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ABSTRACT: Analysis and simulation of biospheric responses to historical forcing require surface cli- 
mate data that capture those aspects of climate that control ecological processes, including key spatial 
gradients and modes of temporal variability. We developed a multivariate, gridded historical climate 
dataset for the conterminous USA as a common input database for the VegetationlEcosystem Model- 
ing and Analysis Project (VEMAP), a biogeochemical and dynamic vegetation model intercomparison. 
The dataset covers the period 1895-1993 on a 0.5" latitude/longitude grid. Climate is represented at 
both monthly and daily timesteps. Variables are: precipitation, mininirnum and maximum tempera- 
ture, total incident solar radiation, daylight-period irradiance, vapor pressure, and daylight-period rel- 
ative humidity. The dataset was derived from US Historical Climate Network (HCN), cooperative net- 
work, and snowpack telemetry (SNOTEL) monthly precipitation and mean nninirnw and maximum 
temperature station data. We employed techniques that rely on geostatistical and physical relation- 
ships to create the temporally and spatially complete dataset. We developed a local kriging prediction 
model to iniill discontinuous and limited-length station records based on spatial autocorrelation struc- 
ture of climate anomalies. A spatial interpolation model (PRISM) that accounts for physiographic con- 
trols was used to grid the infilled monthly station data. We implemented a stochastic weather genera- 
tor (modified WGEN) to disaggregate the gridded monthly series to dailies. Radiation and humidity 
variables were estimated from the dailies using a physically-based empirical surface climate model 
(MTCLIM3). Derived datasets include a 100 yr model spin-up climate and a historical Palmer Drought 
Severity Index (PDSI) dataset. The VEMAP dataset exhibits statistically significant trends in tempera- 
ture, precipitation, solar radiation, vapor pressure, and PDSI for US Nationd Assessment regions. The 
historical climate and companion datasets are available online at data archive centers. 
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1. INTRODUCTION 

1.1. Objectives 

Modeling biospheric responses to historical climate 
change and variability over the 20th century is crucial 
for validation of biogeochemistry and vegetation mod- 
els dgainst long-term observations and for understand- 
ing potential responses of ecosystems to future climate 
change. Such simulations require input of spatially 
and temporally complete, multivariate surface climate 
data that match this purpose (Cramer & Fischer 1996). 
These data need to be at a spatial resolution that ade- 
quately captures key climatic gradients and of a long 
enough record to reflect important modes of temporal 
variation. However, even for the conterminous USA- 
one of the best instrumented regions of the globe- 
such data are difficult to obtain. For example, temper- 
ature and precipitation station densities in the western 
USA prior to 1940 are insufficient for the interpolation 
of observations with confidence while accounting for 
physiographic effects such as large lakes and hetero- 
geneous topography. Solar radiation and humidity 
observations are even more scattered, largely limited 
to airport sites with a bias to valley locations in moun- 
tainous regions. As a result, sophisticated techniques 
must be employed to construct extended time series of 
all variables at a sufficient spatial resolution through- 
out the domain, in a manner that (1) is consistent with 
physiography and vegetation (to the extent that vege- 
tation is an expression of climate) and (2) maintains 
physical relationships among climate variables. 

Our objective was to create a historical 'bioclimate' 
input dataset for the USA for simulation of time-depen- 
dent biogeochernical and biogeographical dynamics. 
This effort was part of an ecological model inter- 
comparison study, the VegetationlEcosystem Model- 
ing and Analysis Project (VEMAP), Phase 2. The over- 
all requirement for the dataset was that it faithfully 
represents the 'bioclimate', i,e, those aspects of climate 
that control ecological processes. This goal is shared 
by other gridded historical climate datasets for re- 
gional to global domains, including Cooter et al, (2000), 
Thornton et al. (199?), and New et al. (2000). Specific 
requirements for the VEMAP2 dataset were that it 
be: (1) Spatially and temporally complete, with wall- 
to-wall coverage spanning as much of the historical 
period as can be supported by the instrumental record; 
(2) temporally realistic, with accurate representation 
of climate variability at daily through decadal scales; 
(3) spatially realistic, reflecting topographic and other 
geographic controls over climate, and resolved suffi- 
ciently to capture key reqonal climate gradients and 
spatial patterns of temporal variability; (4) physically 
consistent across variables, in particular at the daily 

timestep; (5) multivariate, consisting of variables rec- 
ognized as controlling ecological processes and com- 
monly used as inputs to ecolopcal models; (6) resolved 
at monthly and daily timesteps to match model input 
requirements, with the same climate represented at 
both scales. 

1.2. V E W  and its common input datasets 

VEMAP was a multi-institutional, international effort 
addressing the response of ecosystem biogeography 
and biogeochemistry to variability in climate and other 
drivers in both space and time domains. Phase 1 
(VEMAP1) compared a suite of biogeochemistry and 
biogeography models in their controls and equilibrium 
response to changing climate and elevated atmo- 
spheric carbon dioxide levels across the conterminous 
USA (VEMAP 1995, Schimel et al. 1997, Pan et al. 
1998, Yates et al. 2000). Construction of a common 
input dataset, the VEMAP1 database, assured that dif- 
ferences in the model intercomparison arose only from 
differences among model algorithms and their im- 
plementation, rather than from differences in inputs 
(Kittel et al. 1995, 1996). The VErvltZPl database con- 
sists of long-term climatology (both monthly means 
and a characteristic daily climate), equilibrium climate 
change scenarios, soil properties, and potential natural 
vegetation. 

Phase 2 (VEMAP2) evaluated time-dependent re- 
sponses of a set of biogeochernical models and 
dynamic global vegetation models (DGVMs) to histori- 
cal and projected transient climate and atmospheric 
C02  forcings (Schimel et al. 2000, Gordon et al. 2004). 
The biogeochemistry models were TEM (Terrestrial 
Ecosystem Model; Tian et al. 1999), Biome-BGC 
(Biome-Biogeochemical Cycles Model; Thornton et al. 
2002), Century (Parton et al. 1994), and GTEiC (Global 
Terrestrial Ecosystem Carbon Model; Post et al. 19971, 
while the DGVMs were MCI (MAPSS [Mapped 
Atmosphere-Plant-Soil System]-Century Coupled 
Model, Version 1; Daly et al. 2000) and LPJ (Lund- 
Potsdam-Jena Model; Sitch et al. 2003). 

As in VEMAP1, a common database provided both 
(1) a 'level playing field' for intercomparison of models 
and (2) a faithful representation of the domain's 
bioclimate, permitting evaluation of historical simula- 
tions against observed ecological data-these features 
were critical to achieving VEMAP2 goals. In this 
paper, we describe the development of the historical 
climate dataset for the conterminous USA as a com- 
ponent of the VEMAP2 model input database. We also 
developed a companion set of future (21st century} 
transient climate change scenarios for the sarne 
domain derived from coupled atmosphere-ocean 



Kittel et a].: VEMAP2 historical climate dataset for the USA 153 

general circulation model (AOGCM) experiments (Kit- 
tel et al. 2000). We designed both the historical climate 
and transient climate change scenario sets to meet 
input requirements for this class of regiond-global 
ecological models and as required by the experimental 
design of the VEMAP2 model intercomparison. 

In the following sections, we present the overall 
design of the dataset (Section 2), techniques used to 
meet this design (Section 31, and derived datasets- 
historical Palmer Drought Severity Index (PDSI) 
dataset and a model spin-up climate (Section 4). In 
Section 5, we describe spatial and temporal proper- 
ties of the resulting dataset. We provide information 
regarding online access to the data and analysis and 
visualization tools (Section 6). Finally, we summarize 
key limitations and attributes of the dataset (Section 7). 

2.  DATASET OVERVIEW 

2.1. Spatial and temporal coverage 

The historical climate dataset was developed for the 
conterminous USA. The data are on a 0.5" latitude x 
0.5" longitude grid (Fig. I), with cells bounded by 0.5" 
latitude and longitude lines (as opposed to cells cen- 
tered on 0.5" intersections). The grid is the same used 
for VEMAPl (Kittel et al. 1995, Rosenbloom & lCittel 
1996). The dataset covers a 99 yr period from 
1895-1993. A companion historical climate dataset was 

developed for Alaska and adjacent portions of Canada 
covering 1922-1996; this set is also available online 
(Section 6) (Kittel et al. 2002). A follow-on product with 
updated, higher resolution historical monthly tempera- 
ture and precipitation for the conterminous USA is pre- 
sented in Gibson et al. (2002) and Daly et al. (2004). 

2.2, Timestep and variables 

Climate variables are given in 2 timesteps: daily 
values and monthly means (or monthly totals for pre- 
cipitation). The dataset includes 7 surface climate 
variables: (1) and (2) rninimum and maximunl surface 
air temperature, (3) precipitation, (4) surface air vapor 
pressure, (5) surface air daylight-period mean relative 
humidity, (6) total incident solar radiation, and (3 )  day- 
light-period mean irradiance. 

We included 2 humidity variables and 2 solar radia- 
tion variables because, while they represent the same 
climate information, different models require these 
inputs in different forms and their interconversion 
requires calculation at the daily level. Near-surface 
wind speed data are also required'for some ecosystem 
models (e,g, in MC1 initialization) but are only avail- 
able in the VEMAP database as long-term seasonal 
mean climatologies (Kittel et al. 1995; based on Elliott 
et al. 1986). While we did not determine daily (and 
monthly) wind speed for this dataset, its estimation 
from other daily variables has been explored by others 

Fig. 1. Gridded domain for the conterminous US for the Vegetation/Ecosystem Modeling and Analysis Project, Phase 2 (VEMAP2) 
database. Background shows topography (m above sea level) 
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(e,g. Hanson & Johnson 1998, Parlange & Katz 2000; 
see Section 3.3). 

2.3. Approach 

To create the historical gridded dataset, our 
approach was to: 

Step 1 - Combine historical monthly and daily tern- 
perature and precipitation station datasets to create 
a unified set with the highest station density and 
most complete records that were readily achievable 
(described in Section 3.1). 

Step 2 - Create temporally complete monthly mini- 
mum and maximum temperature and precipitation 
station records by modeling geostatistical relationships 
among stations with missing data and neighboring 
stations (Section 3.2.2). 

Step 3 - Spatially interpolate these temporally conl- 
plete monthly station records to the 0.5" grid account- 
ing for physical relationships between climate and 
physiography (Section 3.2.3). 

Step 4 - Disaggregate monthly climate series to 
generate daily minimunl and maximum temperature 
and precipitation using a stochastic weather generator 
(Section 3.3). 

Step 5 - Enlpirically estimate daily (and monthly) so- 
lar radiation and humidity variables from daily temper- 
ature and precipitation series, while maintaining phys- 
ical relationships among these variables (Section 3.4). 

3. DATASET DEVELOPMENT 

3.1. Step 1. Temperature and precipitation data 

For the conterminous USA, we obtained monthly 
mean minimum and maximum temperature records for 
5436 stations and monthly precipitation records for 
8514 stations (Fig. 2a). These data were compiled from 
the National Climatic Data Center (NCDC) Historical 
Climate Network (HCN) database (Easterling et al. 
1996; Fig. 2b), other primary and cooperative network 
datasets (NCDC undated a, 1994a,b), and Natural 
Resources conservation Service (NRCS) SNOTEL 
(snowpack telemetry) data (NRCS 1996; Fig. 2c). While 
HCN data provided the longest and most homoge- 
neous records, inclusion of additional data sources 
allowed interpolation of spatial and temporal climate 
patterns over regions with high spatial heterogeneity 
in factors controlling climate. In particular, inclusion of 
SNOTEL sites significantly improved station density in 
mountainous regions of the western USA (Fig. 2c). We 
also used daily minimum and rnaximum temperature 
and precipitation data from 526 stations to parameter- 

ize the stochastic daily weather generator (Step 4, Sec- 
tion 3.31, Sources for daily data included HCN and 
other first order and cooperative network daily 
datasets (NCDC undated b,c, Easterling et al. 1999). 

We used data starting in 1895 (prior to this, precipi- 
tation stations numbered <600, i.e. average densities 
< 0.2 stations per grid cell) and through 1993 (last com- 
plete year in the HCN set available at the time the set 
was surveyed). Data quality checks included tests (1) 
that temperature minimun~ values did not exceed cor- 
responding maxima, (2) for nonsense precipitation val- 
ues (e.g. less than zero), and (3) for nonsense metadata 
(such as obvious errors in latitude, longitude, and ele- 
vation, e,g. from double conversion of feet to meters). 

The HCN precipitation and temperature dataset 
consists of stations selected to have long-term, rela- 
tively complete records which were adjusted for time- 
of-observation differences, instrument changes and 
moves, station relocations, and urbanization effects 
(Easterling et al. 1996). HCN processing also included 
infilling of missing data based on neighboring stations. 
The high level of quality checking and attention to sta- 
tion histories in monthly HCN data, along with exten- 
sive coverage across the domain in the earlier part of 
the record, provided a strong basis for reliance on this 
set for spatial interpolation of monthly regional tem- 
perature and precipitation anomalies (Step 2, Section 
3.2.2). This was key for creating a gridded historical 
dataset extending back to the end of the 19th century. 
However, there are important record inhomogeneities 
and other time-dependent biases that are neither 
accounted for in the other data sources, nor completely 
in the HCN. In addition, local anomaly patterns are 
likely to be less well represented in the earlier part of 
the record because of the lower density of HCN and 
other long-term stations. These limitations must be 
kept in mind when evaluating and using the VEMAP2 
gridded historical climate dataset. The primary pur- 
pose of the dataset is to provide the best representation 
of climate patterns in space and time for simulating 
ecological processes. To this end, the goal of data corn- 
pleteness in space and time was weighted more heav- 
ily than an alternate objective of including only the 
highest quality and longest term station records such 
as would be needed for a rigorous assessment of cli- 
mate trends and variability. 

3.2. Steps 2 and 3. Spatial interpolation 

3.2.1. Approach 

As introduced, a key issue in the development of 
gridded time series of climate data is spatial interpola- 
tion of station data in physiographically heterogeneous 
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terrain. This is especially difficult in the 
early part of the historical record when the 
density of stations with long-term records 
is low (Fig. 2b, 3). To solve this problem, we 
chose to separate interpolation of existing 
station data to the grid into 2 spatial statis- 
tical modeling processes: a climate anom- 
aly component and a physiographically 
forced component. 

In the first process, we assumed that cli- 
mate variability is dominated by regional 
forcing and that this forcing can be repre- 
sented by anomaly patterns. The use of " 
anomalies removed the mean field, which 
is strongly determined by physiographic 
factors, revealing spatially coherent cli- 
mate variability patterns. We modeled this 
spatial autocorrelation structure with geo- 
statistical techniques. The resulting spatial 

a sw b4 PRECIPITATION STATIONS 

prediction model was used to interpolate b 
climate anomalies to locations where sta- 

,, , LONE-TERM PRECIPITATION STATIONS 

tion data were missing (Step 2, Section 
3.2.2). The result of this process was recon- 
struction of station records that were dis- 
continuous or limited in length, creating 
complete records for the period 1895-1993. 

The second spatial process was inter- 
polation of these reconstructed station 
records to the grid using a model account- 
ing for physiographic effects (Step 3, Sec- w R  

tion 3.2.3). We employed a knowledge- 
based system that uses our understanding 2s5N 

of how topography and other physio- 120m w 

graphic factors influence the spatial dis- I ~ D ~ W  
10P W SO"* 

tribution of temperature and precipita- 
tion. The output of this process was an 
1895-1993 time series of 0.5" gridded 
monthly temperature and precipitation. 

C 500 t~ SNOTEL PRECIPITATION STATIONS 

3.2.2. Step 2. Statistical reconstruction of 
station records - kriging prediction model 

Geostatistical model. To create complete 
precipitation and temperature station re- 
cords, we used a local (moving window) 
kriging prediction method following Haas 
(1990, 1995). To impute monthly anomalies 
wherever a station value was missing, this 
method takes advantage of the observation 
that temperature and precipitation anom- 
alies tend to be regional in scope. In the 
moving window approach' we first mod- Fig 2. (a) Precipitation stations used to develop the historical precipitation 
eled regional spatial aut~correlation strut- dataset, (b) long-term precipitation stations, primarily Historical Climate 
ture on the order of 1000 km from the site Network (HCN) stations, (c) snowpack telemetry (SNOTEL) stations 
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TEMPORAL DISTRIBUTION OF PRECIPITATION DATA 
8000 1 I I I 1 i I I I 

l%90 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 
Year 

Fig. 3. Number of precipitation stations with data as a function of year. Drop after 1990 reflects the end of monthly time series 
data in NGDC (1994a); data after that were from the HGN dataset (Easterling et al. 1996) 

to be predicted using 200 neighboring stations (Fig. 4);  
actual window size varied based on station density. 
The use of a local, moving window assumed that spa- 
tial structure was locally uniform, but allowed for the 
spatial correlation function to vary by region (e.g, Fig. 
4b vs. d). The correlograms were used to build the krig- 
ing prediction model. 

We applied the kriging model to estimate a missing 
value using the 10 closest sites with data available at 

(a) , 
Prediction Neighborhood 

-120 -1 10 -100 -90 -80 -70 
Longitude 

the time point to be predicted. Using a limited number 
of predictor sites was appropriate both computation- 
ally, because it greatly reduced the size of the system 
of linear equations that must be solved for each predic- 
tion, and theoretically, because it kept the prediction 
area close to the predicted site when possible. A thin- 
plate spline prediction model was also tested; its cross- 
validation prediction errors were higher than for the 
local kriging model. 

Pairwise Correlations 
(b) ] 

. . 
I I 1 I I 

160 320 480 640 800 960 
Distance (km) 

Fig. 4. Spatial autocorrelation structure in monthly precipitation anomalies for (a, b) a site in the Midwest where autocorrelation 
was strong, (c ,  d) a site in southern California where it was weak. (a, c) Maps show a site and its neighborhood ('local window') of 
20 stations used to develop site correlogranis shown in (b, d). Site correlograms show correlations among all station pairs as a 
function of distance (dots) and best fit line with an exponential model, In production runs, the kriging prediction model used 200 

stations to model the correlation function (Section 3.2.2) 
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Method details, HCN station data flagged as infilled having interannual variability patterns consistent with 
( p ~ a r i l y  in the temperature dataset) were first neighboring stations, Prediction error was evaluated 
deleted so that a consistent process would be used using cross-validation, where the model predicted sta- 
throughout for infilling missing values (time of obser- tion data that had been withheld from the analysis. In 
vation, station change, and other adjustments were a cross-validation analysis using 100 sites, predicted 
retained). Monthly fi&um and maximm tempera- values closely estimated observed values with correla- 
tures were converted to monthly mean temperature tion coefficients ranging from 0.72 to 0.96 (Fig. 6a). 
and mean diurnal temperature range to create 2 van- Sites in the Central Lowlands and Pacific coastal states 
ables that were roughly independent (Royle 2000). tended to have stronger correlations (r > 0,90), while 
This allowed us to avoid analyzing 2 largely redundant areas in the western mountains and Great Lakes states 
fields and to ensure instead that the analysis would tended to have the lowest correlations (r 10.80). This 
emphasize important differences between them. Pre- pattern indicates that generally lower errors occurred 
cipitation data were square-root transformed to nor- in regions with relatively low climatic heterogeneity 
malize their distribution and make site variances andlor high station densities, as would be expected. 
more homogeneous, Monthly anomalies for converted Magnitude of errors was generally small relative to 
temperature variables and transformed precipitation interannual variability. Quantile analysis of precipita- 
were calculated relative to corresponding long-term tion cross-validation errors showed a tendency for 
monthly means. underprediction of the highest values and overpredic- 

Univariate local kriging was used for precipitation tion of lowest values, so that there was a slight reduc- 
and bivariate methodology (co-kriging; Cressie 1993a) tion in variance in predicted time series. 
was implemented for mean temperature and tempera- Cross-validation errors for temperature and precipi- 
ture range anomalies. The prediction neighborhood of tation were higher in the early vs. latter part of the 
10 nearest stations was selected at each timestep. record due to lower station densities (Fig. 6b). On 
Larger neighborhoods (up to 25 stations) were consid- average, precipitation cross-validation errors roughly 
ered, but with little increase in precision. The entire doubled going from recent decades back to the early 
period of overlap in data (from all months, all years) part of the record (mean squared error, MSE = 1.3 to 
among selected stations and the site of prediction was 2.5 rn.m mo-l; Fig. 6b). This doubling corresponded to 
used to construct a kriging model for a given missing an order of magnitude decrease in station numbers 
month. Spatial covariance structure was assumed to across the domain (-7000 to -800 stations, with corre- 
be isotropic within a window, i.e. similar in structure sponding change in average densities of 2.1 to 0.2 sta- 
in all directions in space. Unlike Haas (19951, we did tions per grid cell; Fig. 3 ) .  This proportionally low 
not allow spatial functions to vary with time, i.e. by response of errors to station density suggests that the 
season or year. However, kriging was based on cor- network of long-term, primarily HCN, precipitation 
relograms, with spatial covariances standardized by stations captured major variability patterns across the 
station monthly variances, which reduced seasonal conterminous USA. 
dependence in spatial structure. Isotropy and inter- Interannual variability was artificially reduced dur- 
annual stationarity were in~por-tant assun~ptions that ing the first part of reconstructed records for areas 
made the model numerically more 
tractable and better supported by the RECONSTRUCTED STATION PRECIPiTATiON RECORDS 

amount of data available, but which did :z 
not account for potentially important ,, 
spatio-temporal features of climate vari- O so 

ability. These features in-  so 

clude anisotropy within windows aris- zl*" 
*lGo 

ing from non-homogeneous forcing of 5 75 

clirnatic variability by terrain (Diaz & 50 

Bradley 1997, Kittel et al. 2002) and _$25 

decadal continental circulation changes $ 
that alter regional relationships in cli- 5 75 
mate anomaly patterns (Trenberth & I 

i 900 1920 1940 1960 7 980 

Hurrell 1994). 
Model evduation, The kriging pro- Fig 5. Precipllatlon (cm yr-') records for stations in different climatic regions. as 

cess produced realistic fuli-period time in-filled with the knging prediction model: (a) Des Moines, Iowa; (b) Charlotte. 
North Carolina; (c) Bozeman, Montana. Horizontal line through the time series 

series for stations with partial r6?cords is the 40 yr (1951-1990) station mean. including reconstructed data. Horizontal 
(Fig. 51, with the reconstructed records bar in upper rlght spans the period when observed data were available 
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CROSS-VAL! DATiON 
Correlation Between Observed and Predicted 

Longitude 

CROSS-VALIDATION ERROR 
Fig, 6. Kriging model cross- 
validation. (a) Correlation co- 
efficients between observed 
and predicted precipitation for 
100 cross-validation sites. (b) 
Time dependence in cross- 
validation errors for pre- 
cipitation, expressed as mean 
squared error (MSE) for 
square-root transformed pre- 
cipitation. Dots are monthly 
MSE averaged across 100 
cross-validation sites (units = - .- 
mmmo- ' ) .Do t t ed l i ne i s a  

1895 191 2 1928 1945 1962 1978 lgg5 smoothing spline fit of MSE 

YEAR values 

where station densities were low early on, as in the high. Follow-on analyses demonstrated that ensemble 
mountain and intermountain west (e.g. Fig. 5c). This predictions generated stochastically using model- 
was not an issue in regions where stations densities estimated errors can adequately generate this 'missing' 
were high for most of the record (e.g. Fig. 5a,b). This variance (Fuentes et al. 2004). 
effect is conceptually consistent with limitations of the 
kriging model we implemented and is a consequence 
of the model generating overly smoothed spatial fields 3.2.3. Step 3. Spatial interpolation with physiographic 
when there are too few station observations to cap- adjustment - PRISM 
ture regional structure in variability patterns (Cressie 
1993b). As station density is reduced, the model We used PRISM (Parameter-Elevation Regression on 
reaches further away from a site to find predictor sta- Independent Slopes Model; Daly et al. 1994, 2001, 
tions and blends unrelated anomaly patterns from 2002) to spatially interpolate temporally complete sta- 
adjacent regions to predict missing station data. tion records from Step 2 to the 0.5" grid. PRISM is an 
Poorly related anomalies tend to cancel each other interpolation system that uses a spatial-climate knowl- 
when they are blended, diminishing overall variance edge base to parameterize and configure a weighted 
in reconstructed time series. This variance reduction climate-elevation regression function, The weighted 
is an artifact of the model, as evident from the obser- regression function is applied to each grid cell in a 
vation that such shifts generally coincide with a dra- moving window fashion; the size of this window 
matic change in station density (Fig. 3) and are nei- depends on terrain complexity and station density. At 
ther seen in long-term observed station records, nor each grid cell, the model assigns weights to nearby 
in reconstructed records where densities remain stations, based on their perceived climatic similarity 
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to the cell. Factors accounted for were: (1) Distance: 
station regression weight decreases with distance from 
the grid cell. (2) Elevation: weight decreases with 
increasing elevation difference. (3) Topographic facet: 
weight is greatest for stations with similar slope and 
aspect as the cell, as determined at several spatial 
scales. (4) Orographic effectiveness of terrain: weight 
is greatest for stations in terrain that has a similar abil- 
ity to enhance precipitation as estimated by steepness. 
(5) Coastal proximity: weight is greatest for stations 
with similar distance and exposure to a large water 
body (e.g. lake, ocean). (6) Atmospheric inversion: 
weight is greatest if a station and the cell are either 
both affected by mesoscale boundary layer processes 
(e.g. in a valley located below the top of an inversion), 
or both more strongly influenced by the free atmos- 
phere (e.g, on ridgetops above an inversion); this 
allows for a different climate-elevation regression 
within each layer (for both temperature and precipita- 
tion) if an inversion is supported by the data (Daly & 
Johnson 1999). (3) Clustering of stations: highly clus- 
tered stations are assigned lower weights to minimize 
spatial over-representation. 

PRISM was applied independently for each month of 
the 99 yr record. Station values were quality checked 
before processing. PRISM processing was done on a 
fine resolution 2.5' (-4 krn) grid; these values were 
aggregated to the E M A P  0.5" grid using a modified 
Gaussian filter (after Barnes 1964). Post-processing 
checks included visual inspection of monthly gridded 
maps for extreme outliers. 

3.3. Step 4. Stochastic generation of daily tempera- 
ture and precipitation - WGEN 

We used a daily weather generator, a modified ver- 
sion of WGEN (Richardson 1981, Katz 1996, Mearns et 
al. 1996, Parlange & Katz 2000), to statistically disag- 
gregate monthly temperature and precipitation values 
to a daily time series for the 1895-1993 period. WGEN 
uses a first-order Markov chain model to predict occur- 
rence of precipitation (wet vs. dry days) based on 
whether the previous day was wet or not; this allows 
for the persistence of wet and dry days. WGEN then 
stochastically predicts precipitation event size (as- 
suming a gamma distribution) and daily minimum and 
maximum temperatures. Temperature prediction is 
based on daily temperature means and variances 
being conditional on whether a day is wet vs. dry. This 
permitted reduced diurnal temperature range on wet 
days, maintaining physical relationships between daily 
precipitation and temperature. In this model version, 
all parameters were allowed to vary by location, deter- 
mined from station data (Katz 1996). We did not use the 

modified WGENPs capabGities for stochastic simulation 
of daily solar radiation, h d d i t y ,  and near-surface 
wind speed because of the inadequate nurnber of para- 
meterization stations with daily observations of these 
variables, especially in mountain regions (Parlange & 
Katz 2000). We further modified WGEN to include 
separate parameterizations for wet vs. dry years. Such 
conditional parameterization better represents daily 
precipitation variance structure, because precipita- 
tion event statistics shift under drought vs, wet-period 
conditions (Wilks 1989). 

Parameterization of WGEN was based on daily 
records from 526 HCN and cooperative network sta- 
tions (Section 3.1) for the period 1930-1989. This 
parameterization period was selected based on data 
availability and to span several drought and wet peri- 
ods in the 20th century for most regions. Additional 
selection criteria and quality checks on these data 
were: (1) Station records had to exist for at least 90% 
(54 yr) of the 60 yr period and had to have at least 5 
out of the first 10 yr of the period (this was to ensure 
that the 1930s drought period in the western and cen- 
tral USA was represented). (2) We allowed up to 3 d 
mo-I of missing precipitation data and 5 d rno-' of 
missing temperature data for a month to be consid- 
ered complete. (3) All 3 variables (precipitation and 
maximum and minimum temperature) had to be pre- 
sent in a station record. (4) If recorded precipitation 
amounts were accumulated over >24 h, then the ob- 
servation was eliminated; trace amounts were treated 
as zero. 

We ran WGEN for each grid cell for the 99 yr 
record; model outputs are illustrated in Fig. 7a. Para- 
meterization~ were assigned to cells based on nearest 
daily station to cell centers; a given parameterization 
was applied on average to 6 cells. WGEN simulations 
were constrained by gridded monthly values of tem- 
perature and precipitation (from Step 3). Because this 
constraint was not strictly met within WGEN (due to 
the stochastic nature of the model), we forced a match 
between daily and monthly climates. For each cell, we 
credted ensembles of daily series for each year in the 
record. From these we selected monthly daily series 
whose monthly statistics best matched the gridded 
monthly values. Daily values of the selected months 
were nudged so that monthly statistics of the daily 
series exactly matched the monthly data. WGEN was 
run separately for each cell with no coordination in 
the generation of series among adjacent cells. The 
lack of daily spatial coherence restricts the utility of 
the dataset to application models, such as those in 
VEMAP, with no cell-to-cell interaction on a daily 
timestep (see Section 7.1). Because the daily genera- 
tion process is stochastic, the timing of key events for 
a given year (e.g. date of last and first frost) and date- 
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a GENERATED DAILY WEATHER-MISSOULA, MT 
MAXIMUM TEMPERATURE 

100 200 300 

MINIMUM TEMPERATURE 

PRECIPITATION 

DAY OF YEAR 

OBSERVED VS. GENERA1 
PRECIPITATION 

-ED DAI LY STATISTI CS 
MINIMUM TEMPERATURE 

Station Simulated Station Sim~~lated 
TX (92 yrf MN (58 yr) 

Station Simulated Station Simulated 
CO (82 yr) KS (85 yrf 

Fig. 7. (a) Generated daily climate from WGEN showlng temporal autocorrelatlon (e-g. persistence of wet and dry days) and cross- 
correlation structure of maxmurn and minitnurn temperature and precipitation. Output is for a characteristic year for the grid cell for 
Missoula, Montana, from the VEMAPl clataset (Kittel et al. 1995) and reflects behavior of the 99 yr WMAP2 daily dataset. (b) Com- 
parison of daily frequency distributions for station observations vs. corresponding grid cell's WCEN-simulated record for January pre- 
cipitation or m i h u m  temperature, for selected point in TX. TX: central Texas; MN: southern Minnesota; CO: western Colorado; 
KS: northwestern Kansas. Notch plots show median (center of notch), SD (white area = 2 SD), interquartile range (IQR; dark boxes 
around median, spanning 25 to 35 % of values), data range (brackets), and outliers (bars beyond the brackets; defined as values >1.5 
IQR). 'Station' notch plots are for daily observations from a long-term station (usually a daily HCN site), and 'simulated' plots are 
VEMAPZ-generated dallies. Precipitation plot y-axes are in [ln(precipitation)] space (units = mm. mo-'1. The comparison covered the 

full length of a station's record (period length in years is given at the base of each plot) 
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sensitive statistics (such as growing-degree days) 
will not precisely match those in the observed daily 
record, 

We evaluated this process by comparing the fre- 
quency distributions of observed (station) vs. gener- 
ated daily records for 10 locations that represented 
different climate regimes across the domain. The gen- 
erated series was created using parameterizations and 
monthly values from the corresponding grid cell. For 
all sites, the observed vs. generated frequency distrib- 
utions matched closely (e.g, Fig. 7b). Most critically for 
precipitation, the frequency and magnitude of both 
high and low extreme events were well captured-a 
record detail that nlight be expected to be lost in the 
simplification of daily processes in a statistical model 
(Fig. 7b). 

The process of disaggregating monthly records to 
generate daily series differed from approaches used 
in other datasets where observed daily records were 
spatially interpolated or assigned to a neighborhood 
of grid cells (Thornton et al. 1993, Eischeid et al. 
2000, Cooter et al. 2000). These techniques have the 
advantage of providing spatial coherence in daily 
series and of closely reflecting the observed daily 
record (so that date-sensitive historical information is 
retained). Disaggregation was more appropriate for 
the VEb%AP2 dataset because of the need to repre- 
sent daily climate over highly heterogeneous terrain 
early in the 20th century, when daily station densities 
were low. We assumed that, under these conditions, 
it was more reasonable to spatially distribute daily- 
structure parameterizations than actual daily series. 
In methods that grid daily observations, incongruities 
arise when station densities are very low, because 
cell records will be assigned or interpolated from 
stations at a great distance from the cell. The likely 
result is that a cell's daily series may reflect that of a 
markedly different climate regime, with, for example, 
different daily frequency and autocorrelation struc- 
ture and/or a different seasonal pattern of tempera- 
ture and precipitation. 

On the other hand, in the approach of assigning 
parameterizations to cells as used here, a cell's gen- 
erated daily series was based on a parameterization 
throughout the record from the same nearby station 
which was likely to closely approximate the appro- 
priate daily climate regime for that cell. This was 
possible because parameterizations were based on a 
long (60 yr) portion of the record when daily station 
densities were greater than in the early record. Our 
approach of assigning parameterizations to a cell 
from the nearest station, however, does not account 
for the possibility of sharp climate regime changes in 
the vicinity of a cell. This could have led to a cell's 
parameterization coming from a station, for example, 

on the other side of a major mountain. divide. In 
future efforts, this could be controlled for by pairing 
cells with stations based not only on proximity (as 
was done here), but also on other common factors 
that reflect climate regime, such as those accounted 
for in PRISM, e.g. topographic facet (Daly et al. 2002; 
see Section 3.23). 

3.4. Step 5. Estimation of solar radiation and 
humidity - MTCLIN3 

We used a physically-based empirical surface cli- 
mate model, MTCLIM3 (Thornton et al. 1993, 2000, 
Running et al. 198?), to estimate daily records of total 
incident solar radiation (SR), daylight-period irradi- 
ance, vapor pressure (VP), and daylight-period rela- 
tive humidity from daily minimum and maximum 
temperature and precipitation, This approach main- 
tained physical relationships among these surface 
climate variables on a daily and monthly basis. 
MTCLIM3 determines daily SR, based on potential 
solar inputs (as a function of latitude and year date), 
and transmittance estimated from diurnal tempera- 
ture range, VP, and occurrence of precipitation, as 
well as elevation and solar beam geometry (Bristow 
& Campbell 1984, Thornton & Running 1999). The 
model estimates daily W based on a minimum 
temperature (as a first approximation of dew point 
temperature) and evaporative demand based on SR 
inputs (Kirnball et al. 1997). As VP and SR are inputs 
in each other's calculation, MTCLIM3 iteratively 
solves for these variables. Mean daily irradiance 
was calculated from SR and day length. Relative 
humidity was calculated from W using a mean 
daylight-period temperature (Running et al. 1983). 
Monthly means of radiation and hunlidity were 
derived from daily values. 

Kimball et al. (1997) and Thornton & Running 
(1999) evaluated the performance of MTCLIM3 at 
the site level under different climate regimes. Across 
the VEMAP domain, MTCLIM3-generated VP fields 
reflect the broad regional patterns in Marks's grid- 
ded VP climatology (Marks 1990, Marks & Dozier 
1992), which was interpolated from weather station 
data with topographic adjustment (Fig. 8a,b). 
MTCLIM3-estimated SR gridded climatologies com- 
pared well with monthly gridded SR climatologies 
we developed from the Solar and Meteorological 
Surface Observation Network (SMSON) dataset 
(NREL 1993) (Fig. 8c,d). For this comparison, we cal- 
culated 20 yr monthly mean SR from 210 SAMSON 
station time series, which represent modeled as well 
as observed values. Station means were gridded 
using kriging with elevation as an independent pre- 
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a dictor variable to empirically account for 
this control (Fig. 8d). While broad spatial 
patterns generated by MTCLIM3 were 

23 confirmed by comparisons with gridded 
SAMSON climatologies, this evaluation is 

16 limited, because (1) much of the SAMSON 
data are simulated (with detailed site-level 

g models) and (2) a subset of these data 
(from stations dominated by observed val- 
ues) was used to parameterize MTCLIM3. 

<2 

4. Derived Datasets 

23 
4.1. Palmer Drought Severity Index (PDSI) 

16 
PDSI indicates the relative status of soil 

moisture supply and is based on a water 
9 balance concept that provides a standard- 

ized measure of moisture conditions, typi- 

,2 cally on a monthly basis (Palmer 1965, Alley 
[XSQO pa) 1984). We calculated historical monthly 

PDSI based on VEMAPZ historic monthly 
-330 precipitation and temperature data follow- 

ing Alley (1984); required soil infomation 

- 23 was also from Alley (1984). PDSI is a nor- 
malized, unitless value that varies roughly 
between -6.0 (severe dry) and +6.0 (ex- 

" '' tremely wet), where -0.5 to +0.5 is near 
normal. It is a cornmon metric for de- 

8 termining when a dry or a wet spell begins 
and ends. PDSI is a meteorological index 
because it integrates the effects of both pre- 

Fig 8. MTCLIM3 simulated vs. observed vapor pressure (VP) and total incident 
solar radiation (SR) clirnatologies. July mean VP (100 Pa) from (a) MTCLIM3 
and (b) Marks (1990f, regridded to the WMAP grid (note that reds represent 
high VP and blues low values). July mean SR (MJ m-2 d-') from (c) MTCLIM3 
and (d) SAMSON station data (NREL 1993) gridded using kriging with eleva- 
tion as an independent predictor variable; differences in map texture result 
from low SAMSON station densities in (d). MTCLIM3 values (a, cJ were simu- 
lated using VEMAP1 characteristic-year temperature and precipitabon dailies 
whose monthly statistics match corresponding long-term means (Kittel et al. 
1995). These map comparisons are limited in part by uncertainty in observed 
fields (b, d) arising from the low density of stations reporting humidity and SR 
and from their spatial interpolation while accounting for elevation (Section 3.4) 

cipitation and temperature (through its con- 
trol over evaporative demand) on surface 
water balance. PDSI, however, does not 
account for other potential hydrological 
processes and inputs such as runoff routing. 
Key to PDSI is that it has a persistence corn- 
ponent, keeping track of prior soil moisture 
conditions. For example, an abnormally wet 
month in the middle of a long-term dry 
period should not have a major impact on 
the index, nor would a series of months with 
near-normal precipitation following a seri- 
ous drought indicate that the drought is 
over. 

4.2. Detrended model spin-up clirnate- 
TSPIN 

Most ecological models that simulate long- 
term dynamics of biogeochemical pools 
(e,g, soil carbon) and vegetation structure 
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require a spin-up run to initialize these state variables. 
To provide the input for such runs, we created a cli- 
mate series for each grid cell with the following fea- 
tures: (1) The spin-up series has no long-term trend, so 
that it can be looped through as many times as 
required for a model spin-up run with no discontinuity 
at the point where the series is repeated. (2) The series 
retains interannual and decadal variability characteris- 
tics of the historical series. This feature is required for 
spin-up runs because variability at these 
time scales has an important effect on bio- 
geochemical and vegetation dynamics. (3) 
The long-term mean of the spin-up series 
matches the mean clirnate of the beginning 
of the historical series, so that there is no dis- 
continuity at the transition from the spin-up 
to the historical period. We created a 100 yr 
monthly and daily spin-up climate (TSPIN) 
as follows, for each grid cell: 

Detrendhg. Long-term trends in the 
monthly historical minimum and maximum 
temperature and precipitation grid cell time 
series were removed by passing these series 
through a 30 yr running average high-pass 
filter. To create a 100 yr series, an additional 
year was added to the 99 yr records by 
repeating Year 2 at the start of the record 
(Year 0 value x,o = xt2). 

Long-term mean adjustment. The long- 
term mean of the detrended climate series 
was adjusted to match the corresponding 
mean for the first 15 yr of the historical 
record (1895-1909). 

Dailies and additional variables. We then 
used the same processes implemented in the 
development of the historical dataset to 
generate daily records (Step 4) and radiation 
and humidity variables (Step 5) (Sections 3.3 
and 3.4). 

temporal progression, as seen during the mid-1950s, 
when the Pacific Northwest (i.e, NW USA) had above 
or near-normal precipitation, while much of the central 
USA sustained a major drought (see time series in Fig. 
9a) that broke in 1957 (Fig. 9b). Contrasting regional 
patterns of cold vs, warm periods are also represented 
(Fig. 11). A time-longitude section of August PDSI 
shows how droughts in the central and far western 
USA in the 1920s merged and intensified in the 1930s 

1956 
Q 1.3 

PACIFIC NORTHWEST C 

5 0.5 

3 IgOO 1920 2940 X3$r3 1980 

"r a -  CENTRAL QRWT PWlNS 

5. RESULTS 

5.1. Space and time slices 

The dataset reflects both broad latitudinal 
and longitudinal patterns of clirnate, as well 
as finer-scale physiographic effects such as 
seen across the mountainous west (Fig. 9). 
The data capture continental-scale temporal 
variability patterns including droughts of the 
1930s and 1950s and the increasing trend to 
moister conditions from the late 1950s into 
the early 1980s (Fig. 10a). The dataset illus- 

2 "5 PACIFIC NORTHWEST 

0.5 

2 I 1.5 

9 
4 0.5 

lgOD IS20 3940 ^f9M 1 9 m  

Fig. 9. VEMAP2 precipitation spatial and temporal variability patterns. 
Annual precipitation maps for (a) 1956 and (b) 1957 show years dominatecl 
by drought vs. high precipitation, respectively, across much of the south- 
ern and central US. Plots below each map show time series of annual 
anomaly ratios averaged for the Pacific Northwest (western Washington 
state) and Central. Great Plains (Kansas and Nebraska); anomaly ratios are 
relative to the corresponding region's long-term spatial average. Vertical 
red bar in time plots indicates year mapped; horizontal line represents an - - 

trates contrasting regional patterns and their anomaly ratio of 1.0 
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Table 1. Regional trends (regression slopes) in the VEMAP2 Hlstor~cal (Fig, lob). Animations showing the progression 
Climate Dataset from 1895-1993. Temperature trends for the annual of precipitation and temperature during the 
mean (Mean), annual mean maximum (Max), and both annual and 
winter mean m i n i m u  (Min) are m "C per century, Trends for annual 20th century are available on the NCAR V E W  

and summer total precipitation are in mm (%) per century. 'Regres- web site (see 6)= 
sion slope statistically # 0; a = 0.05. Regions are US National Assess- 
ment 'megaregions' (NAST 2001) (Fig. 12). Winter is December, Janu- 
ary, February; summer is June, July, August. n/a = not analyzed 5.2. Dataset trends 

Temperature- Preclp~tatron 
- Annual - Wmter .i%nnudl Summer 
Mean Max Min Mm (mm) (%) (mm) (%) 

Northeast 0.2 0.3 0.1 -0.4 57 (5.4) 2 (0.8) 
Southeast -0.2 -0.1 -0.3 -0.7 108' (8.9) 9 (-2.6) 
Midwest 0.1 0.0 0.2 0.3 63' (7.6) 3 (2.3) 
Great Plains 0.3 0.2 0.4' 0.5 52*(10.5) 14 (7.9) 
West 0.3" 0.2 0.4' 0.9 37 (10.2) 10 (14.3) 
Pacific Northwest 0.2 0.1 0.4 * 0.8 25 (3.2) 24' (29.3) 
ConterrninousUS 0.2 0.1 0.2 nfa 59' (8.2) n/a (0.8) 

While the VEMAP2 dataset was not 
designed for critically evaluating climate 
trends during the 20th century, we analyzed 
Linear trends in the gridded dataset because of 
its use in the recent USA National Assessment 
(NAST 2001) and because these trends influ- 
enced results from the ~ ~ P 2  model inter- 
comparison. Over the last century, the histori- 
cal clirnate dataset showed weak linear trends 
in mean annual temperature and stronger 

AUGUST MEAN CONTERMINOUS US PDSI 
trends in precipitation across the domain and 

a 3 for regions used in the National Assessment 
U = 2 (Fig. 12, Table 1). The pattern of regional 
0 
.c trends in annual mean temperature and pre- 

s cipitation was similar to that found by Karl 

g 0 et al. (1996) for the period 1900-1994 based 

3' on NCDC climate division averages, and by 

ki Hansen et al. (2001) for 1900-1999 based on 

-2 HCN data. These studies also show that the 
3 trends were spatially more variable than can 
a 

1900 1920 1940 1960 1980 2000 be resolved by the NAST. The VEMAP2 

Pix,gu$ PDSI: Hiddeal 7 Year Rttrusing Mean 

-120 -1?5 -310 -705 -.to0 -95 -90 -85 -80 -75 -70 
longitude 

PACjFIC G MS1N ROCKIES G PLAlENS C X;lO%YLBtrS *"rPf3"f,S ATLASTIC N EXG 

Fig. 10. (a) Time series of domain mean of Palmer Drought Severity Index (PDSI) for August. (b) Development of drought as shown 
by time-longitude section of PDSI in August. Vertical axis is time (year); horizontal axis is longitude (OW). Mapped values are lon- 
gitudinal averages for a given year, smoothed using a 7 yr running average, Note how droughts (yellow) in the far western and 
central US in the 1920s merge and intensify in the 1930s. Pacific: Pacific states; G Basin: Great Basin; Rockies: Rocky Mountains; 
G Plains: Great Plains; C Lowlnds: Central Lowlnds; Appls: Appalachians; Atlantic: Atlantic Coastal Plain; N Eng: New England 



Kittel et al.: TEMAP2 historical climate dataset for the USA 165 

a ANNUAL MmfftrfUNf TEMPERATURE AHQMALk/ Temperature trends were positive for all 

- 2.3 
PACIFIC NORTHWEST 

3 8 2.3 
CENTRAL GREAT PMLNS 

@-I 8 

Fig. 11. As in Fig. 9, except for annual maximum temperature anomalies 

regions, except in Southeast where there was 
a tendency for a decrease in temperatures 
[Table 1; e.g. Fig, 13b,h). The lack of a trend 
in the Midwest was a result of averaging 
across a region with strong positive trends in 
the north and negative trends in the south 
(Karl et al. 1996). In the Great Plains, West, 
and Pacific Northwest, positive trends in 
annual nlinimum temperature were signifi- 
cant (p < 0.05) and greater than for maximum 
temperature, reflecting a reduced range in 
diurnal temperatures (Table 1); the Southeast 
showed the opposite pattern, resulting in a 
widening of diurnal temperature range. 
These patterns are consistent with analyses of 
diurnal temperature range trends across the 
USA for the second half of the 20th century 
(Plantico et al. 1990, Easterling et al. 1997). 
Regional winter minimum temperature trends 
tended to be stronger-whether positive or 
negative - than corresponding annual trends; 
however, winter trends were not significant. 

Precipitation trends were also similar 
among regions, with significant (and gene- 
rally the strongest) annual trends in the 
South-east, Midwest and Great Plains (p < 
0.05; Fig. 13a,d,e), and the strongest and sig- 
nificant s u m e r  trend in the Pacific North- 
west (p < 0.05; Fig. 13f, Table 1). Increases in 
annual mean VP and decreases in SR in the 
Midwest and western regions (Table 2) are 
consistent with increases in precipitation (as 
expected, given that precipitation is used in 
the calculation of VP and SR). Although VP 
increased, R H  changed little, largely because 
of nearly matched increases in saturation VP 
from higher temperatures. PDSI trends were - 

in years with opposite regional temperature anomaly patterns. (a) 1933, positive, reflecting wetter conditions through- 
(b) 1958. Anomalies in maps and time series are absolute differences (in 
" C )  from long-term averages, Horizontal line in the time plots represents out the domain, with regionally significant 

a zero anomalv trends in the Southeast, Great Plains, and 
West (Table 2). 

The VEMAP2 dataset generally reflected long-term 
1895-1993 mean annual temperature trend for the climate signals found in climate detection studies. 
entire domain was O.Z°C per century, but was not sta- Documenting these trends is important for interpret- 
tistically significant (ns). This trend was less than ing VEMAP model outputs (Gordon et al. 2004) and 
found by Hansen et al. (2001; 0.3"C per century) and other studies relying on these data (NAST 2001). 
Karl et al. (1996; 0,4"C per century) using slightly dif- However, even though trends in the dataset gener- 
ferent periods and underlying datasets and different ally follow those in formal detection studies and 
processes for spatial distribution of station data. The although some trends were statistically significant, 
VEMAP annual precipitation trend was 6 cnl (8%) their significance with respect to a rigorous assess- 
per century and was statistically significant (p < 0.05; ment of climate change is Limited because of the 
Table 1). This was similar to the 5 % change from the likelihood of time-dependent biases in non-HCN 
first 70 yr of the century to the 1970-1994 period data sources underlying the dataset (see Sections 3.1 
found by Karl et al. (1996). and 7.1). 
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(1) The historical dataset was not designed for 
a definitive analysis of long-term climatic trends. 
The VEMAP2 dataset reflects the 20th century 
climate signal largely because longer station 
records underlying the dataset were primarily 
from the US HCN, with its detailed evaluation 
and correction for data inhomogeneities and 
other quality issues. However, incorporation of 
other data sources without such processing pre- 
cludes the dataset's utility in climate change 
detection studies (see Section 3.1). 

Fig. 12. US National Assessment 'megaregionst (NAST 2001) used (2) The historical daI3set is not an appropriate 
in historical trend analysis (Tables 1 & 2, Fig. 13) source for evaluating long-term changes in cli- 

matic variability, e.g, from the earlier to latter 
part of the 20th century, especially in the western 
USA. In the earlier part of the record at locations 

6. PUBLIC ACCESS - DATA AND TOOLS where station densities were low, the kriging predic- 
tion model tended to underpredict reconstructed time 

The VEMAP2 historical climate, derived datasets, series variame (see Section 3.2.2). 
and companion 21st century scenario climate sets (3) Daily records are not spatially autocorrelated in a 
(Kittel et al. 2000) are publicly available from data manner that captures daily synoptic processes. As a 
archives at the National Center for Atmospheric result, the dataset is not appropriate for simulation of 
Research (www.cgd.ucar.edu/vemap/), Oak Ridge land surface processes that require cell-to-cell inter- 
National Laboratory Distributed Active Archive Cen- actions on a daily basis (such as water basin runoff). 
ter (DAAC) (www-eosdis.ornl.gov/), and University of While the climate dataset has proper spatial autocorre- 
New Hampshire NASA/EOS-Webster (eos-webster.sr, lation structure at the monthly timestep, the disaggre- 
unh.edu/). A user's guide is accessible online (Rosen- gation process used to create the daily series was run 
bloom et al. 2002). Output from VEMAP2 model ex- independently for each grid cell (see Section 3.3). 
periments and other input data used in these sirnula- (4) The daily dataset does not reflect observed daily 
tions are also downloadable from these sites. Other records, but rather is synthetic. As a result, the dataset 
inputs include wind climatology, soil characteristics, does not match actual historical information for day of 
potential natural vegetation, and current land cover key events (for example, last and first frost) nor for 
(Kittel et al. 1995), as well as C02  concentration. daily-derived statistics (such as growing-degree days) 
The C02 record is a yearly global historical (and, after (see Section 3.3). 
1990, IS92a emission scenario-derived) time series of Alternative datasets for analysis of climatic trends in 
atmospheric C02  concentration (Enting et al. 1994, means and variances include the US HCN set (Easter- 
Joos et al. 1996, Wigley 2000). Tools for access, analy- ling et al. 1996; as evaluated by Hansen et al. 2001). 
sis, and visualization of these data are available on Temporally complete gridded or spatially extensive 
the NCAR site. station daily datasets for the USA, based on observed 

7. DATASET FEATURES AND LIMITATIONS 

7.1. Caveats 

Assumptions, data, and methods used in the devel- 
opment of the gridded historical dataset impose limits 
on the use of the data in studies of environmental 
change across the conterminous USA. The dataset was 
designed to provide the best possible long-term and 
wall-to-wall representation of historical climate vari- 
ability and change for use as inputs to ecological model 
simulations. This was accomplished by giving up qual- 
ities that are important for other applications. As a 
result, there are caveats for its use: 

Table 2. Regional trends (regression slopes) in annual mean 
solar radiation (SR), vapor pressure (VP), relative humidity 
(RH), and Palmer Drought Severity Index (PDSI); SR and VP: 
96 change per century; RH: change in 96 relative humidity per 
century; PDSI: PDSI units per century. SR, VP, and RH 
are calculated values (see Section 3 .4 ) .  'Regression slope 

statistically # 0; a = 0.05 

RH PDSI 

Northeast 0.4 
Southeast 0.7 
Midwest -0.8 
Great Plains -0.8 
West -0.7 
Pacific Northwest -1.4' 

Conterminous US -0.5 
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Fig. 13. Historical time series and trends for selected NAST regions (Fig. 12) and selected temperature and precipitation vari- 
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rather than synthetic records, include Thornton et al. 
(1997), Cooter et al. (2000), Eischeid et al. (2000), and 
Maurer et al. (2001). 

7.2. Summary 

Through analysis of spatial covariance structure 
and use of physicdtly-guided statistical relationships 
among climate variables and physiographic controls, 
we created a long-term (99 yr) gridded dataset of 
monthly and daily precipitation, mininlurn and maxi- 
mum temperature, solar radiation, and humidity. The 
dataset is: (1) temporally complete, with realistic repre- 
sentation of climate variability at daily through 
decadal scales; (2) spatially realistic, reflecting key cli- 
mate gradients and spatial patterns of temporal vari- 
ability across the domain at a resolution of 0.5" lati- 
tude/longitude; and (3) physically consistent, main- 
taining relationships among climate variables, as well 
as with topography and other geographic factors. 
These features are crucial for reliable simulations of 
ecological processes across the conterminous USA for 
the 20th century. Keeping in mind dataset limitations, 
such simulations can be used to improve our under- 
standing of how climate variability and change deter- 
mine ecological outcomes and to evaluate ecosystem 
models against field and remotely sensed ecological 
observations. 
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