
Using the Zope Web application framework
to build and manage a large encyclopedia
of scientific knowledge
JOHN JORDIN JR.*, WILLIAM HUBBARD+, DEBORAH KENNARD+,
WILLIAM MILNOR’, MICHAEL RAUSCHERI’, AND BRYAN VEAL’

INTRODUCTION

Many social and economic institutions in the Southern Appalachians depend on the various benefits
provided by its forests, such as abundant, high-quality timber; plentiful and diverse fish and wildlife;
extensive recreational opportunities; and, a variety of nontimber forest products. These benefits take on
added value because of their proximity to human population centres and the strong social and cultural
heritage of rural and indigenous populations. This region is experiencing increasing pressure to provide
this wide diversity of resource values to millions of people.

These socio-economic concerns have driven substantial research efforts in the southern Appalachians.
As a result, an overwhelming body of information exists covering many aspects of forest ecosystems in
these mountainous areas. For example, the Coweeta Hydrologic Laboratory, established in 1934, has
been a centre of forestry research in the region-nearly 900 publications from that site alone had been
produced by 1994 (Stickney et al. 1994). Scientists at the U.S. Department of Agriculture Forest Service,
Southern Research Station’s Bent Creek Experimental Forest, established in 1927, have produced 287
publications. In 1993, Nodvin et al. published a list of some 2500 publications associated with the Great
Smoky Mountains National Park. The Southern Appalachian Assessment (SAA) generated nearly 3
gigabytes of information about the status of resources in the southern Appalachians (SAMAB 1996).

Despite the accumulation of this large body of research knowledge, a gap exists between what
scientists know and what the management community is able to apply on the ground. Most research
knowledge is neither easily accessible nor readily useable because it has not been synthesized and inte-
grated into a coherent, meaningful knowledge structure. In most cases, this knowledge base retains the
fragmented nature of the many separate publications that compose it. What should emerge as an inte-
grated and coherent body of knowledge appears instead to managers as disconnected pieces of the
“whole” that they need for applied problem solving. In such a situation, knowledge gaps are not easily
identified, important knowledge developed a decade or more in the past is unknown, and the interest-
ing, but relatively unimportant, research problems cannot be distinguished from those that are both
interesting and critically important.

Because land managers deal with forest resources in aggregate, they need knowledge that captures the
integrative nature of ecosystems and management. Moreover, as natural resource management moves
from a multiple-resource management paradigm to an even more challenging ecosystem management
paradigm, the need for powerful knowledge management aids becomes urgent.

C I T A T I O N -

Jordin, J. Jr.. W. Hubbard, D. Kennard, W. Milnor, M. Rauscher, and B. Veal. 2003. Using the Zope Web application framework to build and
manage a large encyclopedia of scientific knowledge. In Natural resources information management forum: Putting knowledge to work.
T. lnnes (editor). FORREX-Forest Research Extension Partnership, Kamloops, B.C. FORREX Series No. 8. pp. 135-145.

.

To address this need for more accessible, understandable, and condensed research knowledge, we
began the Encyclopedia of Southern Appalachian Forest Ecosystems (ESAFE)-a hypertext-based ency-
clopedia system available on the Internet. This project aims to synthesize what we know scientifically
about the management and ecology of Southern Appalachian forest ecosystems, organize it logically, and
make it universally available at no cost to users. The encyclopedia is designed to be dynamic, so that new
or revised content can be submitted directly through the Internet, resulting in a continuously updated,
expanded, and improved knowledge base.

The main objectives of the encyclopedia are to:

l organize research knowledge about southern Appalachian forest ecosystems;
* present scientific information on the Internet in a form that is accessible to a wide variety of users;

and
l provide research information in a form that is easy to apply to the daily work of forest managers,

landowners, and researchers.

In this paper, we will discuss the development history and hypertext preprocessor (PHP) infrastruc-
ture problems, provide a brief introduction to Zope, and describe how we utilized Zope to create a
hypertext encyclopedia with a dynamic content management system. A companion paper (Kennard et al.
in press) describes the development of scientific content more fully from an author’s perspective.

Development History and PHP Infrastructure Problems

The current version of the Encyclopedia of Southern Appalachian Forest Ecosystems (ESAFE)’ was
released for evaluation in June 2002. It is composed of original summaries of hundreds of topic areas
compiled from thousands of literature sources. Content is organized in a hierarchical format so that
each page has only one parent page. It is possible for multiple pages to designate the same page as the
parent, thus creating sections or a tree-type data structure.

The infrastructure for this version of the encyclopedia was originally created using static HTML
publishing methodology. We accomplished this by using the PHP scripting language (Ratschiller 2000) in
combination with the M~SQL relational database software to create and manipulate a treelike data
structure. We originally planned for a product containing approximately 2000 HTML pages contributed
by a small number of authors. The authors created content using the Microsoft@ FrontPage HTML editor.
Completed content was then delivered by authors to the project content manager as sections were
completed by each author. Sections were integrated into a common structure outline by the content
manager and then delivered to the infrastructure manager for inclusion into the on-line system. If
content was to be revised or additional material was to be added to a section the same process had to
take place. This made progress slow and tedious at best.

The initial release of the ESAFE was evaluated using an on-line survey. This survey asked participants
to designate whether they were natural resource professionals and to provide general comments on the
achievement of the goals set for the project. Results indicated that users were impressed with the project
as a whole and that they would definitely like to see greater scope and more depth of content (Kennard
et al. in press). Concerns expressed included missing content, availability of reference citations, how the
quality of content was to be assured, and how content would be kept current. A direct result of this
evaluation was the decision to expand the ESAFE by adding additional content and to fund the develop-
ment of a second encyclopedia on “Southern Fire Science.”

Plans for expanding this initial ESAFE system immediately brought about the realization that the
existing PHP infrastructure was inadequate. Not only that, our entire content creation paradigm of a few

’ E v a l u a t i o n v e r s i o n c a n b e f o u n d o n l i n e a t : www.jorestencyclopedia.net

‘.

authors feeding content to a single content manager had to be revised. Numerous authors providing a
continuous stream of content required a much more efficient content processing system than the one we
originally envisioned. Quality control and assurance required scientific peer review of all content to
provide the credibility that users were demanding. The organizational structure that gives meaning to
the individual content HTML pages would have to be very dynamic and easy to update and maintain. In
short, we needed a complete content management system (CMS) with capabilities well beyond the
original PHP infrastructure design. After examining many competing approaches, we chose to use the
Zope Web application framework (Spicklemire et al. 2001) to develop our second-generation CMS
encyclopedia infrastructure.

AN INTRODUCTION TO ZOPE

Zope is an open source software product that provides a framework to develop Web applications. In this
context, a framework is a set of standards and tools for standardized development. A Web application is
a computer program that users access with a Web browser over the Internet (Latteier 2001). In contrast
to static information, Web applications provide a means for users to interact and utilize various tools
built into the application. Common examples of Web applications include search engines such as
Google” or e-mail programs such as Hotmailm. Zope is actually several different things in one package.
Zope includes an HTTP, FTP, and Web-DAV server, an object database, and a framework for creating
applications.

Zope was created as a new way to structure CGI-based programming envisioned by Jim Fulton, the
current chief technology officer of Zope Corporation. The Zope Corporation leads in setting the direc-
tional development of Zope, yet Zope has an extensive development community that extends far beyond
that of the Zope Corporation (Schmitz 2001).

Basics of Zope

Zope is primarily developed in the object-oriented programming language python (Learner 2002a). In
fact, Zope stands for Z Object Publishing Environment. This title describes the core of Zope very accu-
rately. Zope was founded with the awareness that the Web is essentially object-oriented. A URL to a Web
resource is fundamentally just a path to an object in a containment hierarchy, and the HTTP protocol
provides a way to send messages to that object and receive its response. Zope differs from the traditional
Web systems in that content rendering is based on objects and their definitions as opposed to a linear
interpretation of static files.

Applications are built with Zope by combining and connecting various objects that are created
independently (Learner 2OO2b). Zope comes out of the box with a means to manage and create sites and
objects directly through the Web. The Zope Management Interface, or ZMI, allows for development of
sites by multiple authors by simply using a Web browser. By using the ZMI, users can create many types
of objects such as folders, files, documents, Python scripts, and much more. Different object types are
meant to provide their own distinct functionality. As an example, folders are used to collect and organize
other objects, whereas Python scripts are used to provide the ability to program logic. This is a funda-
mental principle of Zope that allows for presentation, content, and logic of a site to be completely
separated. Besides the ZMI, other methods to develop with Zope such as FTP and Web-DAV are sup-
ported.

Acquisition

A cornerstone for understanding the operation of Zope is the principle of acquisition. Acquisition is a type
of object-oriented programming similar to that of “inheritance” in other languages, such as Java and C++.

‘ 3 7

The difference between the two can be simplified by considering inheritance as an “is-a” relationship, but
acquisition as a “in-a” relationship. With acquisition, objects can acquire attributes from their containers,
even if they don’t have those attributes themselves. When you place objects inside of other objects you
create much more than a Web site, you are creating an information structure. For example, if a folder has
the ability to send e-mail, then any objects that are placed inside of that folder also can send e-mail.

Security

One of the more difficult parts of deploying a Web application is ensuring its security. It is important
that users of the Web application can interact in ways that do not compromise the integrity of the
application. This is achieved by restricting the areas in which a person can operate and also the functions
that they can use inside of each area. Zope provides several tools for providing appropriate access to the
server and the content that it manages. The first step in achieving this goal is having a means to distin-
guish one user from another. Users inside Zope are defined by a user object type that stores a user name
and password for each user. User objects are stored inside of objects called user folders. Zope assumes
that a connection to itself is anonymous unless the request provides authentication information that
Zope can verify consisting of a user name and password. After authenticating a user, Zope regulates
security and access to content on an object-by-object basis. This is achieved with the concept of per-
missions. Permissions govern whether a particular entity can take a specific action. When a user is
authenticated inside of the Zope system, it checks to determine if the user object is permitted to perform
the action that is requested. It does this by checking to see if the user has access to the appropriate
permission that is protecting the action in question.

Hundreds of permissions are defined inside the default installation of Zope. In addition, permissions
can be created or extended by adding onto or modifying the core Zope installation. To simplify the
management of security inside of Zope, the concept of a “role” was introduced. Roles are simply non-
exclusive groups of permissions. These roles are then associated with each user inside of a Zope
application. Roles allow you to collect permissions that are common among a group of users inside of
your application. Zope has four built-in roles by default: Anonymous, Manager, Owner, and Authenti-
cated. Besides being able to assign roles to a user for the entire site, local roles allow for the assignment of
roles to specific portions of a site. A user might be granted the authenticated role for the entire site, but
only has the manager role for a portion of the site.

Content Management Framework

As Web sites have become mainstream methods for businesses and organizations to provide services and
content, traditional means of Web site management have become a very expensive and brittle proposi-
tion. The software industry has developed a solution to handle this dilemma with a wide variety of
products which are collectively known as content management systems (CMS). Content management
systems typically provide a single solution for the creation, management, publishing, and presentation of
content. Hundreds of software products are available that can handle anything from small enterprise
level applications to massive international corporate needs. With price tags that usually start in the tens
of thousands and can soar well into the millions, selecting a system that will meet your current needs
while providing the ability for expansion is vital.

The Zope solution for content management is called the Content Management Framework (CMF).
The CMF is a collection of Zope products that work together to provide authoring, publishing, and
management of custom content types. Built on the basic Zope platform, the CMF extends the functional-
ity of Zope by introducing some new features such as skins, workflows, and portal tools.

Zope provides a few default content types that include document, file, image, and folder. The true
power of the CMF is harnessed by creating custom content types. Zope provides an easy to use product
called a Xlass that allows developers to create custom products directly through the ZMI by building on
the base products defined in the default installation.

Skins are sets of objects called Zope Page Templates that are used to define how the site functions.
Zope Page Templates allow developers greater flexibility in separating an application’s presentation layer
from the business logic that drives it, thereby making it possible to easily update one without disrupting
the other. Skins define the presentation and interaction for your CMF site. By creating different collec-
tions of skins, you can create entirely different presentations for your site. For example, you might want
to have a set of skins that favours low-bandwidth users and one that provides a richer, high-bandwidth
environment. Users could decide which set they wish to use when registering with the CMF. Skins also
allow you to define common aspects of your site in only one place by using Template Attribute Language
Expression Syntax (TALES), a tool implemented within Zope Page Templates.

Portal tools are objects that define how various aspects of the site behave. The membership tool,
member data tool, and registration tool are used to control how users register with and interact with the
site. The portal catalogue tool defines what objects are stored for searching and the data that is used to
search for these objects. Finally, the portal types tool defines what types of content can be created inside
of the site and what actions can be performed for each content type.

A workflow is an object that defines the rules for the content publishing process inside a CMF. Work-
flows govern’ what steps must be taken and by whom so that content can be made available to the general
public. A workflow is a state machine, in which a content type can only be in a single state at any point
and time. Developers can define multiple workflows to use with different content types. This allows for
increased restrictions on more sensitive content, while improving the deployment time for content that
is less sensitive in nature.

DEVELOPMENT OF THE ENCYCLOPEDIA USING ZOPE

Why We Chose Zope

We were deliberate in selecting Zope as the new,platform for the encyclopedia system. Our specific
requirements for platform performance and abilities combined with limited resources focused our
attention on Zope rather quickly. Other solutions were found to be too costly both financially and with
respect to the training and support that would be required. After a period of extensive research on the
features, limitations, and real-world applications of Zope, members of the development team attended a
one-week training session conducted by the Zope Corporation, May 6-9,2002, in Fredericksburg,
Virginia. Already familiar with the basic concepts and skills associated with Zope, the training provided
an opportunity to interact with the developers of Zope, which allowed us to address specific concerns
and concepts about applying the platform to the encyclopedia system. After the training, we were con-
vinced that Zope could remedy all of the issues that were identified by the evaluation version of the
ESAFE.

Zope is an open-source product that allows users to read, redistribute, and modify the source code of
software. Most open-source products are available at no cost. Nevertheless, the advantage of using an
open-source solution includes much more than cost savings. Allowing the users of an application to
contribute to the development extends the possibilities of collaboration and sharing of resources. Our
development team was extremely familiar with open-source products having used Apache Web server
running on Linux platforms for years, both of which are open source. The fact that Zope was recently
converted to an open-source project was seen as beneficial. The ability to access source code would aid in
our understanding of the underlying principles of the software and also provide the ability to tailor
Zope to fit custom encyclopedia requirements. Our development team members are all experienced
programmers. None of us had any previous experience with the Python programming language which
presented a real concern. Investigation proved Python to be similar to other languages that we were
currently using and that it had a relatively shallow learning curve.

139

One of our hopes was that by converting the encyclopedia to a content management system, we could
extend the topic areas of encyclopedia sets to support the entire forest research community if it was so
desired. To do this, a system that could expand as needed and handle very large request loads and data
retrieval would be necessary. Zope provides several tools that allow you to assess its performance,
including programmatic browsing, logging, and profiling (Bernstein 2002). Zope also provides both
an accelerated HTTP cache manager and a RAM cache manager allowing you to save results that are
computationally costly to generate and that change in their resulting output infrequently. Finally, the
Zope Enterprise Object (ZEO) is a distributive processing system that allows multiple “clients” to a use
the same object database. The ZEO is a very powerful tool that can scale to handle the most extreme
traffic conditions.

Encyclopedia Specifications

After the decision was made to develop a content management system with a Zope CMF that would
address the issues previously mentioned, the development team agreed on a set of specifications which
we wanted the system to implement. Authors would be able to create and edit multiple types of content
inside of the system and have the ability to choose when to submit individual pages or complete sections
for publishing. The system should handle the entire peer review and publishing cycle in an effective and
comprehensible manner. Finally, the system should address any scenario that would jeopardize the
integrity of published content.

The Development Process

To convert the current encyclopedia to the new CMF version, several sequential steps were required. Having
a body of data and several existing authors from the ESAFE in place was helpful for testing system design
features as they were developed. The development sequence established for the new Zope systems was:

1 . develop skins for general presentation and the navigation system,
2. develop custom products for content types,
3 . create tools to ensure link and content integrity, and
4. develop workflows to associate with the content types.

A new domain name, zope.forestencyclopedia.net, was established for testing and commentary of the
new system during its development. An on-line forum was established to facilitate communication
about standards and specifications, development progress, and critique of the system among all involved
in the project.

Skins

The USDA Forest Service released new templates to use for all Forest-Service-related Web sites during
2002. Fortunately, these templates were designed in such a way that they were easily adapted to work well
with the features provided by Zope Page Templates. By utilizing the concept of acquisition, we are able to
create entirely new encyclopedias without modifying any existing code by simply inserting new content
at the top level of the content hierarchy. The Zope CMF comes with default skins. This simplifies devel-
oping new skins because we can use the old ones as a starting template. Altogether new skins were
created for custom content types and to aid in certain actions and features unique to the encyclopedia
sys tem.

Navigation

The default skins were customized to provide a dynamic navigation system that would be available
system-wide. The navigation structure is dynamic such that new options are created automatically as the
structure of the encyclopedia system changes. Users can browse any part of the published encyclopedia

140

system. By first selecting an encyclopedia from the home page of the site or from the drop down menu
found in the top right corner, a list of primary encyclopedia sections will appear below the title of the
encyclopedia chosen. Secondary levels of an encyclopedia are displayed directly beneath the primary
sections. Any pages that are located beneath the secondary order are displayed in a collapsing tree in the
lower left portion of the users screen (see Figure 1).

In addition to reflecting the current structure of the system that allows both anonymous or authenti-
cated users to browse through encyclopedias, for authenticated users an actions menu is displayed that
reflects the user’s role in relationship to the object that is currently selected or being viewed. If an
authenticated user is logged into the system, available actions are displayed directly above the sub-
secondary navigation tree. The actions menu is grouped into four possible categories depending on a
user’s role for the object that is currently selected. These categories are: object, workflow, folder, and
global actions. The actions listed under the object category are directly associated with the selected
object. Common examples of object actions include comment, view, edit, or metadata. Listings under
the workflow category depend on the viewed item’s current state in its associated workflow. Workflow
actions may include submit, publish, retract, accept, assignment, deny, or many others. Folder actions
work on subgroups of objects; that is, they display the objects that are contained by the currently se-
lected item or assign local roles for a section. Finally, global actions provide actions that do not depend
on any one object item or type. Undo, messaging, or site configuration are examples of global actions.

Custom Products

Currently, the encyclopedia is composed of one primary content type called an encyclopedia page. Pages,
in turn, can contain supporting content types such as images or citations. A default CMF provides several
content types. We utilized the image type from the default CMF. All other content products such as
citation or encyclopedia page were created from scratch by the development team.

FIGURE 1 Encyc loped ia nav iga t ion sys tem.

Encyclopedia Page

As the primary component of the encyclopedia system, pages are the most commonly created content. The
encyclopedia page is both a document and folder in nature. A page has the attributes of a document in that
it displays text, images, and other content using standard HTML. A page also has folder attributes in that it
serves as a structuring object that can store other objects. This feature creates the structure and hierarchy
for the entire encyclopedia system. Pages can store images, citations, or even other pages. The ability to have
page objects contain other page objects is central to several aspects of the system (e.g., the navigation).

Page content is unique in how it is created and edited. By using the Document Object Model devel-
oped by Microsoft @ and JavaScript, a Web HTML editor was created. This “what you see is what you get,”
or WYSIWYG, editor allows authors to format text, such as setting headings or italicizing text, within a
restricted set of HTML standards. Authors are not required to know HTML to add links to either other
published encyclopedia pages or to outside Web sites inside of a page they are editing. The editor also
allows authors to insert tables or graphic images into a page.

Citations

One of the features of the encyclopedia system is that citations referenced inside of an encyclopedia page
are hyperlinked to the full reference for each citation. To create a citation, authors first choose the type of
media they are citing. Based on this decision, the author then inputs values for each variable required to
correctly form the citation. The layout or style for each citation type is defined in the class for the citation
product. By storing the variables, such as title, author, publisher, or year separately, we have the ability to
change from one style guide to another by simply modifying the source code for the citation product.

Authors use a button on the WYSIWYG editor to insert citations into their work. Before authors create
a new citation to insert, they are forced to search to ensure that the work they are citing has not already
been created by another author. If a matching citation already exists, authors can simply reference that
object. This reduces the amount of redundancy found inside of the system.

Link Management

One of the strengths of the encyclopedia system is that an author can link to content that has already
been contributed and published by other authors. However, this presents a problem when and if that
content object is moved thereby breaking links in other objects that link to it. The link management
system will ensure that links to all content, including citations, images, and other pages, will always stay
current. In addition to assuring that links to internal content are never broken, the link management
concept will allow us to implement tools in the future to analyze various aspects of the system such as
perceived importance of a page based on how many other pages link to it.

The system revolves around the use of a relational database (MYSQL) with one table. The table con-
tains a unique “ID," a “to,” and a “from” column. When a user inserts a link to internal content into a
page via the WYSIWYG editor an entry will be made into the table. The “from” entry will contain the path
or location to the item being edited or containing the link. The “to”column will contain the path or
location to the item that the link represents. For example, consider a page called Foe with links to an-
other page called Bar; Bar in turn contains an image called Baz. Two entries would be made into the link
management database as follows:

ID To From
1 /path/to/Bar /path/to/Foe
2 /path/to/Baz/path/to/Bar

The actual links that are created inside the page being edited refer to a special Python script, called
“renderLink,” which provides an interface to the database to find the correct content. The renderLink
script will look up the “to” field for the given ID and use it to redirect to the corresponding content. This
way when objects are moved we aren’t forced to manipulate countless other objects.

142

Now let’s consider the movement of objects that are referenced by other objects. What would happen
if the page Bar were moved to another section with the path of “/path/to/some/new/Bar”? This will
require the manipulation of the Cut, Copy, and Paste actions in addition to the final steps in the publish-
ing process. These actions will be modified so that a query would be made to replace all instances of “/
path/to/Bar,” the original path, in both the “to” and the “from” column to the new path “/path/to/some/
new/Bar.“This would change the way the links would be rendered by using the renderLink script to
reflect the new location of the object.

Workflows for Content and Azer Review

Custom workflows allow for peer review of content before it is published and made publicly available. A
workflow is associated with each content type that can be created inside of the encyclopedia. The most
complex of these workflows is related to the encyclopedia page type. Authors submit pages which will in
turn submit any supporting content for that page. Authors must designate their intended location for the
page inside of the encyclopedia by noting a parent page when submitting it for publishing. This intended
location inside of the encyclopedia is used to designate the appropriate users to review and publish the
object. Each step of the workflow is performed by different users based on the roles that they have in the
intended destination section. Users are notified by weekly e-mail and with messages left for them in their
desktop area when content requires their attention in order to progress in the publishing process.

After the initial step is taken by the author to publish a page, the next step is for the page to be evalu-
ated by the technical editor of its intended section. The technical editor can provide commentary and
either reject or accept the authors submission. If, at any point, a page is rejected in-the workflbw, it must
travel through the entire process again. After a technical editor has accepted the page, the editor for the
intended location or section editor, designates users to peer review the document and supporting
content for its scientific merit, appropriate style, and form, and whether the intended location is correct.
Reviewers are assigned based on their expertise relative to the content in question and also their current
workload. After a critical number of reviewers accept the page, it progresses to the final step of editorial
board review. The editorial board consists of those users who have an editorial role at the top level of the
associated encyclopedia set. All members of the editorial board must accept the page for it to be pub-
lished. Figure 2 represents a flow chart that illustrates the page workflow as described.

Authors can, at any time, check on the status of objects that are currently within the publishing
process. Certain comments are restricted so that reviewers can maintain their anonymity.

Editing Existing Content and Content Ancestries

Once a component is published, any user will be able to create a copy of the content in their desktop
area to make additions or changes. It is important to prevent multiple authors from editing the same
content at once, thereby creating problems with different versions. Once a user creates a copy of the page
and supporting content for editing purposes, a lock is placed on the published version indicating that it
is being edited. Several tools are being implemented to ensure that content is not locked for an extended
period of time. Any revisions to content must go through the appropriate channels of peer review before
replacing the original content in the encyclopedia structure.

By just replacing current content with edited versions, we lose the ability to document changes in
science over a period of time. To preserve and represent this change in knowledge, a historical represen-
tation of such changes is needed. We have discussed multiple methods of implementing this feature
including, doubly linked objects, a naming scheme, or object variables. The implemented solution was to
use the workflow for editing a page and to create another product for the archive called “Page Archive.”
This product will be almost identical in aspect to the “Page” product. However, certain features will be
different, mainly the roles. Once a page is archived, it is important that only a few people are able to edit
it, if anyone at all. In addition, page archives are omitted from the portal catalogue to make sure they are
not returned in search results.

143

inpublished Content
hpubll$htd cotidrd is not
lflblt so mn&lymrnlr WM.

Published Content
Conlrn~ is vitit4o to ;lil urm. Any non-anonymour user WI copy c~nfowf Into their dtrklop for
editing. This copy only mplxn the origlnsl alfor +~cc~sfuI c0mpl0&111 d lhs publifihing cydo.

FIGURE 2 Encyclopedia page workflow for publishing and peer review.

Once a page that is intended to replace an existing one completes the peer review cycle, the original
page is converted into a “Page Archive” and is contained by the newly approved page. The approved page
then takes the place of the original in the encyclopedia structure. When a user views any page that
contains an archived version, they are notified by a hyperlink that allows them to view the entire lineage
or set of archives for the current page and the date that the archive was created. Our hope is that by
browsing this collection of archives, a user can get a sense of the direction of research and the patterns
associated with changes in what is known about the topic in question.

CONCLUSION

The Technology Encyclopedia Development Team of the Southern Regional Forestry Extension Office is
currently on schedule to release a beta version of the new Zope CMF-based ESAFE during the spring of
2003. After conducting a series of tests and case studies using existing authors and content, the new
Southern Fire Science encyclopedia will be developed exclusively with this new system.

Learning to develop with Zope has proven to be a challenging, yet rewarding, project. A lack of quality
documentation regarding the CMF created considerable frustration at times. The questions that docu-
mentation did not readily answer were solved by referencing the source code for Zope. In the future, we
hope to extend Zope itself and make our contributions available to the general public to allow other
groups to build on our success.

144

REFERENCES

Bernstein, M.R., S. Roberston, and Codeit Development Team. 2002. Zope Bible. Hungry Minds Inc.,
New York, N.Y.

Kennard, D.K., H.M. Rauscher, P.A. Fleebe, D. Schmoldt, J.B. Jordin, W.G. Hubbard, and W. Milnor.
[20031. A prototype of an online scientific knowledge management system. Forest Ecology and
Management. In press.

Latteier, A. and M. Pelletier. 2001. The Zope Book. New Riders, Indianapolis, Ind.

Learner, R. 2002a. Introducing Zope. Linux Journal 94:20-23.

.2002b. Zope products. Linux Journal 95:14-l 8.

Nodvin, SC., J.S. Rigell, and SM. Twigg. 1993. An indexed reference database of the Great Smoky
Mountains, North Carolina and Tennessee. National Park Service, Southeast Region, Technical
Report NPS/SERGRSM/NRTR-93/08. NPS-D-413.

Southern Appalachian Man and the Biosphere (SAMAB). 1996. The Southern Appalachian Assessment
summary report. U.S. Department of Agriculture Forest Service, Southern Region, Atlanta, Ga.
Reports 1-5.

Ratschiller, T. and T. Gerken. 2000. Web application development with PHP 4.0. New Riders,
Indianapolis, Ind.

Schmitz, J. 2001. Statute of the EuroZope Association. URL: www.eurozope.org/statutes_bilinguaZ
[Accessed 29 January 20031

Spicklemire, S., K. Friedly, J. Spicklemire, and K. Brand. 2001. Zope Web application development and
content management. New Riders, Indianapolis, Ind.

Stickney, P.L., L.W. Swift Jr., and W. T. Swank. 1994. Annotated bibliography of publications on water-
shed management and ecological studies at Coweeta Hydrologic Laboratory, 1934-1994. U.S.
Department of Agriculture Forest Service, Southeastern Forest Experiment Station, Asheville, N.C.
GTR-SE-SO.

AUTHOR

* Correspondence to: John B. Jordin Jr., Information Technology Specialist, Southern Forestry
Extension Office, University of Georgia Forestry 4-433, Athens, GA 30602

E-mail: jbjordin@soforext.net

t Regional Extension Forester, Southern Forestry Extension, University of Georgia
$ Scientist, U.S. Department of Agriculture Forest Service, Southern Research Station
5 Information Technology Specialist, Southern Forestry Extension, University of Georgia

JJ Scientist, U.S. Department of Agriculture Forest Service, Southern Research Station
Information Technology Specialist, Southern Forestry Extension, University of Georgia

145

