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Abstract:

This paper analyses computed tomography (CT) images of hardwood logs, with the goal of locating
internal defects. The ability to detect and identify defects automatically is a critical component of
efficiency improvements for future sawmills and veneer mills. This paper describes an approach in
which 1) histogram equalization is used during preprocessing to normalize pixel values; 2) a feed-
forward neural network assigns tentative labels to individual image pixels; and 3) a morphological
post-processing step removes noise and refines image regions. The normalization step facilitates the
classification of wood features across different logs and different species. The neural network assigns
tentative labels using normalized pixel values from small three-dimensional (3D) neighborhoods. We
demonstrates the utility of this approach when the the network is trained using a single species of wood.
This paper also considers the effect of training the network with samples from more than one species.
Because small neighborhoods are used in either case, the classifier can be made to operate at real-time
rates. Tests of the method using ten-fold cross-validation and CT images from three different logs

resulted in a classification accuracy of approximately 95%.

1 Introduction

Several steps are required for processing hardwood logs. Logs are transported to a sawmill, and
an assessment of each log’'s quality is performed. Logs with the highest quality are shipped to
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veneer mills, where they are sawn into flitches and then sliced to produce veneer. The remaining
logs are sawed into lumber. Quality is inversely related to the presence of defects such as knots,
splits, voids, and decay in the wood. When a log is to be sawed, a cutting strategy must be
selected that preserves large areas of clear wood on board faces. There is a strong incentive
to perform a correct assessment, for both veneer and saw logs, since the economic return can
improve considerably (possibly up to a factor of 10) when a correct decision is made.

In a typical sawmill, logs enter the mill and go through a de-barking process. Following this
operation they go to a headrig where a sawyer moves the log repeatedly past a saw to remove
boards one at a time. As more of the log interior is exposed with each board removed, the
sawyer may re-orient the log periodically to cut from the best side. Sawn boards go through
subsequent operations of edging and trimming, where defects near the edges and/or ends of the
boards are removed to increase each board's grade, and therefore its value. A long-term goal
of this research is to automate these sawing processes, and this requires the ability to detect
the presence of defects automatically.

Because most defects of interest are internal, a nondestructive sensing technique is needed which
can provide a 3D view of a log’s interior. Several different sensing methods have been tried, in-
cluding nuclear magnetic resonance (Chang, et al. 1987), ultrasound (Han and Birkeland 1992),
and x-rays. Because of its efficiency, resolution, and widespread use in medical applications,
x-ray computed tomography has received extensive testing for roundwood applications (e. g.,
McMillin 1982, Zhu, et al. 1991). An x-ray CT scanner produces image slices that capture
many details of a log’s internal structure. A typical slice in our data set contains 256 x 256
elements, each corresponding to a volume of 2.5 mm x 2.5 mm x 2.5 mm. CT numbers are di-
rectly related to density, and CT images can therefore vary considerably for different species
and different moisture content. For example, a log that is freshly cut will produce different CT
values than one that has had time to dry. In previous research, CT image analysis has focused
on a single CT slice, although in a few cases neighboring slices have been used for 3D filtering
during preprocessing steps.

This paper presents an alternative to previous methods. A feed-forward artificial neural net-
work (ANN) has been employed to classify each pixel in an image slice. The ANN accepts
CT values from a small 3D neighborhood around each pixel, and then classifies the center
pixel of the neighborhood as knot, split, bark, decay, or clear wood. In order to accommodate
different types of hardwoods, a histogram-based preprocessing step normalizes pixel values in
each CT image. Following initial classification by the ANN, a postprocessing step is performed
to refine the shapes of detected image regions. The major benefits of this classification ap-
proach are high computational speed and relatively high classification accuracy. The system
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has been extensively tested for a single species of wood, and ten-fold cross-validation indicates a
classification accuracy of 95% by the ANN before postprocessing. The potential for paralleliza-
tion is high, since local neighborhoods are used, and since the classifier can be applied to all
pixels in parallel. This work is a continuation of that reported in (Schmoldt 1996) and (Li 1996).

The next section of this paper describes the preprocessing steps that are used by the system.
Section 3 describes the topology, features, and training method for the neural network classifier.
Section 4 presents results for different combinations of wood species. Section 5 summarizes the
paper.

2 Preprocessing

The first objective of preprocessing is to identify background regions, so that these pixels can
be ignored by the classifier. Our initial approach was to extract histograms for individual CT
slices and apply an adaptive thresholding method (Otsu 1979). This method assumes bimodal
histograms, and automatically selects a threshold for a histogram h to minimize within-group
variance. In our application, it automatically determines a correct threshold for many CT log
images. At very low density values, a large peak is present which represents the background.
Another peak is present at relatively high CT values, corresponding to clear wood and high-
density areas such as knots and bark. Knots are denser than clear wood, and tend to cluster at
the right side of this peak when present. Decay values lie near the midpoint of the two major
peaks.

Unfortunately, decay causes a histogram peak that violates this bimodal assumption. Using our
original thresholding method, we found that decay was often treated as background and was
therefore not detected. We then developed the following mapping w that addresses this problem,

w(t) = 1 — exp {— (t_btlﬂ, (1)

where tis a given CT density value, tis the threshold determined by applying Otsu’s method
initially, and b is a constant that is chosen empirically. If the modified histogram h'(t) =
w(t)h(t) is now considered, the effect of the weighting function is to remove the decay peak and
reduce the size of the clear wood peak relative to the background peak. If Otsu’s method is
now used on the modified histogram h’, the chosen threshold is shifted to the left. This places
the decay peak to the right of the chosen threshold, so that decay pixels will be retained when
the background is removed. Note that this weighting is used only for the purpose of choosing
a threshold value. The original pixel CT values are not modified in this step.
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The second objective of preprocessing is to normalize CT values so that a single classifier can
work with different types of wood. Normalization is especially important because the resulting
density (pixel) values are used directly as features by the classifier, as described below. If pixel
values were not normalized, then an ANN classifier would not be able to distinguish internal fea-
tures of logs with even modest differences in moisture content or intrinsic density characteristics.

To ensure consistency of defect region values across images, we developed the transformation

1 T, —
Tporm = = |Top + . = (2)
Zq 1-+-expa(£g—m —mo)

which maps original CT values x,to normalized values x ., giving roughly the same density
values to identical features of CT log images. For example, knot defects on one log will have
the same normalized CT values as knot defects on another log. This allows us to use a classifier
that has been trained using those normalized values. In this equation, the translation anchor
x,is arbitrarily selected to be greater than the CT value of the clear wood peak x_, for any
scanned log. The quantity a is a constant, and has been set to 10 / x,,. Intuitively, small and
large values of x,pass through (almost) linear mappings, whereas values of x,near x_/ 2 are
expanded into a larger range of values. Perhaps most importantly, the clear wood peak is
mapped approximately to the normalized value 1.0 for all CT scans.

3 A Neighborhood-Based Neural-Net Classifier

Using normalized CT values, we have successfully used a multilayer feed-forward neural net-
work to perform the primary classification step. A major objective of this work has been to
determine whether an ANN classifier could perform well using only normalized CT values ob-
tained from small, local neighborhoods. We have found that such a classifier works reasonably
well, although performance is improved if information is also included concerning the distance
of the target pixel from the center of the log slice. This distance measure provides contextual
information that aids in classification, because some entities (such as splits) tend to lie near log
centers and others (such as bark) lie near the outside edge of the log.

We have tested this approach using several scanned logs, and using both 3 x 3 and 3 x 3 x 3
neighborhood windows. Each histogram-normalized value in the neighborhood serves as an in-
put to the ANN. One additional input is the radial distance of the element under consideration,
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which is the distance of this pixel from the centroid of the foreground region of the CT slice.
There are 5 output nodes of the ANN, one for each of the classes to be detected: knot, split,
bark, decay or clear wood. In classification mode, the ANN assigns a label to the pixel based
on the output node that has the largest value for the given input values.

Another major goal of this work has been to evaluate the performance of this method for in-
dividual species, and to determine the extent to which multiple species can be accommodated
by a single ANN. Our first training/testing set consisted of 1973 samples for two species of
oak, northern red oak (Quercus rubra, L.) and water oak (Quercus nigra, L.). Although these
two species are from the same family of oaks, they are from different geographic regions and
growing conditions. The training/testing samples were selected from multiple CT slices.

Results of this “oak network” are summarized in Table 1. (This will be compared with
other classifiers in the next section.) The network was trained using the conventional back-
propagation method. Because network topology has a large impact on classification accuracy
and on convergence time during training, several topologies were compared. Networks using
one, two, and three hidden layers were generated, with the total number of weights for each
network topology kept constant (Nekovei and Sun 1995).

Ten-fold cross-validation was used to estimate the true accuracy rate of the ANN classifier. In
ten-fold cross-validation, the set of all samples is divided into 10 partitions. At each stage of
the ten-step process, one of the partitions is reserved for testing, the classifier is trained on the
remaining 9 partitions, and after training is complete the classifier is tested on the reserved
partition. This process is repeated 10 times; final classification accuracy for the classifier is the
average of the 10 test partitions. Cross-validation provides an objective and statistically valid
estimate of the true classification rate (Weiss and Kulikowski 1991).

As indicated in Table 1, the ANN with two hidden layers exhibited the best performance with
an accuracy of just under 95%. The next best classifier, with a single hidden layer of 12 nodes,
exhibited practically the same classification accuracy. Because the latter network requires much
less processing time, it was chosen as the optimal classifier among those evaluated. It is inter-
esting to note that classification performance decreased slightly as the number of hidden layers
increased.

We compared this 3D classifier with a similar ANN that used two-dimensional (2D) neighbor-
hoods only. Using only 9 pixels from a 2D neighborhood, rather than 27 from the corresponding
3D neighborhood, classification accuracy dropped from 94.7% to 93.7%. Consequently, we be-
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Table 1: Several neural network topologies were compared with respect to classification accuracy
and speed of training

Network topology | Number of weights [ Number of training iterations | Classification accuracy
28-12-5 396 6699 0.948
28-10-8-5 400 8299 0.949
28-7-16-5 388 10499 0.940
28-8-8-8-5 392 60499 0.854

Table 2: Three classifiers of 28-12-5 neural network topologies were compared with respect to
classification accuracy and the number of training samples

Three classifiers Number of training samples | Classification accuracy
Oak classifier 1973 0.948
Yellow poplar classifier 1018 0.891
Combined classifier 1983 0.963

gan to consider 2D neighborhood classifiers as having approximately the same accuracy as their
3D counterparts.

All of the neural networks considered here were trained using the delta rule with a momentum
term. The effect of learning parameters on the speed of training convergence was studied by
experimenting with various learning coefficients and momentum terms. The final choice of the
learning parameters is a small learning coefficient (0.1) and a medium momentum term (0.6).
Experiments using different initial weights to train the networks show that the choice of initial
weights has a negligible effect on the training process and on the performance of the classifier.

Because local neighborhoods are the primary source of classification features that are used by
the ANN, spurious misclassifications tend to occur at isolated points. A post-processing pro-
cedure is used to remove small regions, thereby improving overall classification accuracy. This
method is effective since the defects of interest typically have relatively large sizes in an image.
We chose to use the gray-scale operations of erosion followed by dilation for this purpose. A
3 x 3 structuring element is used for both operations. An added benefit is that labeled region
borders are smoothed somewhat during this process. Classification accuracy is greatly improved
by this step (Schmoldt et al. 1996), but because re-classified pixels cannot be quantitatively
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tracked we only have visual and qualitative indication of the improvement

4 Results and Conclusions

To date, we have generated 3 distinct image classifier systems, each represented by a neural
network having the 28-12-5 topology: 1) an “oak classifier” that was trained/tested using 1973
samples of two hardwood species, northern red oak (Quercus rubra, L.) and water oak (Quer-
cus nigra, L.), as described in the previous section; 2) a “yellow poplar classifier” that was
trained and tested using 1018 samples of yellow poplar (Liriodendron tulipifera, L.); and 3)
a “combined classifier” that was tested and trained using 1983 samples chosen randomly and
at equal proportions from the oak and yellow poplar CT slices. All three classifiers accept
as input features the histogram-normalized CT density values from 3 x 3 x 3 neighborhoods,
along with radial distance, as described in Section 3. The oak classifier was trained to label
each non-background pixel as one of five classes: knot, split, bark, decay, and oak clear wood.
The yellow poplar classifier was trained to recognize knots, splits, bark, yellow-poplar sapwood,
and yellow-poplar heartwood. In oak, heartwood and sapwood are not very different, but for
yellow poplar, heartwood and sapwood CT values are very different. Therefore, we needed to
distinguish those 2 yellow poplar features for classification purposes. Subsequent application
of classified yellow poplar images will combine those 2 classes into the class “clear wood.” The
yellow poplar classifier was not trained on samples of decay because our data set did not exhibit
that defect type in yellow poplar. Also, we only had one small sample of the feature “split”
in our yellow poplar data set. The combined classifier was trained to recognize knots, splits,
bark, decay, oak clear wood/yellow-poplar heartwood, and yellow-poplar sapwood. Clear wood
in oak and heartwood in yellow poplar are very similar with respect to CT values and can be
treated as the general clear wood class.

Figures 1 through 4 compare results obtained using these classifiers. The example CT images
were chosen because they exhibit all defects of interest. Figure 1 compares results from the
oak classifier, and from the combined classifier, for a red oak slice. There is no decay on this
image. The major defect regions on this image are identified correctly. It is clear from visual
inspection that both classifiers work very well for red oak images.

Figure 2 compares the same two classifiers for another red oak slice. This image has decay
and an included split. The split is large enough to be classified as void during background
thresholding. Again, both the species-specific classifier and the species-independent classifier
seem to work equally well.
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Figure 3 compare outputs from the yellow poplar network and from the combined classifier for
a yellow poplar input image. There is no sapwood in this image, so both the yellow poplar
classifier and the combined classifier give similar results.

Figure 4 compares the same two classifiers for an other yellow poplar slice. In this slice, sapwood
and heartwood are both present. The yellow poplar classifier identifies most features correctly.
There is some difficulty identifying the entire bark region, though. On the other hand, the com-
bined classifier can still identify yellow poplar heartwood as clear wood. Sapwood, however, is
classified as a knot region and only small amounts of the bark region are correctly labeled. Also,
there is a large region at the log center that has been labeled as split. This is partially due to
the paucity of yellow poplar images containing split features. In contrast to the results of the
combined classifier in Figure 4, Figure 5 illustrates results for the combined classifier on another
yellow poplar image from another log. Some sapwood pixels are still misclassified, but a large
percentage are also correctly labeled. We expect that by retraining the combined classifier with
some samples from the CT slice of Figure 4, it will be able to discriminate sapwood regions
more accurately. Similarly, the current misclassification of central heartwood regions as splits
could be partial mitigated by incorporating more yellow poplar split examples in our training
data.

5 Summary

This paper has described a system that is capable of locating and identifying defects in CT
images of hardwood logs. This represents a major new component that is needed for further
automation of hardwood mill operations. In comparison to previous hardwood log inspection
systems, our system has a simple implementation, but relatively high classification speed and
accuracy. Other systems are reported to be able to successfully identify or locate some in-
ternal defects, but few statistical results are available. Our approach gives statistically valid
estimates of classification accuracy. Most previous work is limited to 2D image analysis, which
does not make full use of the 3D nature of CT images. Finally, most research has dealt with
a single type of wood, whereas our approach successfully deals with three different wood species.

Already, one x-ray scanner has been installed at a sawmill in Canada (Aune 1995), although
defects are currently detected by manual examination of CT slices. As similar systems are de-
veloped and deployed, automated defect detection software will become increasingly important.
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Figure 1. Comparison of classifiers for a red oak image. (a) Original CT image. (b) Output of
oak classifier. (c) Output of combined classifier.
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Figure 2. Comparison of classifiers for another red oak image, (a) Original CT image. (b)
Output of oak classifier. () Output of combined classifier.
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Figure 3: Comparison of classifiers for yellow poplar image. (a) Original CT image. (b) Output
of yellow poplar classifier. (c) Output of combined classifier.
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Figure 4: Comparison of classifiers for another yellow poplar image. (a) Original CT image.
(b) Output of yellow poplar classifier. (c) Output of combined classifier.
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Figure 5: Example of the combined classifier for another yellow poplar image. (a) Original CT
image. (b) Output of combined classifier.
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