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ABSTRACT: The distribution of trees into diameter classes in longleaf pine (Pinus palustris Mill.) 
plantations does not tend to produce the smooth distributions common to other southern pines. While 
these distributions are sometimes unimodal, they are frequently bi- or even tri-modal and for this reason 
may not be easily modeled with traditional diameter distribution models like the Weibull whose form is 
unimodal and monotonic. Neural networks, a development of artificial intelligence research, can take on 
any form that is found in the data, allowing the prediction of many phenomena without the assumption of a 
given model form. To see if this new technique has merit in forest modeling, the diameter distributions of 
several longleaf pine stands were modeled using a neural network process. Weibull distribution models 
were also fit to the data using regression and parameter recovery techniques. These approaches were 
then compared. The neural network procedure appeared to provide slightly better predictions than either of 
the traditional methods. Results of this comparison are presented in this poster. This early result indicates 
that this new technique is promising and deserves further investigation. 

INTRODUCTION 

The three parameter Weibull probability distribution function (Weibull 1951) can take on a wide variety of 
shapes, and has been found to be an applicable model for approximating tree dbh distributions (Bailey and 
Dell 1973). Because of this plasticity, many stand-level diameter-distribution growth and yield models in 
use today rely on the Weibull probability distribution function (Matney and Sullivan 1982; Bailey and Aleixo 
da Silva 1988; and Zamoch, et al. 1991). However, the Weibull distribution does not span the entire 
function space and it's performance as a dbh distribution estimator varies widely between data sets. In .. 
some dbh distribution modeling cases, the Weibull tends to produce poor estimates in the tails. In other 
situations, the Weibull may lock the tails down and overcompensate by missing badly in the middle part of 
the distribution. As any error in the middle and upper dbh ranges of a distribution can have a large impact 
on derived volume estimates, growth and yield models constructed from the estimates will produce biased 
volume estimates. Generally applicable thus does not mean that the procedure is always best, as growth 
and yield modelers are constantly searching for procedures to improve dbh distribution estimates. Artificial 
neural networks hold a future promise of being able to provide better estimates of dbh distributions that do 
not rely on assuming an imperfect underlying probability model. 

In general, artificial neural networks are appropriate in modeling situations where: (1) the application is 
data intensive and dependent on multiple interacting parameters; (2) the problem area is rich in historical 
data or examples; (3) the available data is incomplete, contains errors, and describes specific examples, 
and (4) when the function to determine solutions is unknown or expensive to discover (Bailey and 
Thompson 1990). All these con~itions are to some degree met by the typical growth and yield data base. 
The results from neural network research relevant to their use for approximating dbh distribution are 
theorems by Cybenko (1989), Sun and Cheney (1992), and Light (1992). These theorems show that a 
single output, two-layer feedforward network employing continuous sigmoid and other more general 
activation functions with a sufficient number of hidden units, can approximate any continuous function to 
any desired accuracy. Some researchers (e.g., Josin 1987) point to Kolmogorov's (1957) theorem on the 
realization of real-valued functions as strong, but not conclusive, evidence that neural network models can 
learn to approximate any continuous real-valued multivariate function, while minimizing error in the least
mean-~ ~se. based oolyoo cm ~xample mapping. 

Given the advertised great promise of neural methodology, the authors decided that mounting a preliminary 
investigative benchmark comparison of this technique with the traditional methods of diameter distribution 
modeling was warranted. The network model selected for this comparison is a simple fully-connected 
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feedforward back-propagation delta learning rule network; and the two traditional Weibull probability 
function based benchmark test models selected were a diameter moment parameter recovery system and 
a direct parameter prediction model. Each of these techniques was then applied to predicting the diameter 
distributions of three distinctly different unthinned planted longleaf pine databases from stands originating 
under three different conditions. If these preliminary results positively favored the neural network, 
additional work would be undertaken to refine the unthinned stand model and construct network models for 
predicting thinned stand diameter distributions. 

The analysis of the multitude of statistical criteria selected for the preliminary benchmark testing of the 
neural network model is reported in this paper. 

RESULTS AND DISCUSSION 

The first comparis·on of note is a graphical examination of the performance of the various diameter 
distribution recovery methods. In many cases there was little difference between the accuracy of the 
distributions predicted by the Weibull distributions and the neural network, but in distributions that were 
multimodal the neural networks were clearly superior even when they were not ideal. 

Visually superior fits were often also better when evaluated using mathematical goodness-of-fit methods. 
When mean square error, fit index, generalized R2 (Anderson-Sprecher 1994), comparisons of · 
percentages oftrees in different size classes,• 2

, Kolmogorov-Smirnov statistic, and distribution means 
were used to compare the predicted distributions, the neural network was most often best. 

Another graphical comparison made was an examination of maximum absolute errors, average absolute 
errors, and average bias across diameter classes. All of the methods had the greatest maximum absolute 
error in the lower diameter classes and tended to be negatively biased. It is only in looking at average bias 
that the neural network method shows its superiority. While the bias trends are similar across all 
methodologies, the magnitude of the bias is much less in the lower diameter classes for the neural 
network. ~ 

·. 
These results show that neural networks can perform at least as well as traditional methods and often 
better. They may be reducible to nonlinear models (Sarle 1994), but their strength lies in that the form of 
the model does not have to be specified in advance. This is a great advantage, because, in spite of many 
efforts in process modeling, we still do not understand the processes of growth that would allow us to 
create models that are not tied to empirical data. Even the Weibull function has no biological meaning. It 
is simply a mathematically handy function with the ability to assume a variety of appropriate shapes 
(Weibull 1951). 

There are two principal weaknesses in neural networks as used in this poster. The first is that, although a 
model does not have to be specified, the number of hidden nodes and layers and the transfer function to be 
used still must be determined. A correct choice of options can make a great difference in the success of 
the modeling effort. Also, there are many rules of thumb for selecting these variables, but it really comes 
down to a matter of trial and error. Secondly, the network that results from a training program is a black 
box. In this case, it is implemented as a C or FORTRAN program, but an examination of this program 
reveals so many interacting equations that clear relationships are hard to determine. Fortunately, this latter 
difficulty is easily alleviated through the use of sensitivity analysis (Klimasauskas 1991 ). 

A sensitivity analysis was conducted on the input parameters of age, height of dominant trees, and number 
of trees per acre to see what effect changes in these parameters would have upon stand basal area, 
arithmetic mean dbh, and quadratic mean dbh. All of the methods are very similar in their sensitivity to 
input, with only the age influence on basal area showing a change that exceeded the change in input. Also 
it ean be een that trees .per ac~ has a moderate influence and the height of dominant~ has almost 
none. These results are rather similar across all of the site types with old field sites being the least 
sensitive and prepared sites the most. 
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CONCLUSION 

This paper clearly demonstrates that artificial neural networks are an excellent alternative to the traditional 
method of predicting unthinned stand diameter distributions with estimated Weibull probability functions. 
The superiority of the neural network for the data sets in this study arises because the Weibull is not the 
correct model for the data. On other data sets when the Weibull distribution fits the data better, the neural 
network and Weibull probability distribution approaches will perform equally well. The clear advantage of 
the neural network over the parametric function modeling techniques is that in almost all cases a neural 
network solution will minimize the root mean square error. If the Weibull distribution or other assumed 
probability function does not fit the data, the modeler is left with the very difficult task of piecing together 
and/or finding a new parametric model form for the problem. -
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