies, the global Bonferroni test for correlograms of
CAR residuals was significant (a* = 0.0025) only for
the Black-throated Blue Warbler. Residuals from the
CAR model for this species were positively autocor-
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least squares (OLS) trend/environment models explained by
nonspatially structured environment, spatially structured en-
vironment (‘‘trend/environment’’), and trend (independent of
environment). Broadscale space was modeled by trend sur-
face analysis, and the explained variation was partitioned
using partial regression analysis following Legendre (1993).
The‘“‘trend”” fraction isequal to theimprovement in R? values
from OLS trend/environment models over OL S environment
models (Table 2). The “‘trend”” and ‘‘trend/environment’”
fractions combined are equal to the R? values from the trend
surface models of species counts. The ‘‘ trend/environment’’
and ‘“‘environment’” fractions combined are equal to the R?
values from OLS environment models. OLS trend/environ-
ment models account for broadscale trend but not for fine-
scale autocorrelation.

related at several lag distances, but the degree of au-
tocorrelation was greatly reduced compared to the OLS
trend/environment model (Fig. 2). Because the per-
mutation procedure we used to test for autocorrelation
in CAR residuals is not strictly valid (see Appendix),
significance tests for CAR residuals should be inter-
preted with caution. Regardless, it is clear from the
small values of | that there is little spatial pattern in
the CAR residuals (Fig. 2).

Comparison of LRs from CAR trend/environment
models to those from OLS trend/environment models
showed the same general trend as comparison of LRs
from OLS trend/environment to OLS environment
models: for Chestnut-sided and Hooded Warblers, the
effect of several habitat variables were reduced when
autocorrelation was accounted for, while for the Black-
throated Blue Warbler, only the effect of ELEV
changed substantially (Fig. 1). As with the comparison
of habitat parameter estimates between the two OLS
models, the magnitude of parameter estimates in CAR
trend/environment vs. OLS trend/environment models
(Table 3) tended to reflect differences in LRs between
the two models (Fig. 1).

SPATIAL AUTOREGRESSIVE MODELS

455

Habitat effects

For all three species, the relative importance of hab-
itat variables shifted across the three types of models
(Fig. 1). For example, EDGE was the fourth most im-
portant variable in the Chestnut-sided Warbler OLS
environment model, but was the most important vari-
able in the CAR model. For the Black-throated Blue
Warbler, ELEV was the single dominant variable in the
OLS environment model, but was one of several im-
portant variables in the CAR model. In addition to
shifts in relative importance, the overall magnitude of
habitat effects tended to decrease in spatially more
complex models, especially for the Hooded Warbler
(Fig. 1). For this species, landscape variables (LSME-
SIC40-69, LSMESIC=70, and L SCORE) were highly
significant in the OLS environment model but were
marginally significant or nonsignificant in the CAR
model (Table 3).

Residuals from trend surface models of habitat var-
iables showed positive autocorrelation for all variables
included in regression models of bird abundance (Fig.
4; global Bonferroni test significant at o* = 0.0025 for
all habitat correlograms). A few local habitat variables
(ELEV, ELEV?, RD/TR/OFF, and RDVEG; Fig. 4A)
and all four landscape variables (Fig. 4B) exhibited
extreme spatial patterns, with Moran's |y, approaching
one (perfect positive autocorrelation) at the shortest
lags.

Scatter-plots of ALR,.q VS. the broadscale trend in
habitat variables (RZ..,) showed positive relationships
for Chestnut-sided and Hooded Warblers (Fig. 5). The
relationship was weak for the Black-throated Blue War-
bler and depended on a single outlier (ELEV). Scatter-
plots of ALR,.cr VS. the fine-scale autocorrelation in
habitat variables (I ) Showed similar patterns, with
a strong positive relationship for the Hooded Warbler
and noisy positive relationships for the Chestnut-sided
and Black-throated Blue Warblers (Fig. 5).

DiscussioN

It iswell known that ignoring spatial autocorrelation
can lead to overestimating environmental effects on
species abundance (Haining 1990:166, Legendre
1993), yet there are few examples in the ecological
literature that address this issue in the regression con-
text (see Klute et al., in press). We have demonstrated
how autocorrelation can be incorporated into species—
environment analysis viaautoregressive modelsfit with
widely available software. In ordinary least squares
(OLS) regression, the assumption of independent errors
can be checked by examining a correlogram of the
residuals (although raw data test procedures for Mor-
an’s | are not valid in this case; see Appendix). In
contrast to OL S models, autoregressive models assume
correlated errors, and a correlogram of the residuals
provides a check on the appropriateness of the spatial
structure of the model: if the model is appropriate, then
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Fic. 4. Moran's Iy correlograms for (A) local and (B) landscape-scale habitat variables included in regression models.
Broadscal e pattern was removed from habitat variables via trend surface analysis, and the residuals from the trend surface
models were used to calculate |y, Closed and open circles, respectively, indicate values of |y, that are significantly different
and not different from the null expectation (one-tailed test for positive autocorrelation with progressive Bonferroni correction;
see Fig. 2 legend for details). See Table 1 for descriptions of habitat variables.

the residuals should have little or no spatial pattern
(Cliff and Ord 1981:197, Pickup and Chewings 1986).
In this study, residuals from OLS habitat models were
autocorrelated, and incorporating spatial trend did little
to correct this statistical problem. Residuals from au-
toregressive (CAR) models showed little or no auto-
correlation, suggesting that these models were appro-
priate and provided a reasonable picture of habitat ef-
fects on bird abundance. Moreover, autoregressive
models fit the data better than OL S models: after con-
trolling for the effects of habitat variables and broad-
scaletrend, the spatial parameter (p) inthe CAR models
was highly significant due to the positive correlation
between species counts at sample points located within
each other’s spatial neighborhood (zone of influence).

For all three species considered, the magnitude of
habitat effects, as well as the relative importance of
different habitat variables, shifted as we incorporated
different spatial scales into the analysis. Models that
ignored both broadscale trend and fine-scale autocor-
relation showed stronger habitat effects than models
that accounted for trend, and these in turn showed

stronger habitat effects than autoregressive models that
accounted for both trend and autocorrelation (Fig. 1).
Habitat effects were stronger in spatially deficient mod-
els because space and habitat were confounded (Gum-
pertz et al. 1997). For example, trend surface models
explained 8-26% of the species data, but OLS trend/
environment R? values were only 2-5% higher than
OL S environment R? values (Table 2) because the trend
surfaces were largely redundant with the habitat data.
Similarly, pure autocorrelation models explained 12—
26% of the species data, but CAR trend/environment
R? values were only 2—7% higher than OLS trend/en-
vironment R? values (Table 2) because much of the
variation explained by the pure autocorrelation models
was redundant with the variation explained by the OLS
trend/environment models. If habitat, trend, and au-
tocorrelation explained independent components of
variation in the species data, then R? values for habitat,
trend, and autocorrelation models would be additive.
The extent to which habitat effects changed as space
was added to the models was related to the degree of
spatial structure in the habitat variables (Fig. 5). How-
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Fic. 5. Change in habitat effects in models of increasing spatial complexity plotted against spatial structure indices for
habitat variables. ALR,, is the change in the importance of a given habitat variable when broadscale spatial trend was added
to regression models of bird abundance; i.e., the decrease in likelihood ratio (LR) from ordinary least squares (OLS)
environment to OL S trend/environment models (see Fig. 1). R2.q (R? from regression of each habitat variable on third-degree
polynomial trend surface) estimates the degree to which habitat variables were spatially structured at a broad scale. ALR,;ocor
is the change in the importance of a given habitat variable when fine-scale autocorrelation was added to regression models
of bird abundance; i.e., the decrease in LR from OLS trend/environment to CAR trend/environment models (see Fig. 1). | e
(mean of Moran’s |4, out to alag of 775 m; see Fig. 4) estimates the degree to which habitat variables were spatially structured
on a fine scale. See Table 1 for descriptions of habitat variables.

ever, these relationships were noisy for two of the three
species. When space (broad or fine scale) is incorpo-
rated into a regression model, the importance of a spa-
tially structured habitat variable will be strongly af-
fected only if (1) the spatial patternsin the species and
habitat data overlap considerably and (2) this common
spatial pattern can alternatively be explained by the
new spatial terms in the model. The positive relation-
shipsin Fig. 5 show that the above two conditions are

more likely to hold for habitat variables with strong
spatial structures. On the other hand, the scatter in Fig.
5 indicates that the degree of spatial structure in a hab-
itat variableis, by itself, a poor predictor for how much
the variable's importance will decrease when space is
incorporated into the model.

Throughout this paper, we have treated trend as a
potential source of false correlations between species
and environment (Legendre and Legendre 1998:769);
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e.g., when an unmeasured environmental factor causes
similar spatial patterns in species abundance and in an
unimportant habitat variable that happened to be mea-
sured. In this context, only the nonspatially structured
component of the species—environment correlation is
assumed to reflect a meaningful relationship. Two is-
sues complicate this interpretation. First, the spatially
structured component of environmental variation may
in fact be important to the species: spatial structurein
the species—environment relationship does not guar-
antee the presence of a false correlation, only the pos-
sibility of one. Second, what is perceived as spatially
vs. nonspatially structured environmental variation is
sensitive to the degree of the polynomial trend surface.
A third-degree polynomial model is often used (e.g.,
Borcard et al. 1992, Legendre 1993), and L egendre and
Legendre (1998:741) offer some additional guidance.
However, the decision is somewhat subjective, and it
would be worthwhile to consider if one’s results are
qualitatively affected by fitting a more or less complex
surface (Brownie and Gumpertz 1997). These two is-
sues reflect the general problem in ecology of inter-
preting correlations when, asis almost always the case,
the true model is unknown. In species—environment
regression models, purely statistical criteria will sel-
dom inform us if a trend surface model is needed and,
if so, the appropriate level of complexity. Rather, the
researcher must make subjective decisions based on the
goals of the analysis and prior knowledge of the system
(Legendre and Legendre 1998:769—-770).

Following Legendre (1993), we have referred to
broadscale spatial dependence as trend and fine-scale
dependence as autocorrelation. Conceptually, Legendre
and Legendre (1998:11) define autocorrelation as aris-
ing from interactions between responses at sites within
each other’s ** zone of spatial influence,” as would re-
sult from *‘ contagious biotic processes such as growth,
mortality, migration, and so on (Legendre 1993).” In
contrast, trend is defined as a spatial pattern arising
from the influence of spatially structured explanatory
variables (Legendre and Legendre 1998:11). Other def-
initions may be found in the geostatistical literature,
where trend (or “‘drift") is considered a deterministic
shift in the mean and autocorrelation the result of sto-
chastic processes (e.g., Journel and Rossi 1989). When
the processes generating the spatial pattern are not
known, as is often the case in observational field stud-
ies, trend and autocorrel ation are difficult to distinguish
on conceptual grounds (Legendre and Legendre 1998:
724-725). Nevertheless, trend and autocorrelation may
be distinguished in the regression context by the fol-
lowing practical definitions: autocorrelation refers to
spatial pattern in OLS residuals that may be modeled
with a correlated error structure (e.g., CAR model in
this paper); trend refers to broadscal e patterns that may
be modeled with environmental variables or trend sur-
face terms. With these practical definitions in mind,
what is perceived as trend vs. autocorrelation in re-
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gression will depend on the size of the study area and
the proximity of sample locations. For example, in a
regional-scale bird study in which sample locations are
separated by several kilometers, the trend in our data
that was not explained by habitat (trend fraction in Fig.
3) would appear as autocorrelation (spatially structured
OLS residuals), and the autocorrelation in our data
would appear as nonspatially structured noise, because
the sample locations would be spaced too far apart to
detect the fine-scale spatial patterns we observed (Fig.
2).

Our results have implications for designing field
studies. Correlograms of OL S residuals suggest that in
our study, sample locations separated by 750 m were
statistically independent for Chestnut-sided and Hood-
ed Warblers and nearly so for the Black-throated Blue
Warbler (Fig. 2). However, spacing our points this far
apart would have resulted in a considerably smaller
sample size due to increased travel time. While each
closely spaced point did not represent an independent
sample, there was at least some new information pro-
vided by each point; i.e., Moran’s | 4, did not approach
one even at the shortest lag distance in correlograms
of OLS residuals. A large sample size, corrected for
autocorrelation, likely provided more statistical power
to detect habitat effects than the smaller number of
independent samples we could have collected with the
same resources. This scenario is probably common in
landscape-scale field studies.

In addition to a larger sample size, our study design
allowed us to detect spatial patterns in species distri-
butions that would have been overlooked by more
widely spaced sample locations. Classical regression
models explained, on average, only about athird of the
variation in the species data. However, some of the
unexplained variation, rather than appearing as random
noise, was spatially structured on a fine scale. Several
factors may account for this. Mis-specifying the form
of a model (e.g., assuming a linear model when the
true relationship is nonlinear) may lead to autocorre-
lated residuals, as can failing to include (or poorly mea-
suring) an important explanatory variable that is itself
autocorrelated (Cliff and Ord 1981:197, 211; Haining
1990:332—334). In our study, we do not think that mis-
specification was a problem, because we checked the
relationship between the response and all explanatory
variables using partial residual plots (Rawlings et al.
1998). We cannot rule out measurement error or miss-
ing habitat variables as explanations for autocorrelation
in the residuals. However, we suggest that the spatial
pattern was due, at least in part, to the behavior of the
birds. Conspecific attraction results in some high-den-
sity areas, while other areas of equally suitable habitat
may be underutilized (Cody 1981). This aggregation
would result in autocorrelated residuals from habitat
models, because habitat would not fully explain the
species’ spatial distribution (Augustin et al. 1996). Ag-
gregation may give individuals more opportunities to
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seek extrapair copulations (EPCs; Ramsay et al. 1999),
which are known to be common in north temperate
breeding passerines (Stutchbury and Morton 1995).
EPCs have been documented for Hooded (Stutchbury
et al. 1994) and Black-throated Blue Warblers (Chuang
et al. 1999). In addition to seeking EPCs, aggregation
may be due to dispersing animals cueing on the pres-
ence of conspecifics as an indicator of habitat quality
(Smith and Peacock 1990).

While the presence of conspecifics may sometimes
reflect a superior habitat, bird habitat selection is in
part a stochastic process (Haila et al. 1993, 1996). Dis-
persing individuals settling randomly in one of several
suitable sites may later attract conspecifics, resulting
in spatial aggregations that cannot be explained by hab-
itat alone. Site fidelity in a temporally variable envi-
ronment (Wiens 1985, Wiens et al. 1986), combined
with conspecific attraction, could also generate spatial
patterns in animal abundance that are poorly explained
by habitat. However, as there was little disturbance
(e.g., logging) in our study area during or several years
prior to the study, this is an unlikely explanation for
the spatial patterns we observed. Numerous other spa-
tially contagious processes could explain autocorrelat-
ed species data, with predation and natal dispersal be-
ing among the most obvious. However, limited data
from nest monitoring suggests that adult mortality dur-
ing the breeding season is rare in our study area (J. W.
Lichstein, T. R. Simons, and K. E. Franzreb, unpub-
lished data), and natal dispersal in birds in general
(Greenwood and Harvey 1982), and in Hooded (Evans
Ogden and Stutchbury 1994) and Black-throated Blue
Warblers (Holmes et al. 1992) in particular, is thought
to be too spatially extensive to explain the fine-scale
autocorrelation we observed. While our data cannot
resolve which, if any, of the above processes generated
autocorrelation in the species data, conspecific attrac-
tion, for whatever reason, seems the most likely can-
didate. Our results suggest 500—1000 m (i.e., the scale
of autocorrelation in the OLS regression residuals)
would be an appropriate scale for future studies of pos-
sible social interactions or other contagious processes
in these species.

The models presented here are in accordance with
our understanding of the species’ breeding ecology. In
our study area, the Chestnut-sided Warbler is found
primarily at high elevations in regenerating stands or
other recently disturbed sites. The strong correlation
with the presence of Rubus along roadsides is likely
due to the species’ frequent use of this vegetation as
a nesting substrate (J. W. Lichstein, T. R. Simons, and
K. E. Franzreb, unpublished data). There was also a
strong correlation with the proportion of regenerating
forest in the landscape, probably due to the rarity of
this habitat type in our study area (Andrén 1994, An-
drén et al. 1997). At the local scale, Hooded Warbler
abundance was correlated with disturbed sites and sites
with heavy shrub cover. In our study area, Hooded
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Warblers nest in thick woody undergrowth in a variety
of habitats, including roadsides, tree-fall gapsin mature
forest, and Rhododendron thickets (Weeks 2001). At
the landscape scale, Hooded Warbler abundance was
positively correlated with older forest and negatively
correlated with the amount of core area. While this
suggests a preference for heterogeneous landscapes, the
correlations were weak after controlling for autocor-
relation. Thus, results from the CAR model imply that
the Hooded Warbler responds primarily to local rather
than landscape-scal e habitat features in our study area.
Finally, the Black-throated Blue Warbler had a strong
nonlinear relationship with elevation. This species is
absent at the lowest elevations in our study area. Its
abundance increases up to ~1000 m and levels off at
higher altitudes. After correcting for autocorrelation,
the relative effect of other variables (e.g., canopy
height and landscape composition) increased. The im-
portance of landscape scale variables was expected, as
the Black-throated Blue Warbler is considered area sen-
sitive, preferring large forest patches in fragmented
landscapes (Robbins et al. 1989a). The fact that this
species responded to landscape composition in our
study area (a large forest within a mostly forested re-
gion) emphasizes the sensitivity of some forest-interior
Neotropical migrants to landscape-scale effects (Faa-
borg et al. 1995, Freemark et al. 1995).

CONCLUSIONS

A prominent feature of the OLS modelsin this study
is the large amount of unexplained variation (Fig. 3).
This variation likely consists of four components: (1)
broadscale spatial structure (including that due to un-
measured habitat variables or missing interaction
terms), which could be explained by a more complex
trend surface model; (2) fine-scale spatial structure, as
seen in the autocorrelated OLS residuals (Fig. 2); (3)
stochasticity in bird habitat selection (Hailaet al. 1993,
1996); and (4) measurement error in the response and
explanatory variables.

Our results are consistent with previous studies that
found both local and landscape-scale effects on song-
bird habitat use in large managed forests (e.g., Mc-
Garigal and McComb 1995, Jokiméki and Huhta 1996,
Hagan et al. 1997) and in other settings (e.g., Pearson
1993, Bolger et al. 1997, Saab 1999). After controlling
for spatial autocorrelation, the abundance of Chestnut-
sided and Black-throated Blue Warblers remained
strongly correlated with landscape composition, while
the abundance of the Hooded Warbler was only weakly
correlated with the landscape.

Habitat variables that were highly spatially struc-
tured (e.g., elevation and landscape variables) showed
weaker effects in models that accounted for broadscale
trend and/or fine-scale autocorrelation. The decision to
include trend surface terms in a species—environment
model is not clear-cut, nor is determining the com-
plexity of the trend surface. In contrast, spatially au-
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tocorrelated errors should always be accounted for in
a regression model (Haining 1990:161-166), via an
autoregressive framework or some other correlated er-
ror structure (see Upton and Fingleton 1985:372, Hain-
ing 1990:90, Brownie and Gumpertz 1997).

In OLS regression, the assumption of spatial inde-
pendence can be checked by plotting a correlogram of
the residuals. We also recommend examining corre-
lograms of environmental variables as a useful step in
exploratory data analysis. In this study, the overlap in
Gl S-derived landscape circles at adjacent sampl e points
contributed to autocorrelation in landscape variables,
however, these variables would have been autocorre-
lated even if the circles were nonoverlapping, due to
the broad range of autocorrelation in landscape com-
position (Fig. 4B). Thus, geographic separation of sam-
pled landscapes does not guarantee statistical indepen-
dence.

Ensuring that samples are spatially independent is
logistically difficult and is a misguided goal for many
field studies, as much can be learned from the spatial
pattern in the data (Sokal and Oden 1978b, Legendre
and Fortin 1989, Rossi et al. 1992). Nevertheless, it is
often the case that a researcher wishes to know the
strength of species—environment relationships after
controlling for autocorrelation. This paper builds on
the approach of Legendre (1993) by controlling for
fine-scale autocorrelation in single-species regression
analysis using auto-Gaussian models. Autoregressive
models have seldom been used by ecologists, due, in
part, to the difficulty of fitting or evaluating the models
without appropriate software. Recently developed soft-
ware makes the auto-Gaussian model accessible to a
broad group of practitioners. Future software packages
that calculate standard errors for the autol ogistic model
would provide another important tool for ecologists.

Autoregressive models are intuitively appealing in
situations, such as the present study, in which individ-
uals are thought to interact with neighboring conspe-
cifics. Numerous other spatial models could be for-
mulated to test alternative hypotheses. For example,
models with spatially lagged explanatory variables
(Haining 1990:339, 354—-357) could be specified if au-
tocorrelation was suspected to result from spillover ef-
fects of neighboring habitat. It is important to appre-
ciate, however, that conceptually distinct models with
fundamentally different interpretations (e.g., autore-
gressive errors vs. lagged explanatory variables) may
be impossible to distinguish on statistical grounds
alone (Haining 1990:341). As software for fitting com-
plex spatial models becomes more readily available,
we caution that the analytical process must be guided
by a detailed knowledge of the species’ natural history.
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APPENDI X
MORAN’s | TESTS FOR AUTOCORRELATION IN RAW DATA AND REGRESSION RESIDUALS

Moran’s | for raw datais

rav (n/S)) Z 2]: VVIJ(YI - anean)(Yl - Ymean)
= 2 (Y Vo)

where n is the number of locations, S is the sum of the
weights (w;) that define the proximity (or interaction strength)
between locations i and j, and Y; is the value of the variable
of interest at location i (Sokal and Oden 1978a, Upton and
Fingleton 1985:170, Legendre and Legendre 1998:715). To
produce a correlogram, | is calculated for a number of lag
distance intervals, with w; typically defined as one for site
pairs separated by adistance contained in the lag interval and
zero otherwise; in this case S, is twice the number of site
pairs in the lag interval, because the weights include both w;
and w;;.
Moran's | for OLS residualsis
les = €Wele'e

where e is the vector of observed residuals and W isan n X
n matrix containing the w; (Upton and Fingleton 1985:337,
Haining 1990:146). |, yields the same value for residuals as
|.aw» €xCept for the multiplier n/S, (Upton and Fingleton 1985:

337).
|, @tains a maximum of (Haining 1990:234)

2

| = (n/S,){E

Z VVI](Y] - Ymeen)

- 2 (YI - Ymmn)z} .

|, attains the same maximum, without the multiplier n/S,.
After dividing by its maximum, | varies between +1 and —1
and can be interpreted as a spatial autocorrelation index
(Haining 1990:235). Note that the multiplier n/S, cancels out
if 1., is divided by its maximum, so standardized values of
l,av @nd |, are comparable.

Tests for significant departures of |, and | from their
null expectations may be accomplished by converting to stan-
dard normal deviates (see Upton and Fingleton 1985:171—
173 for |4, Upton and Fingleton 1985:338 for |,). Alter-
natively, the significance of |, and |, may be assessed by
permutation. We adopted the latter approach, which is ap-
propriate for small samples (Cliff and Ord 1981:205) and does
not assume a normal sampling distribution of | (Upton and
Fingleton 1985:171, 339). Tests were based on a distribution
of 1000 values, which included 999 random permutations and
the reference value (the observed value for which the test is
desired; Legendre and Legendre 1998:22-25).

A permutation test for I, is (Upton and Fingleton 1985:
174): (A) Randomly reassign the observed values Y to the n
samplelocations. (B) Calculatel,,, from the randomized data.
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(C) Repeat steps A and B 999 times; add to these thereference
value to generate a null distribution for I,,,.

Unlike raw data, OL S residuals cannot simply be randomly
permuted in space to test for autocorrelation, because the
residuals, by definition, are correlated (e.g., they sumto zero),
even if the true, unknown errors are independent (Cliff and
Ord 1981:200, Upton and Fingleton 1985:331). Therefore,
the appropriate null hypothesisfor OL Sresidualsisnot spatial
randomness, but the spatial pattern expected in the residuals
from the model of interest if it truly had independent errors.
A permutation test for | is (Upton and Fingleton 1985:340):
(A) Generate n independent values & from a normal distri-
bution with mean zero and unit variance and assign them to
the n locations of the actual data. (B) Regress ¢ on X, where
X is the design matrix (intercept plus explanatory variables)
for the OLS model of interest. (C) Calculate |, using the
residuals from step B. Note that |, is scale independent, so
any variance in step A would yield the identical results (Cliff
and Ord 1981:206, Upton and Fingleton 1985:340). (D) Re-
peat steps (A)—(C) 999 times; add to these the reference value
to generate a null distribution for | .

SPATIAL AUTOREGRESSIVE MODELS

463

Testing for autocorrelation in residuals from spatial auto-
regressive (e.g., CAR) models is problematic, and we are
aware of no formal test (Cliff and Ord 1981:240; B. Fingleton,
personal communication). In theory, one could use a per-
mutation test similar to that described above for OLS resid-
uals by modifying step A to generate spatially autocorrel ated
e according to the assumed spatial model (see Kaluzny et al.
1998:144-145) and fitting the spatial model in step B. How-
ever, unlike OLS models in which the error structure is de-
fined, the error structure in autoregressive modelsisunknown
(i.e., the spatial parameter, p, must be estimated from the
data). Thus, it is not clear what spatial error structure should
be simulated in step A of the procedure. In place of aformal
test, we used the raw data procedure for | (see above) to test
for autocorrelation in CAR residuals (Upton and Fingleton
1985:347). This procedure should yield reasonable results for
large n, where the model imposes minimal restrictions on the
residuals (Upton and Fingleton 1985:337).

Programs to perform permutation tests for |, and | are
included in the supplementary material.

SUPPLEMENTARY MATERIAL
S-PLUS code and detailed instructions for performing all analyses in this paper are available at ESA’'s Electronic Data

Archive: Ecological Archives M072-007-S1.



