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Abstract- A new approach to active contours on statistical 
manifolds is presented. The statistical manifolds are 2- 
dimensional Riemannian manifolds that are statistically defined 
by maps that transform a parameter domain onto-a set of 
probability density functions. In this novel framework, color or 
texture features are measured at each Image point and their 
statistical characteristics are estimated. This is different from 
statistical representation of bounded regions. A modified 
Kullback-Leibler divergence, that measures dissimilarity 
between two density distributions, is added to the statistical 
manifolds so that a geometric interpretation of the manifolds 
becomes possible. With this framework, we can formulate a 
metric tensor on the statistical manifolds. Then, a geodesic active 
contour is evolved with the aid of the metric tensor. We show 
that the statistical manifold framework provides more robust 
and accurate texture segmentation results. 

Kqwordcstatistical manifolds, a d v e  coniours, t a t w e  
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Texture-based segmentation is an essential task in the 
areas of image analysis and pattern recognition, and thus the 
task has attracted intensive research for the past three decades 
[1,2,3,4]. By the nature of difficult of the problem, there exist 
many segmentation approaches, from transform methods 
[14,15] and stochastic techniques [16,17] to a combined 
technique [18]. 

Curve evolution techniques are becoming increasingly 
popular [4,5,6,7,8,22]. Most of the reported methods deal with 
image models that have two or more regions and associated 
probability density functions. In [5,7,23], statistics of image 
regions are modeled with parametric methods, while Kim et 
al. [22] use nonparametric Parzen density estimates for a 
region descriptor. Also, the authors in [22] utilize an 
information theoretic approach to image segmentation, in 
which mutual information between region labels and intensity 
values is incorporated into a formulation of energy 
minimizing curve evolution. Meanwhile, a mixture of 
parametric and nonparametric methods has been proposed in 
[4], where different techniques are applied to different feature 
spaces. 

The approach proposed in this paper has been inspired by 
[9,10], and is based on geodesic active contours [l 11. In [lo], 
Freedman and Zhang develop a new curve evolution method 
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that utilizes density matching criteria between a model and a 
target region. They estimate the density function by a 
nonparametric technique. Meanwhile, Sochen et al. [9] 
introduce a geometric fnunework by which images and image 
feature spaces are considered as 2dimensional manifolds. We 
adapt the density matching idea, which is often used as a 
texture similarity measure, into the geometric framework that 
provides a metric tensor on manifolds embedded in m- 
dimensional space. Then, it is straightfoward to utilize 
geodesic active contours because the metric tensor contains 
geometric infonnation ofthe manifolds. 

Unlike the majority of curve evolution methods, in which 
feature spaces are based on deterministic measures, our 
approach considers feature spaces as a set of probability 
density functions (PDF) of feature values. More precisely, 
following the terms used in [9], 2-dimensional manifolds 
embedded in a higher dimensional space consist of a set of 
maps that transform a 2D parameter space onto probability 
density functions. We call the 2D manifolds statistical 
manifolds. It is worth mentioning that our feature PDF is not 
region-based, but rather it is point-wise. Ordinary distance 
metric can not be applied to the proposed statistical manifolds, 
thus we use a modified Kullback-Leibler divergence, known 
as relative entropy in information theory. With this distance 
metric, the statistical manifolds become Riemannian which 
means that their geometric information can be induced. This is 
an essential part of this fkamework because geodesic active 
contours require the geometric information of manifolds. 

In the next section we define the statistical manifolds and 
corresponding distance metric and metric tensor. Section 3 
introduces a feature extraction scheme and briefly discusses 
geodesic active contours. Next, we show some results on 
texture segmentation and conclude the paper with a brief 
summary. 

11. STATISTICAL MANIFOLDS 

A Riemannian manifold MP is an abstract surface of 
arbitrary dimensionp with a proper choice of metric. Then, an 
image I(x) parameterized in R~, that is, . F ( X # ) E R ~ ,  is viewed 
as a 2-dimensional Riemannian manifold, M2,  embedded in 
R" with (x, I(x)) [9], where n=3 for gray scale images and 5 
for color images. Similarly, rn-dimensional feature spaces of 
an image can be considered as M 2  embedded in R'"'~. 



A. Statistical Embedding 
In this paper, we introduce statistically defined manifolds 

on which each feature at a local coordinate X E R ~  is 
represented only by its statistics, for instance, the first and 
second moments, rather than by deterministic values. 
Certainly, parametric estimation methods can be used for the 
feature statistics, but in most cases they are not suitable to 
model multimodal distributions. Thus, here we will consider 
only nonparametric methods, such as Gaussian kernel-based 
estimation. In this framework, therefore, the embedding map 
for an M-dimensional feature space is (x,JO1;w), . ..,J@;r)) 
that assigns a set of probability density hct ions  to a local 
coordinate XSR'. We call this embedding a statistical 
embedding. Here, O represents a feature in the M- 
dimensional feature space. 

The means and variances of each feature can also be used 
directly as features, constructing standard (non-statistical) 
image manifolds. This directly leads to the work of [9]. A 
performance comparison between the statistical and the non- 
statistical manifolds is still under investigation. 

B. Metric Tensor 
Because our manifolds use statistical embeddings as 

defined in the previous section, it is natural to select a PDF- 
based dissimilarity measure for feature discrimination. An 
obvious candidate is Kullback-Leibler (K-L) divergence, 
defined as 

where fA and & are two probability distributions, and the 
subscripts (k, Z) represent the kth element of distribution 2. 
This is commonly known as relative entropy in information 
theory, and has values greater than or equal to 0, where 0 
indicates a perfect match. However, the K-L divergence is not 
a metric because it is not symmetric (klCfAh) + kl6h)) .  
Thus, we modify the K-L divergence by taking the average of 
kl(f,fB) and klfi&) and use this as a distance measure: 

In [12], the modified K-L divergence shows a superior 
segmentation performance to the non-symmetric version. 

Using (2), we are ready to induce a metric tensor defined 
on a statistical manifold. A metric tensor contains the 
geometric structure of a manifold and is used to measure 
distances on manifolds. For a 2D image manifold (x, I@)) 
introduced above, the metric tensor is expressed as 

and for Mdimensional feature space the metric tensor can be 
generalized as [9] 

where 8' represents i-th feature in the feature space and the 
subscripts indicate partial derivatives of each feature. 

The determinant of the metric tensor is used as an edge 
detector in various image processing applications. For the 
proposed statistical manifolds, the metric tensor should be 
defined somewhat differently since there are no explicit 
expressions for spatial partial derivatives of probability 
density functions. Here, we redefine the K-L divergence for a 
PDFJ(.;x) of an arbitrary feature at location x as 

Here, we usedJx) =J(oi;r) for simplicity. The subscript k in 
this case represents the kth element of PDFJx). Then, for a 
statistical manifold we can rewrite the metric tensor defined in 
(4) as 

This metric tensor provides information concerning the 
statistical structure of the manifold, and 'its determinant 
measures statistical dissimilarity of features on manifolds. The 
determinant of r(x) is much larger than unity when evaluated 
at locations where the manifold has a high statistical gradient. 
On the other hand, the value is close to unity when the 
determinant is evaluated on which the manifold is statistically 
stationary. 

111. FEATURE EXTRACTION AND ACTIVE CONTOURS 

In this paper so far, a statistical manifold has been 
introduced by which the embedding creates a set of PDFs of 
features rather than feature values themselves. We have also 
formulated a metric tensor, which is defined on the statistical 
manifold. In this section, we discuss a possible extraction 
scheme for a feature PDF, and then extend this to a 
formulation of integrated active contours for texture 
segmentation. This follows the work in [l 11 and [20]. 

A. Feature PDF Extraction 
Theoretically, any feature with statistical characteristics 

that can be estimated from an image neighborhood can be 
incorporated into this new statistical manifold framework. 
Possible features include directional information, intensity 
distributions (histograms), polarity, anisotropy, etc. The 
directional information can be obtained with Gabor filters, 
which are extremely useful for extracting texture features over 
various scales [19]. However, it is known that a Gabor filter 
tends to have a considerable degree of redundancy from its 
many feature channels [4]. Also, directional information can 
be estimated with an average squared gradient known as a 
structure tensor matrix [4,21]. 



Here, we used a nonparametric method with a Gaussian 
kernel to estimate probability density functions of each 
feature. Also, we used varying window size to incorporate 
scale-related information. 

B. Geodesic Acrive Contours 
Following Caselles et al. [ l  I], a curve evolution through 

the equation 

minimizes curve length on manifolds, that is, it equivalently 
finds a geodesic curve in a Riemannian space. Here,  denotes 
curvature and is a unit vector which is normal to the curve. 
The edge stopping function g(lV4) is given by 

The function g(lV4) is defined as an inverse of the 
determinant of the metric tensor such that it stops the curve 
evolution at image edges; in our case, these correspond to 
statistical boundaries on manifolds. A corresponding level set 
approach, pioneered by [13], is formulated as 

where the function, u(x), is defined so that the curve C is 
determined by a level set {x 1 u(x) = 0). A typical choice of 
u(x) is a signed distance function. 

Meanwhile, the active contour can be accelerated by 
adding a region-based term as presented in [20]: 

The function h(-) penalizes large K-L distances between fn, 
PDF of the region inside the contour, and fc, PDF of points on 
the contour. 

This new h e w o r k  combines statistical manifolds and 
active contours methods. We have tested the approach on real 
images of a cheetah and a zebra. In these examples, we used 
intensity and direction distributions as the manifold statistics. 
Intensity distributions were approximated by normalized 
histograms of (gray-scale) pixel values. Direction 
distributions were estimated by filtering the intensity image 
with a set of Gabor filters. The scale was fixed at a small 
value, and 6 directions were selected for the filtering. Then, 
with different window sizes, the directional distribution was 
estimated at each parametric point. Fig. la  to Fig. Ic show 
independent determinant values I r(x)l for each window size. 
Fig. Id depicts the determinant of the integrated metric tensor 
defined in (6). Fig. 2 shows similar outputs to Fig. 1, but for 
the normalized histogram. Likewise, Fig. 3 shows similar 
outputs for nonparametric estimation of PDFs of intensity 
values. In these experiments, the nonparametric PDFs provide 

the best driving force for the active contours. Fig. 4 shows 
contour evolutions for two real images. Small initial contours 
are set inside the objects. Then, the figures show three stages 
of contour evolution for the cheetah and the zebra images. 
From the top of each column, contours are captured after 50, 
100, and 150 evolutions. Overall, the performance is very 
good. However, it can be see that the final contours do not 
include the mouth or the tail of cheetah, nor the front leg of 
the zebra. This is because image statistics are not stationary at 
those specific regions. These results demonstrate that the 
proposed method produces subjectively good segmentation 
for textured images. 

This paper presented a novel framework for the use of 
statistical manifolds. In this framework, an image is 
considered as a multidimensional manifold which has 
mappings that transform a 2D parameter domain onto a set of 
probability density functions. We have defined a metric tensor 
on the statistical manifolds based on Kullback-Leibler 
divergence. Given feature data for images, the algorithm 
estimates feature statistics by applying a kernel-based 
nonparametric method. Then, the metric tensor is used to 

a stopping function for geodesic active contours. Our 
exmimental results have shown the streneth of the ~ r o ~ o s e d  
t&hnique for texture-based image segm&tation. & e n t l y ,  
the method has been tested for single objects only. We are 
extending this h e w o r k  to perform segmentation of multiple 
objects with arbitrary initialization. 
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