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UNCERTAINTY ANALYSIS IN ECOLOGICAL STUDIES: 

An Overview 
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3.1 INTRODUCTION 

Large-scale simulation models are essential tools for scientific research and 
environmental decision-making because they can be used to synthesize knowledge, 
predict consequences of potential scenarios, and develop optimal solutions (Clark et 
al. 2001, Berk et al. 2002, Katz 2002). Modeling is often the only means of 
addressing complex environmental problems that occur at large scales (Klepper 
1997, Petersen 2000). For example, investigations of global climate change 
(Wobbles et al. 1999), regional assessments of net primary productivity and carbon 
dynamics (Jenkins 1999, Peters et al., Chapter 7, Law et al., Chapter 9), and 
landscape analysis of fire spread (Hargrove et al. 2000) rely heavily on simulation 
modeling at various scales. However, uncertainty in simulation modeling is often 
overlooked even though it is a fundamental characteristic of modeling that can be 
caused by incomplete data, limitations of models, and lack of understanding of 
underlying processes (Beck 1987, Reckhow 1994, Clark et al. 2001, Berk et al. 
2002, Katz 2002, Stott and Kettleborough 2002, Urban et al., Chapter 13). If 
simulation results are to be useful, researchers must show the reliability of the model 
output by providing information about model adequacy and limitations, prediction 
accuracy, and the likelihood of scenarios (Clark et al. 2001, Katz 2002). 

Uncertainty affects every aspect of modeling (Reckhow 1994, Klepper 1997, 
Jansen 1998, Katz 2002, Stott and Kettleborough 2002, Urban et al., Chapter 13). 
Data may contain errors that result from problems with sampling, measurement, or 
estimation procedures (O'Neill and Gardner 1979, Regan et al. 2002). Incomplete 
data are a common problem, especially in spatial modeling at broad scales. Models 
are imperfect because they are simplifications of real systems and always have 
errors in their assumptions, formulation, and parameterization. Moreover, effects of 
these errors on model adequacy are often insufficiently evaluated (Beck 1987, 
Reckhow 1994). In fact, most large-scale models are not fully validated, partly 
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because validation data are not available (sometimes no data can be collected under 
the existing technological and logistical constraints) and partly because techniques 
for validating spatial models have not been perfected. Although the importance of 
uncertainty in modeling is well recognized, few studies of ecological modeling 
provide critical information about uncertainty, confidence levels or likelihood 
associated with simulation results (Reckhow 1994, Clark et al. 2001, Rypdal and 
Winiwarter 2001, Katz 2002). This lack of discussion and reporting is unfortunate 
because predictions that are not accompanied by information about uncertainty are 
of limited value in policy- or decision-making. Researchers must adopt a new 
modeling philosophy that requires that uncertainty in models and modeling be 
understood, quantified when possible, and reduced to an acceptable level when 
feasible. 

Scaling is the translation or extrapolation of information from one scale to 
another in time or space or both (Bloschl and Sivapalan 1995, Wu 1999, Wu and Li, 
Chapters 1 and 2). For example, scaling is needed to resolve most of the large-scale 
management problems because most of our knowledge and data is obtained by 
means of small-scale research. In the process of scaling, errors in data and models 
may be propagated into results. It is not adequate simply to ask how to scale: one 
must ask how to scale with known reliability and uncertainty even when ecological 
systems and models involved are often complex. Thus, uncertainty analysis is an 
essential part of scaling because it provides critical information about the adequacy 
of models or algorithms used in the scaling process and about the accuracy of 
scaling results (Katz 2002). 

In this overview, we will focus on the major concepts and techniques of 
uncertainty analysis associated with up-scaling methods (i.e., those that extrapolate 
information from fine scales to coarse scales; Wu and Li, Chapters 1 and 2). 
Specifically, we will identifl sources of uncertainty in the scaling process and 
illustrate approaches to and techniques of uncertainty analysis. Because translating 
or extrapolating is usually done with the help of models (Wu and Li, Chapter 2), 
scaling can be regarded as a special case of modeling (i.e., modeling with changing 
scales). Therefore, most discussion of uncertainty in modeling is directly applicable 
to uncertainty in scaling. Also, it should be noted that most of the techniques of 
uncertainty analysis discussed below are more suitable for ecological models with 
low to intermediate complexity than for highly complex models like the general 
circulation models employed in climate change research (Allen et al. 2000, Forest et 
al. 2002, Stott and Kettleborough 2002). 

3.2 UNCERTAINTY AND RELATED CONCEPTS 

The term uncertainty implies some kind of error, inexactness, unreliability, and 
imperfection in our knowledge and understanding of the systems under investigation 
(Funtowwicz and Ravetz 1990, Petersen 2000, Regan et al. 2002, Katz 2002). Some 
degree of uncertainty is unavoidable in modeling and scaling because there are 
always errors associated with the stochastic nature of ecological processes, system 
complexity caused by spatial heterogeneity and nonlinear relationships, unreliability 
and unavailability of data, and/or imperfections of models (Mitchell and Hulme 



1999, Katz 2002, Regan et al. 2002, Stott and Kettleborough 2002, Groffman et al., 
Chapter 10, Urban et al., Chapter 13). However, many of the uncertainties in 
simulation modeling should be quantified and reduced, and different sources of 
uncertainty be ranked with respect to their relative contributions to errors in model 
output. The term uncertainty is sometimes used to mean levels of risk involved in a 
scenario, action, or inaction defined by policy or management decisions, but such 
usage may require caution because risk implies probability and consequence that can 
be themselves uncertain (Pate-Come11 1996, Katz 2002). All of these uncertainties 
should be studied thoroughly and systematically (Reckhow 1994), but they may 
require different treatments. Some uncertainties can be quantified and reduced (e.g., 
input uncertainty; Katz 2002), some can be quantifiable but hard to reduce (e.g., 
natural variability of data; Nauta 2000, Regan et al. 2002), some may be 
unquantifiable (e.g., model uncertainty; Beck 1987, Klepper 1997, Regan et al. 
2002, Stott and Kettleborough 2002), and some may have only insignificant effects 
on model output in a particular modeling exercise (e.g., omission of minor processes 
or variables; Katz 2002). 

Uncertainty analysis is the process of assessing uncertainty in modeling or 
scaling to identify major uncertainty sources, quantify their degree and relative 
importance, examine their effects on model output under different scenarios, and 
determine prediction accuracy (Jansen 1998, Katz 2002). Uncertainty analysis is 
employed primarily to determine whether the estimated prediction uncertainty is 
acceptable for a particular model application and, if it is not, to highlight factors 
whose uncertainty is pivotal in policy considerations and to recommend ways of 
reducing prediction error (Jansen 1998, Katz 2002). Specifically, uncertainty 
analysis addresses questions like: What is the magnitude of error in large-scale 
estimates? How is error propagated in the scaling process? Which factors are most 
critical, most poorly understood, or least predictable? How can errors be reduced? 
What is the probability that an event or scenario will occur? Uncertainty analysis 
can increase the credibility of modeling even when much of uncertainty may not be 
reduced (Rykiel 1996, Rypdal and Winiwarter 2001). Thus, understanding, 
quantifymg, reporting, and ultimately reducing uncertainty in large-scale assessment 
is of great interest to policy makers. 

Sensitivity analysis and scenario analysis are closely related to uncertainty 
analysis (Saltelli et al. 2000, Melching and Bauwens 2001, Katz 2002). The 
similarity is that they all involve in running models under perturbations (e.g., 
changes in model structure, parameters, or input data) and may use similar 
techniques (e.g., Monte Carlo simulation). Sensitivity analysis quantifies the rate of 
change in model output when one or more input variables and parameters are varied 
by a fixed amount or proportion while the others are held constant (Klepper 1997, 
Katz 2002). A more formal approach to sensitivity analysis with various statistical 
sampling methods may also be used (Saltelli et al. 2000). Sometimes, the absolute 
rate of change is converted into a relative measure to make comparisons among 
different parameters more meaningful (i.e., absolute vs. relative sensitivity). 
Sensitivity analysis is often used as a model-testing tool to examine model behavior 
in terms of the most sensitive parameters. A scenario is a possible future boundary 
condition (represented by a set of key input values or sometimes by trajectories of 
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key input values) on the basis of which simulations are run (Clark et al. 2001). In 
other words, a scenario is the IF in the WHAT-IF questions of simulation modeling. 
In scenario analysis, all of the inputs are changed simultaneously. Scenarios are 
model input rather than predictions, but they may be defined by results of previous 
simulation studies. Scenario analysis usually focuses on policy-relevant possibilities 
of future conditions (e-g., best case vs. most likely case vs. worst case), and is an 
effective means of communicating a large amount of technical information obtained 
by simulations with large, complex models (Wobbles et al. 1999, Clark et al. 2001, 
Katz 2002). Both sensitivity and scenario analyses may best be regarded as 
necessary precursors to full-fledged, probability-based uncertainty analysis (Katz 
2002). 

3.3 SOURCES OF UNCERTAINTY 

Uncertainty in modeling may come from many different sources, which in turn may 
be classified into many different categories (O'Neill and Gardner 1979, Funtowwicz 
and Ravetz 1990, Jansen 1998, Petersen 2000, Katz 2002, Stott and Kettleborough 
2002, Urban et al., Chapter 13). However, most classifications of uncertainty 
sources consider similar sets of factors when viewed as a whole. In this overview, 
we discuss three main sources of uncertainty: models themselves, input data, and 
scaling algorithms (O'Neill and Gardner 1979, Jansen 1998, Katz 2002, Urban et al., 
Chapter 13). Note that uncertainty in scaling algorithms may be regarded as part of 
model uncertainty, but we separate them here because it presents a unique problem 
and is a focus of this book. 

3.3.1 Model 

Model uncertainty has two basic components, model structure and model parameters 
(Figure 3.1; Morgan and Henrion 1990, Klepper 1997, Katz 2002). Model structure 
uncertainty is caused by the modeling processes of simplification and formulation. 
Model simplification is essential to modeling and is the identification and selection 
of the processes, relationships, and variables that are the most important to the 
system of interest and the modeling objectives. Simplification is done by assuming 
that some processes may be ignored because they explain an insignificant amount of 
variability in model predictions. Model simplification may also reflect a failure to 
understand certain processes. Model formulation focuses on the mathematical 
translations of relationships and the designs of algorithms and computer codes. 
Because many of the assumptions and subjective judgments must be made during 
model construction but are not often reported, most hidden error is created in the 
process of model formulation. Therefore, model structure uncertainty is the failure 
to include relevant processes and the unreliability caused by deficiencies in 
confidence, quality, and scientific basis of the equations and algorithms that 
represent the selected processes and their interactions. 

Model parameter uncertainty is introduced by the modeling process of 
parameterization of models (Morgan and Henrion 1990, Klepper 1997, Katz 2002). 



Model parameterization is the estimation and calibration of parameters. Calibration 
produces a set of optimal parameter values by forcing selected model outputs to 
agree with testing data. Model parameter values are built into models and may be 
fixed or change in space and time. Model parameter uncertainty results from 
imperfect knowledge about the parameters, lack of data or understanding, and errors 
in the estimation and calibration processes. Given the large number of parameters 
involved in ecological models, the first step in uncertainty analysis is often to 
perform sensitivity analysis to identify the parameters that may have significant 
effects on model output. Uncertainty analysis requires that statistical distributions 
(or ranges, means, variances) of parameters be known. However, a common 
problem in uncertainty analysis is that the accuracy of measurements andlor 
estimates of parameters are unknown. Modelers often have no information about the 
variability of parameters and have to make assumptions about parameter 
distributions (Urban et al., Chapter 13). 
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Figure 3.1. Sources of uncertainty in scaling and modeling. 

A lesser known but perhaps more critical problem in model parameterization is 
the use of fiee (or fuzzy) parameters in model functions (Petersen 2000, Berk et al. 
2002). Free parameters are those whose values are arbitrarily assigned or tuned in 
model calibration to make the model output fit the testing data. Problems arise when 
a model contains many free parameters that have no physical meanings and thus are 
not subject to evaluations by observation or measurement. Although the use of fiee 
parameters is often unavoidable when models are complex, their overuse can 
introduce large uncertainty into model output, and their uncertainty can severely 
diminish the value of the calibrated model (Petersen 2000). Thus, if models require 
intensive calibration of key parameters before they can be applied to new sites, they 
are of limited use in large-scale spatial simulation or scaling because data needed for 
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such calibration may be unavailable and because model predictions may have high 
uncertainty due to the calibration. Reducing the number of free parameters in 
models should alleviate these problems and improve models (Petersen 2000) but 
poses a daunting challenge to model developers. 

3.3.2 Input Data 

Input data are those required to run models for specific applications. Input data are 
usually from measurements or observations and are composed of systems attributes 
and driving variables. Systems attributes define the simulation settings about 
characteristics of the modeled system and its environment (e.g., evapotranspiration 
rate, leaf area index, spatial distribution of vegetation). Systems attributes are often 
fixed as constants even though they may have a range of values and change over 
time. Uncertainty in systems attributes is a major focus and is relatively easy to 
handle in uncertainty analysis. Driving variables define the environmental 
conditions (e.g., climate variables) that change in space and time, but are not 
affected by the model. Driving variables are often not examined in uncertainty 
analysis, but treated as part of the simulation conditions. This is primarily due to 
technical difficulties involved. However, if variability of a driving variable needs to 
be considered, it can be done via scenario analysis. 

Data uncertainty can be caused by unknown data quality, high natural variability 
of the system, or lack of information (Figure 3.1; O'Neill and Gardner 1979, Jansen 
1998, Regan et al. 2002). Data quality is affected by instrument or measurement 
errors, sampling errors, and database management errors. Data quality is always a 
concern in modeling and it becomes a major problem in uncertainty analysis when 
errors in sampling or measurement for observed data and errors in interpolation or 
aggregation for estimated data are not reported (Berk et al. 2002, Regan et al. 2002). 
The data employed in modeling exercises are usually collected for other purposes, 
and this offen causes difficulties in model construction and testing because they may 
not adequately represent key characteristics of the modeled system. In such cases, 
critical reviews of data quality should be required before model simulations. A 
related problem is inappropriate use of data outside their intended purpose or 
domain. For example, whether model testing data are obtained independently and at 
the appropriate scale is a question of data quality. 

Variability in ecological systems may result from spatial heterogeneity of 
environmental conditions or from randomness in interactions of different processes. 
Natural variability of data is a critical factor in uncertainty analysis that must be 
considered because modeling only with average values can produce severe bias in 
predictions, especially for nonlinear models (O'Neill 1979, Scherm and van 
Bruggen 1994). Spatial variability in systems attributes and driving variables need to 
be effectively incorporated into simulation modeling. We will discuss this point in 
the next section. Natural variability in data is the most studied in uncertainty 
analysis. 

Lack of information is a pervasive problem in ecological research, especially in 
large-scale modeling where the emphasis is on synthesis. Unavailability of large- 
scale and long-term data greatly hinders uncertainty analysis and model evaluation 



because large-scale processes often cannot be predicted directly from fine-scale data 
(Clark et al. 2001). Thus, it is imperative to obtain experimental and observational 
data at landscape or regional scales. Other data availability concerns include 
inadequacy of resolution and duration of observational studies, and gaps in temporal 
and spatial coverage (Clark et al. 2001). Techniques for dealing with missing data 
must be developed for scaling; at the present state of knowledge, data requirements 
often cannot be met and uncertainty analysis must be conducted with key data 
missing (Berk et al. 2002). Missing data is the uncertainty source that cannot be 
quantified (Funtowwicz and Ravetz 1990). 

3.3.3 Scaling Algorithm 

Scaling algorithms are a new source of uncertainty. One perspective of scaling is 
that it is an uncertainty problem of error propagation. This is partly because the 
factors that cause problems in scaling (e.g., spatial heterogeneity, nonlinearity) are 
also those that contribute greatly to uncertainty (Schulze 2000). Scaling in space 
brings forward two causes of uncertainty: mismatch of scales in model or data and 
spatial heterogeneity of system variables and parameters. Mismatch of scales is an 
issue of model adequacy and occurs when models are applied at scales different 
from those for which they have been developed or when the support of a model (or 
data) changes with changing scales. Support refers to the nature of the modeled 
entities, such as size, shape, orientation, and heterogeneity (Heuvelink 1998a, Wu 
and Li, Chapter I), and changes of the support may cause changes in parameter 
values and even in functional forms of the model (Heuvelink 1998a, Katz 2002). 
Models are often developed for application at a specific scale or domain of scales 
(Reynolds et al. 1993, Heuvelink 1998a, Katz 2002). Thus, when a model is applied 
outside its designed domain of scales, the uncertainty of model structure may 
increase as a consequence of loss of model adequacy (Rykiel 1996). Spatial 
heterogeneity and its representation in scaling algorithms is a major source of 
scaling uncertainty. Ecological processes and phenomena exhibit both stochastic and 
patterned variations over a wide range of spatial scales. Such spatial heterogeneity 
increases system complexity and raises questions about the adequacy or 
representativeness of sampling methods and data. The problem of accounting for 
spatial heterogeneity explicitly in scaling (or modeling in general) is a critical 
challenge and remains to be resolved (Hunsaker et al. 2001, Lowell and Jaton 1999, 
Groffman et al., Chapter 10, Urban et al., Chapter 13). The scale-specific nature of 
models and data and the heterogeneous characteristics of the system must be 
considered in scaling. 

3.4 METHODS OF UNCERTAINTY ANALYSIS 

Uncertainty analysis focuses on effects of uncertainty from different sources on 
model output under multiple scenarios. Uncertainty analysis is not employed 
routinely in ecological studies mainly because the existing techniques are neither 
widely known nor universally applicable and effective. This section reviews the 
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existing techniques of uncertainty analysis and points out their key characteristics 
and deficiencies. We discuss: (1) model evaluation to examine model structure 
uncertainty, (2) examination of error propagation to quantify uncertainties in model 
parameters and input data, and (3) prediction accuracy and error partitioning to 
present scaling (or model output) uncertainty. 

3.4.1 Model Evaluation: Model Structure Uncertainty 

Model structure uncertainty can affect model output significantly, but it is often not 
addressed in traditional uncertainty analysis (Morgan and Henrion 1990, Klepper 
1997, Katz 2002, Regan et al. 2002). Models that are to be employed to solve real- 
world problems should first be subjected to model testing. Uncertainty analysis 
remains important even if model uncertainties have been dealt with by means of 
sensitivity analysis during model testing. It is critical to establish prediction 
confidence, especially when models must be applied to new sites or systems. A 
complete analysis of uncertainty that deals with all major sources of uncertainty 
should be pursued whenever possible (Reckhow 1994). Thus, it is a good practice to 
treat evaluation of model adequacy as part of uncertainty analysis (Heuvelink 
1998a). 

We use the term model evaluation in preference to the controversial term model 
validation (Oreskes et al. 1994, Rykiel 1996). Because models are always imperfect, 
it is the adequacy, not the validity, of models that is to be determined. Beldring 
(2002) defined two important aspects of model evaluation: scientific evaluation and 
performance evaluation. Scientific evaluation examines the extent to which the 
model's behavior is consistent with prevailing scientific theory and determines 
whether the model can describe the physical processes of interest. Performance 
evaluation determines the degree to which model-predicted values agree with a 
corresponding set of reliable and independently obtained observations. Model 
evaluation is usually done in the process of model construction, but a more detailed, 
systematic analysis should also be performed in model applications to ensure a 
model's practical value. 

In practice, model evaluation examines the degree of adequacy in a model's 
assumptions, simplifications, formulations, and predictions (Rykiel 1996). Model 
adequacy is defined operationally by the following criteria of model behavior and 
prediction accuracy (Cale et al. 1983, Oreskes et al. 1994, Rykiel 1996, Beldring 
2002): (1) Models should be consistent with prevailing scientific theory and 
concepts; (2) Models should have no detectable flaws in internal structure and logic 
chain; (3) Models should contain all necessary components, critical variables and 
processes to achieve the objectives; (4) Models should yield predictions that agree 
with observations; (5) Models should incorporate well-tested submodels with sound 
(acceptable) algorithms or formulations; (6) Models should be used within the 
domain of designed applicability and scales; (7) Models should be tested for 
multiple state variables, in multiple years, and at multiple locations (systems); (8) 
Models should produce results with acceptable confidence levels. This last criterion 
is added because of the recognition of the important roles that uncertainty analysis 
plays in establishing credibility of models. However, specifics about the 



implementation of this criterion still need to be developed because what constitutes 
an acceptable confidence level will depend on the objectives of a particular 
application. Although any deviation from these criteria can cause serious problems, 
a determination of model adequacy is in essence a judgment that takes into account 
the objectives of the study and the characteristics of the system of interest (Rykiel 
1996). 

Some of the model structural errors identified in model evaluation can be 
eliminated, as when modifications of the model can successfully remove the 
inconsistencies with theory and the logic flaws in model formulation and algorithms. 
Some can be quantified, as when outputs from alternative models can be contrasted 
to determine differences in their agreements to observations (Jansen 1998). Some 
can be reduced, as when mismatch of scales in models and data can be avoided or 
corrected and when missing critical variables and processes can be included. 
Unfortunately, some model structural uncertainty is not quantifiable and cannot be 
reduced or eliminated because it reflects imperfections that are inherent in all 
models (Beck 1987, Klepper 1997, Katz 2002, Stott and Kettleborough 2002). 
However, there are ways to cope with this unquantifiable uncertainty. Some 
techniques, like the Bayesian Forecasting System (Krzysztofowicz 1999a), combine 
all of the untreatable uncertainty and provide some measure of it as a whole. Also, 
good model testing can go a long way in reducing uncertainty. The key is to perform 
model evaluation thoroughly and systematically. 

Model comparison can provide a benchmark for and insight into model 
uncertainty, especially when no data are available for model testing (Klepper 1997, 
Jain et al. 1997, Berk et al. 2002). One model may be compared with another to 
identify possible problems. Large differences in key model behavior indicate a need 
for detailed analysis and evaluation of the model under study. Similar to the 
hierarchical modeling approach to scaling (Reynolds et al. 1993), a fine-scale 
mechanistic model can be used as a surrogate for reality in testing models of lesser 
complexity (Jansen 1998, Urban et al., Chapter 13). However, model uncertainty 
cannot be quantified through such inter-model comparison alone because the true 
system values and formulations are still unknown. Moreover, similarity of model 
predictions is not a sufficient indicator of the new model's predictive quality (Jansen 
1998). Thus, model comparison is useful but limited in its capability to determine 
model uncertainty. 

3.4.2 Error Propagation: Uncertainties in Model Parameters and Input Data 

Errors propagate from model parameters and input data to model outputs in the 
process of modeling or scaling. In essence, to quantifL errors and their propagation 
is to determine how variances or standard deviations of random variables get 
combined and manifested in the model predictions or large-scale estimates of some 
state variables. The variability in the state variables (i.e., model output) is then used 
as a measure of the output uncertainty. Many techniques can be used to analyze 
uncertainties in model parameters and input data. These include applications of 
probability theory, Taylor series expansion, Monte Carlo simulation, generalized 
likelihood uncertainty estimation, Bayesian statistics, and sequential partitioning 
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(Gardner and O'Neil 1983, Gardner et al. 1990, Rastetter et al. 1992, Heuvelink 
1998b, Jansen 1998, Wiwatenadate and Claycamp 2000, Katz 2002). In this section, 
we will describe these major techniques of uncertainty analysis. Other techniques 
(e.g., the fuzzy set method, Franks and Beven 1997, Scherrn 2000; the 
Rosenblueth's method of approximation, Heuvelink 1998b; the fingerprinting 
techniques of climate variability, Allen et al. 2000, Forest et al. 2002, Stott and 
Kettleborough 2002) also exist. We refer the reader to the cited literature for 
methods not covered here. 

To demonstrate these techniques, we suppose a simple system with three random 
variables, X, Y, and 2, in which Z is a monotonous function of X and Y: 

2 2 and oy to denote the means and variances of Z, WeusePz, o z ,  Px, Ox, Py 
X and Y. Note that X and Y can be either predictive variables or model parameters, 
and that @ is a model to estimate output Z from inputs X and Y. 

3.4.2.1 Probability theory 

Probability theory method employs probability theory of moments of linear 
combinations of random variables to define means and variances of random 
functions (Wiwatenadate and Claycamp 2000). The essence of this approach is to 
calculate analytically the mean and variance of the output as a function of random 
variables of input, using the basic statistics of the random variables as follows. For 
the case of Z as an addition or subtraction function ofXand Y ,  i.e., 

the mean and variance of Z can be calculated by the equations 

For the case of multiplication, i.e., 

similar equations can be used to calculate the mean and variance of Z, i.e., 



Here, X and Y are assumed to be independent. If X and Y are correlated, the 
variance equation can get complicated. Similar equations can also be derived for the 
case of division (or ratio), but the variance equation may not always exist. 

The probability theory method is powerful. Its main advantage is that it is 
analytical and provides exact solutions, i.e., it has neither estimation error nor 
approximation error. For example, it works when one knows the functional form and 
the basic statistics of the random variables (e.g., means, variances). For example, 
when dealing with relationships from literature, one does not have to have the raw 
data for X and Y. Thus, use of the probability theory method to study error 
propagation is straightforward for simple linear models. The disadvantage of the 
method is that it does not apply to nonlinear functions. However, it may be used to 
deal with uncertainties in complex models when combined with other techniques. 

3.4.2.2 Taylor series expansion 

The Taylor series method uses the Taylor series expansion at the point of (px ,py ) 
to estimate the mean and variance of a simple function of random variables 
(Rastetter et al. 1992, Heuvelink 1998b). The idea of the Taylor series method is to 
first approximate the model by a linear function and then solve analytically for the 
combined error from the error propagation. In most situations, the first or the second 
order Taylor approximation is sufficient. Higher order Taylor methods are seldom 
used because the gain in reduced approximation errors may be greatly outweighed 
by the increased complexity. 

Where the second order Taylor approximation is employed, the method can be 
presented as follows. For the same system defined by Equation 3.1, the mean of Z is 
defined by applying the original function with the means of the component random 
variables, and the variance of Z is estimated by the Taylor series expansion, i-e., 

where and are partial derivatives of Z with respect to X and Y, and 0, 

is the covariance. If X and Y are independent (i.e., oXY =O), then a simplified 
equation can be obtained by eliminating the covariance term in Equation 3.9. 

The Taylor series method is a useful alternative to the probability theory method, 
which cannot be employed when the random function is complex. One important 
characteristic of the method is that the function can be of any kind; but obviously, 
different types of equations will have different approximation errors. Thus, the main 
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advantages of the method are that it is analytical, is flexible in terms of functional 
forms, and can be applied to models of moderate complexity. The main 
disadvantages are that it requires that models be presented as differentiable functions 
and that the approximation errors are usually unknown. The Taylor series method 
has been used in ecological modeling for carbon dynamics in peatland (Bubier et al. 
1999) and for water quality in a Florida watershed (Zhang and Haan 1996). 

3.4.2.3 Monte Carlo simulation 

The Monte Carlo method computes output statistics (means, variances) by repeating 
simulations with random sampling of input variables and model parameters 
(Gardner and O'Neil 1983, Gardner et al. 1990, Rastetter et al. 1992, Heuvelink 
1998b, Jansen 1998, Katz 2002). The basic procedures are to define input 
distributions, sample randomly from the input distributions, run simulations with 
repeated samplings, and determine probability distribution for the output. 

The method can be presented as follows. For a model of any complexity (e.g., 
Equation 3.1), a realization of Z is obtained by 

with X and Y being defined by 

where Xi and Yi are values obtained from samples of normal distributions, and all 
other terms are the same as defined previously. With repeated sampling of size N, 
the statistics of the output can be calculated by 

Notice that both X and Y are assumed to be independent and have normal 
distributions. Joint distributions are required if the independence assumption does 
not hold. 

The Monte Carlo method is the most commonly used technique for uncertainty 
analysis because it has no strict requirement about the exact formulation of the 
function and is therefore easily implemented and generally applicable. The function 
can be either a simple empirical model or a complicated dynamic model; the steps of 



Monte Carlo error analysis effectively remain the same because the method treats 
the function as a black box (i.e., only input and output are considered) and studies 
the resulting outputs by systematically sampling from the input space. The main 
disadvantages of the Monte Carlo method are that the results are not in an analytical 
form and that joint distributions for correlated variables are often unknown or 
difficult to derive. The Monte Carlo method is computationally intensive, but one 
can employ sampling schemes to reduce the computation burden. A common 
sampling scheme is the Latin hypercube sampling in which the range of a variable is 
stratified and each stratum is sampled once with an equal probability (McKay et al. 
1979). The Monte Carlo method has been used to study uncertainty related to forest 
dynamics (Gardner et al. 1990), water quality (Gardner and OWeil 1983, Zhang and 
Haan 1996), soil acidification at the European scale (Kros et al. 1999), and nitrate 
leaching at a regional scale (Hansen et al. 1999). 

3.4.2.4 Generalized likelihood method 

Generalized likelihood uncertainty estimation (GLUE) is a statistical technique for 
simultaneously calibrating the parameter and estimating the uncertainty of predictive 
models (Beven and Binley 1992, Zak and Beven 1999). It operates on the 
assumption that many parameter sets may be equally acceptable in producing 
reasonable simulations of the observed data. The method can be presented as 
follows (Zak and Beven 1999, Brazier et al. 2000). First, a likelihood measure is 
selected to determine the goodness of fit in comparing observations with model 
predictions. This measure is chosen on basis of its appropriateness in relation to the 
model, the observed data, and the objectives of the study. For example, if the 
absolute error is chosen as the likelihood measure, the likelihood function for a 
single observation is given by 

where ZObs is the observed value of the predicted variable Z, and N is the shaping 
factor of the likelihood function (Zak and Beven 1999). Second, Monte Carlo 
simulations are nm with all parameter sets, using the following equations, 

where X and Y are uniformly distributed parameter with ranges of (a,b) and (c,d), 
respectively. Third, a predetermined threshold, L , is used with the likelihood 
measure to identify and exclude those parameter sets that perform poorly (i.e., 
having a likelihood of zero or below the threshold). This process defines an 
acceptable parameter space, %, which is composed of values of all physically 
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reasonable parameter sets from the potential parameter space in Monte Carlo 
simulations, i.e., 

given that 

Finally, the simulation results with acceptable parameter sets are then to define 
likelihood weighted distributions of predicted results from which uncertainty bounds 
are derived. 

GLUE is a hybrid technique for parameter calibration and output uncertainty 
assessment that combines Monte Carlo simulations and likelihood analysis. The 
advantage of GLUE is that it provides a probabilistic distribution of model 
prediction so that output uncertainty is defined. The probabilistic distribution is 
enhanced by the selection of the acceptable parameter space because only physically 
reasonable parameter sets are used. The disadvantage of GLUE is that it does not 
explicitly consider the effects of individual parameters on model predictions because 
it considers only sets of parameter values. However, sensitivity analysis may be 
performed to determine the relative importance of model parameters and the 
processes they represent. The same sensitivity analysis can also be used to reduce 
the number of parameters used in GLUE by selecting only those that show 
significant effects on model predictions (Zak and Beven 1999). Another 
disadvantage is that the applicability of GLUE is limited by the need for 
observations against which model predictions can be compared in the likelihood 
analysis. Such observations are often unavailable in scaling projects. GLUE has 
been used primarily in hydrological modeling (Zak and Beven 1999, Brazier et al. 
2000). 

3.4.2.5 Bayesian statistics 

Bayesian statistical methods quantify uncertainty by calculating probabilistic 
predictions. The procedure has three stages: (1) determination of the prior 
probability distribution for model parameters, (2) construction of a likelihood 
function for the statistical model, and (3) derivation of the posterior probability 
distribution for the parameters by using the Bayes rule to adjust the prior distribution 
based on the observed data (Katz 2002). The Bayes rule states that the posterior 
probability distribution is proportional to the prior probability distribution multiplied 
by the likelihood, i.e., 



where P(Z I zobS) is the posterior probability distribution for the predicted variable 
Z given the observations ZObs, P(Z) is the prior probability distribution of 2, 
p(ZobS I 2) is the conditional distribution of the observations, and P(ZobJ is the 
marginal distribution of the observations. The probabilistic predictions generated by 
Bayesian statistical methods are used to define modeling uncertainty. 

One example of such methods is the Bayesian Forecasting System (BFS) 
developed for deterministic hydrologic models by Krzysztofowicz (1 999% 1999b). 
The BFS first identifies the random inputs whose uncertainty significantly affects 
the model outputs and varies from forecast to forecast. Then, the BFS decomposes 
the total uncertainty into input uncertainty and model uncertainty. Krzysztofowicz 
(1999a, 1999b) proposed that model uncertainty should be the combined uncertainty 
from all other sources, including imperfections of the model, incorrect estimates of 
parameters, and incorrect estimates of deterministic inputs. The BFS has three 
components (steps): (1) the input uncertainty processor, which runs simulations with 
parameter values of the random inputs and defines the uncertainty in model output 
caused by the input uncertainty; (2) the model uncertainty processor, which yields 
the posterior density based on the prior density and the likelihood function; and (3) 
the integrator, which integrates input uncertainty and model uncertainty into a 
predictive distribution. The characteristics of Bayesian statistical methods in general 
and BFS in particular are that they are a process of learning from data, require prior 
probability distributions and observations, and provide probabilistic predictions in 
the form of posterior distributions. 

3.4.2.6 Sequential partitioning 

The sequential partitioning method is not a new technique, but rather a hybrid 
approach based on a new strategy (Rastetter et al. 1992). It may apply a combination 
of probability theory, Taylor series, and Monte Carlo methods in clearly defined 
steps or modules in the process of modeling or scaling up. The sequential 
partitioning method should be useful to deal with uncertainty in complex models 
when other methods are difficult to implement. The procedures employed vary from 
situation to situation, but the general approach is as follows. Complex models are 
first divided into independent compartments or modules, and appropriate techniques 
are used to identify the most critical variables in each module. Various methods are 
then employed to examine uncertainty associated with the critical variables from 
different compartments. For example, to study uncertainty in net ecosystem 
productivity, one may first use the Monte Carlo method to determine uncertainties 
related to the processes of photosynthesis and respiration separately, and then apply 
the probability theory method to combine the findings of these analyses. As all of 
the previously discussed methods of uncertainty analysis have limitations and as 
ecological models are getting too complex, the sequential partitioning method may 
be a promising alternative, given that successful division of complex models into 
independent compartments can be achieved. This approach requires the full access 
to the source codes of the models, a requirement that often cannot be met (Urban et 
al., Chapter 13). 
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3.4.3 Presentation of Prediction Uncertainty 

Uncertainty from different sources is manifested in model output, and effective 
communication of the manifestations of uncertainty in modeling is a critical 
component of uncertainty analysis. In this section we use some examples to show 
how results of uncertainty analysis can be summarized and reported as output 
uncertainty, prediction accuracy, and error contributions of critical factors. 

Output uncertainty is usually presented quantitatively as the probability 
distribution or statistical characteristics of model predictions. In the BFS and GLUE 
approaches, the uncertainty of each model prediction is defined by the probability 
distribution of model output. Thus, no additional analysis is needed. In other 
approaches (e-g., Taylor series, Monte Carlo simulation), the variance of an output 
variable is a common measure of error (Heuvelink 1998b, Rypdal and Winiwarter 
2001). Often, the confidence levels for predicted values of system variables are 
presented as indicators of degree of uncertainty, and coefficient of variation (CV) is 
used to compare uncertainties associated with different variables or different 
applications. There are no simple criteria for judging the acceptability of estimated 
prediction uncertainty in model applications. However, a clear indicator of 
unacceptable uncertainty is that the simulation results cannot be used to determine 
the basic s ta ls  of the system being modeled. For example, high uncertainty may 
prevent researchers from unequivocally answering the following questions: Is the 
system a carbon sink or source? Does a system perturbation generate a positive 
effect or negative effect or no effect at all on the processes of interest? Failure to 
answer such questions will limit effective applications of simulation modeling to 
resource management. 

Many measures of prediction accuracy can be used in uncertainty analysis 
(Kvalseth 1985, Armstrong and Collopy 1992, Mayer and Butler 1993, Beldring 
2002). For example, the Nash-Sutcliffe modeling efficiency index, R ~ ,  is often used 
to assess the goodness of fit between model predictions and observations. The index 
is defined as (Nash and Sutcliffe 1970): 

where Zi is the observed value of Z and ii is the simulated value of Z. The values 

of R~ range from minus infinity to 1.0, with higher values indicating better 
agreement. Other error measures include root mean square error (RMSE) and mean 
absolute percentage error (MAPE). In addition, the goodness of fit may also be 
revealed by graphic displays of results, such as the plot of observed (2) against 
predicted ( 2 )  values or the plot of residual ( Zi - i i )  against predicted values. The 

selection of an error measure depends on the situation. None of the error measures is 
best in all circumstances (Armstrong and Collopy 1992). 

Determining how much error each of the critical factors contributes to the total 
uncertainty is important because this information may indicate how uncertainty can 
best be reduced. The questions to resolve are: What is the ranking of the relative 



contributions of factors to the total uncertainty of model output? Which factor is the 
most critical uncertainty source? The usual approach is to use the variance of the 
output distribution as a measure of prediction uncertainty because the variance can 
often be decomposed into meaningful parts. When the output variance can be 
partitioned, the analysis of uncertainty contributions becomes essentially a form of 
analysis of variance (Heuvelink 1998b). Although partitioning of variances is not 
always possible, it can be achieved by many techniques of uncertainty analysis. 
Notice that, for models with multiple outputs, rankings of input parameters as 
sources of uncertainty are not unique, but output specific (Klepper 1997). If a single 
set of ranks is of interest, one can use the ranks of output variables as weights to 
derive a composite ranking of input parameters for the model. Below, we discuss 
methods of partitioning variance and determining error contributions in association 
with sensitivity analysis, probability theory, Taylor series, and Monte Carlo 
simulation procedures. 

Klepper (1997) described a simple technique for determining the relative 
importance of output variables to input parameters in sensitivity analysis. The basic 
procedure is to run Monte Carlo simulations with parameter values sampled from 
the parameter space, obtain a linear regression model of the output variable on the 
corresponding parameters, and calculate relative sensitivity as an aid to 
interpretation of the results. For the simple system defined in Equation 3.1, the 
regression model is in the form 

where a, b, and c are the regression coefficients. The relative sensitivity is given by 
the standardized regression coefficient, i.e., 

where Sx and Sy are the relative sensitivity indices of variables X and Y,  
respectively. Equations 3.22, 3.23, and 3.24 can easily be extended to a general 
system with more variables and parameters. This approach is effective if the 
coefficient of determination of the regression model is high; otherwise, additional 
analyses are needed. 

For the analytical methods of uncertainty analysis (i.e., probability theory, 
Taylor series), variance partitioning is straightforward because the prediction error is 
already decomposed and treated as a function of the variances of the independent 
variables. The relative contribution of a variable to the total uncertainty is defined by 
the fraction of the terms associated with its variance (e.g., Equations 3.4, 3.7, and 
3.9). For example, the relative contribution by variable X as calculated by the Taylor 
series method (see Equations 3.8 and 3.9) can be expressed as 
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where Ux is the relative contribution to the total uncertainty by variable X, and 

f (0;) is uncertainty associated with variable X. Equation 3.26 assumes that the 

covariance is shared equally by the two variables involved. Similar equations can be 
derived for Y. This analysis can also be extended to a general system with more 
variables and parameters. 

When the Monte Carlo simulation method is employed, error contributions of 
critical factors must be determined indirectly because the variances are not given in 
an analytical form. Similar to the regression method discussed for sensitivity 
analysis, correlation analysis can be used with simulation results. Melching and 
Bauwens (2001) used correlation coefficients between model parameters (or 
variables) and model outputs to rank the importance of the parameters in predicting 
pollutant loading in streams. A more complicated method requires that, in addition 

n 

to the Monte Carlo simulation that considers the uncertainty of all factors (i.e., og), 
new simulations be conducted to define the uncertainty caused by a particular factor 
(Katz 2002). 

Katz (2002) described two approaches, the absence effect approach and the 
presence effect approach. The absence effect approach requires a new simulation 
with the uncertainties of all factors but one (e.g., X )  to calculate the top-marginal 
variance, which is defined as the expected reduction of prediction variance if the 
uncertainty of factor Xis  assumed to become perfectly known (Katz 2002). The 
procedure is represented by the following equations: 

2 where U-x is the relative error contribution of the factor X, ir-x is top-marginal 
2 2 variance of X, aZ is the variance caused by all factors, and oALL-X is the output 

variance calculated without factor X. Similarly, the presence effect approach uses a 
different new simulation to consider the uncertainty only from factor X in 
calculating the bottom-marginal variance, which is defined as the prediction 
variance caused by the factor of interest when all other factors are assumed to be 
perfectly known (Katz 2002). The equation for the error contribution is given by 



2 
where U,, is the relative error contribution of the factor X and a+x is the bottom- 
marginal variance of X. For linear models with independent sources of uncertainty, 
U-, and U+, are the same and the sum of uncertainty contributions from all 
sources is equal to the total prediction variance. For complex models, however, both 
the absence and presence effect approaches should be used to define the range of the 
relative error contribution of a particular factor (Katz 2002). 

3.5 CONCLUDING REMARK3 

Future research should focus on bridging data gaps and developing new techniques 
of uncertainty analysis so that uncertainty in complex models can be assessed 
effectively. Lack of good data is the most critical obstacle to uncertainty analysis 
(Berk et al. 2002). Conducting well-designed field experiments and observations, 
especially at large scales, to meet the data requirements for uncertainty analysis 
should be a top priority. However, the problem of inadequate data may be partially 
resolved by improving the way data are reported; the variability of key variables and 
parameters (e.g., variance, range) should be presented together with the mean 
values. Another challenge in uncertainty analysis is the high complexity of models 
needed to address environmental assessment and resource management issues at 
large scales. This difficulty may be resolved by the sequential partitioning method 
discussed above and the disintegrated uncertainty analysis approach recommended 
by Katz (2002). Both approaches imply a strategy of keeping uncertainty analysis 
simple and doable by assessing uncertainties in individual model components 
separately. Nonetheless, effective techniques should be developed to conduct 
uncertainty analysis with complex systems when data are incomplete and models are 
insufficiently verified. For example, quantitative information about spatial 
heterogeneity should be incorporated into scaling procedures to reduce uncertainty 
and improve predictions. 

Development of new techniques or innovative ways of using existing techniques 
should also be directed at creating capabilities of providing ideal outputs of 
uncertainty analysis - those that can fully characterize the uncertainty involved in 
modeling or scaling. These desirable outputs of uncertainty analysis include: (1) 
measures of model adequacy, (2) full probability distributions of model outputs 
(e.g., density function, probability-weighted values), (3) reliability of model results 
(e.g., accuracy, confidence level, error), (4) relative contribution or importance of 
each factor as an error source to total uncertainty, (5) the likelihood of different 
scenarios (probability or ranking), and (6) identification of the least understood or 
predictable components of the model (critical factors). 

It is imperative that prediction uncertainty be treated as a critical issue and 
uncertainty analysis as a mandatory component in scaling because uncertainty in 
scaling is inevitable and should be assessed thoroughly to ensure the credibility and 
reliability of scaling results. Important sources of uncertainty in scaling include 
scaling algorithms, model parameters, quality and natural variability of data, and 
heterogeneous environment. These uncertainties must be quantified and reduced to 
ensure that scaling results are used effectively in policy- and decision-making. The 
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existing techniques of uncertainty analysis (e.g., Taylor series expansion, Monte 
Carlo simulation, Bayesian statistics) can provide basic information about prediction 
accuracy, effects of uncertainty from different sources on scaling results, and the 
relative importance of individual sources of uncertainty even though they have some 
major limitations. The use of uncertainty analysis in ecological studies has been 
rather limited. However, with recognition of the importance of uncertainty analysis 
in both research and application, uncertainty analysis will become an integral part of 
modeling and scaling. 
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