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Abstract: Biomass estimation is critical for looking at ecosystem processes and as a measure of stand yield. The
density-integral approach allows for coincident estimation of stem profile and biomass. The algebraic difference
approach (ADA) permits the derivation of dynamic or nonstatic functions. In this study we applied the ADA to
develop a self-referencing specific gravity function and biomass function as part of a density-integral system
composed of taper, volume, specific gravity, and biomass functions. This was compared to base systems of
similar equations that did not have the self-referencing parameter specifications. Systems of equations were fit
using nonlinear, seemingly unrelated regressions with nonlinear cross-equation constraints to account for
contemporaneous correlations in the data. Results suggest that correct volume determination is more critical than
specific gravity for accurate biomass estimates. The goodness-of-fit statistics clearly show that the self-refer-
encing system provided a better fit than the base system. FOR. SCI. 52(1):81–92.
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B IOMASS AS AN ESTIMATION of wood quantity has
been used extensively in northern Europe and the
southeastern United States (Husch et al. 1982).

While biomass has become increasingly important as a
measure, so too is the increased interest in development of
merchantable biomass equations. Merchantable biomass
equations allow for prediction of biomass by product class
from a tree, and hence the economic value of trees (Busby
and Ward 1989). To achieve more efficient utilization of
timber resources, forest managers need a thorough under-
standing of the relationships among volume, biomass, and
wood properties, i.e., wood density (Myers et al. 1980). The
laws of physics tell us that two objects with equal volumes
and differing densities will have varying weights. Thus,
trees with differing densities or specific gravity values,
regardless of tree form and taper, will have varying total tree
and merchantable biomass values.

In a data variability study examining the variation in the
specific gravity of loblolly pine (Pinus taeda L.) increment
cores from 30 randomly selected trees from each of 130
stands, Jordan et al. (2004) found that more variation in
cross-sectional specific gravity was found to exist between
stands than among trees within stands. This is an indicator
that other factors, including site quality, length of growing
season, rainfall, and genetics, could possibly be playing a
key role in determining specific gravity. This also suggests
that, if an estimate of tree or average stand specific gravity

could be incorporated into density-integral type biomass
equations, then more precise estimates of tree and subse-
quently stand biomass could be obtained. Not only would
this allow for better estimates of standing biomass, but it
would provide more precise estimates of the economic
return expected.

The objective of this article is derivation of a dynamic
system of compatible taper, volume, self-referencing spe-
cific gravity, and self-referencing biomass equations. The
self-referencing specific gravity and subsequently derived
biomass equations were developed using the algebraic dif-
ference approach method first proposed by Bailey and Clut-
ter (1974), and discussed extensively by Cieszewski and
Bailey (2000). This new approach will allow for the incor-
poration of observed specific gravity values in the biomass
equation, which will lead to a more precise estimate of stem
biomass.

Methodology
The Density-Integral Approach

The mass of an object is simply its volume multiplied by
its density. This is well known, and can be found in any
calculus book referencing the mass of a lamina. This fact is
the basis for calculation of bolt dry mass from sample trees
used in biomass studies. The normal procedure is to cut
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disks from the base of each bolt for laboratory determina-
tion of its density or its specific gravity. Since the base of a
bolt is the top of the previous bolt, a measure of density at
the ends of each bolt (except the tip) is obtained. A weighted
average bolt density (where weight is disk cross-sectional
area) is determined, which is then multiplied by bolt volume
to obtain bolt dry mass. The need for weighting density
results from the fact that it varies throughout the tree.
Density, or specific gravity based on a green volume/dry
weight basis, varies as a function of tree height, decreasing
from the base to the tip of the stem (Haygreen and Bowyer
1996, Koch 1972, Phillips 2002). A taper equation explain-
ing the change in tree diameter with height can be integrated
between any two points along a stem to obtain sectional
volume. Parresol and Thomas (1987, 1989) proposed a
method for predicting the bole dry mass of wood by inte-
grating the product of a taper and a density function. Ap-
plying some basic fundamentals of calculus, stem biomass
can be defined as

Bm � k�
hl

hu

��h�d�h�2 dh, (1)

where Bm is merchantable biomass between the limits of hl

and hu, �(h) is a function expressing density as a function of
height, d(h) is a function expressing the taper in diameter as
a function of height, hl is the lower limit of integration, hu

is the upper limit of integration, and k is a constant for
converting diameter to cross-sectional area.

Parresol and Thomas (1989) found that even a simple
taper model combined with a specific gravity function re-
sulted in superior fits of biomass when compared to the
more popular biomass-ratio approach. The residuals of the
fit were found to behave in a logical fashion, and error
variance was considerably reduced. This is intuitively cor-
rect given the inherent association among mass, volume,
and density. Empirically derived biomass equations have no
physically meaningful mathematical relationships and as-
sume stem diameter, or the ratio of diameters, is a function
of breast height diameter, total height, height ratio, or some
transformation of these variables (Fang and Bailey 1999). In
addition, it is often difficult to explain the coefficients of
empirical models, and the addition of multiple regressor vari-
ables may lead to multicollinearity and over-parameterization.

The Algebraic Difference Approach Method

Bailey and Clutter (1974) introduced the concept of
deriving base-age invariant site equations using a technique
now known as the algebraic difference approach (ADA)
method. The ADA generally consists of replacing an arbi-
trary base model parameter with its initial condition solu-
tion. Initial condition difference equations are considered a
part of differential calculus, and can be viewed as the
procedure for boundary solutions in differential equations
(Cieszewski 2001). The ADA approach uses repeated mea-
sures, or longitudinal data, collected over time from perma-
nent plots or individuals to capture unobservable influences

on the entity being observed. The ADA technique allows for
the derivation of dynamic or nonstatic functions that are
capable of producing anamorphic or polymorphic curves.

Following the theory presented by Cieszewski and
Bailey (2000), the base function Y as a function of t and n
individual specific parameters P1

. . . Pn�1 may be written
as

Y�t� � f�t, P1
. . . Pn�1, Pn�. (2)

The solution for any arbitrary parameter Pn is a function of
two independent variables Y and t, and the n � 1 remaining
parameters. Y and t in the solution are independent variables
and can be assigned the values of Y0 and t0, resulting in

Pn � u�t, Y, P1
. . . Pn�1� � u�t0, Y0, P1

. . . Pn�1�, (3)

where Y0 is a given value of Y for an arbitrary t0.
The solution in Equation 3 can be used in place of Pn in

the base function to define a new dynamic function of time
t, an arbitrary time t0, a given function value Y0 at t0, and the
remaining n � 1 parameters given as

Y�t, t0, Y0� � w�t, t0, Y0, P1
. . . Pn�1�. (4)

Equation 4 is undefined without the arbitrary initial condi-
tional values of t0 and Y0. With t0 and Y0 assuming any
value, the equation represents a dynamic equation that pro-
duces a curve unchanging under all choices of t0. The model
formulation also ensures that Y0 � Y at t0 � t. The main
limitation of the ADA is that all models derived with it are
limited to the solution of only one individual specific pa-
rameter (Cieszewski 2001). This allows for the develop-
ment of only anamorphic or polymorphic models.

Data

The data consisted of 70 felled plantation-grown slash
pine trees. All trees were cut at a 0.15-m stump. Diameter
inside bark (cm) was measured at 0.15, 0.6, and 1.4 m and
every 1.5 m thereafter throughout the remainder of the stem.
Total tree height (m) was measured, and the stem was
sectioned into bolts. After each bolt was weighed, a 4-cm-
thick disk was cut off the bottom end for laboratory deter-
mination of wood specific gravity on a dry weight/green
volume basis. Green bolt volumes inside bark were calcu-
lated using Smalian’s formula. A weighted (by cross-sec-
tional area) average wood specific gravity was computed
based on disks from the upper and lower end of each bolt,
so that dry mass of the bolt (in kg) could be determined. The
greatest specific gravities were found in the oldest trees in
the sample. Trees with strikingly low taper coefficients
obviously can be identified also. For these reasons, potential
users should be doubly careful of application of the results
to trees outside the reported ranges. The dbh (cm) ranged
from 13.2 to 33.0 and averaged 19.5. Total height (m)
ranged from 8.5 to 27.7 and averaged 17.6. Age (years) of
the sample data ranged from 12 to 45 and averaged 25.8. A
total of 902 observations were used in this study.
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Analysis
Seemingly Unrelated Regression

Parresol and Thomas (1996) and Thomas et al. (1995)
showed that a density-integral system of equations contains
statistical dependencies and thus is best fit using nonlinear
joint-generalized least-squares regression, also known as
nonlinear seemingly unrelated regression (NSUR). A set of
nonlinear regression functions are specified such that (1)
each equation can contain its own independent variables, (2)
each equation can use its own weight function (if needed),
and (3) conformity (e.g., a volume function derived from a
taper function) is ensured by setting constraints on the
regression coefficients (i.e., parameter sharing). The struc-
tural equations for the system of nonlinear models can be
specified as

y1�f1(X1, �1) � �1

�

y2� f2(X2, �2) � �2

yk� fk(Xk, �k) � �k,

(5)

where yi is a vector containing the dependent variable
from the ith equation, Xi is a matrix containing the
independent variables from the ith equation, �i is the
parameter vector for the ith equation, and �i is the ran-
dom error vector for the ith equation. When the stochastic
properties of the error vectors are specified, along with
the coefficient restrictions, the structural equations be-
come a statistical model for efficient parameter estimates
and reliable prediction intervals. The use of NSUR offers
the best unbiased estimator for �i, which has a lower
variance than the estimator of the ordinary nonlinear
least-squares estimator of �i because it takes into account
contemporaneous correlation in the different equations.
The availability of econometric software, such as
SAS/ETS (SAS Institute Inc. Online Doc. http://v8doc.
sas.com/sashtml/1999, accessed Summer 2005) makes
complicated statistical procedures like NSUR easily im-
plemented. It would be unrealistic to expect that the
equation errors would be uncorrelated (Borders 1989,
Parresol 1999, 2001). In an attempt to simultaneously
minimize the error associated with these equations, the
models in this article were fit as NSUR using the
SAS/ETS model procedure.

Estimates of the self-referencing functions for each
plot/individual may be obtained using the dummy variable
method of Cieszewski et al. (1999). This method involves
estimating the model’s global parameters and the
plot/individual parameters simultaneously. The dummy
variable method recognizes that the measurements made at
the referenced point were made with error. This method
does not force the model through the specified point regard-
less of how the curve is fitted to the observed individual
trends in the data. In this study we arbitrarily choose a base
height, which thus becomes the reference point.

Comparison Criteria

The comparison of the models was based on graphical
analysis of the residuals and four statistical indices: coeffi-
cient of determination (R2) {In the forestry literature starting
with Schlaegel (1982), one often sees the term “fit index”
for Equation 6 applied to nonlinear models, but in the
statistical literature it is still commonly referred to as the
coefficient of determination, or R2 [see, e.g., Kvålseth
(1985)]}; root mean square error (RMSE); mean bias (MB);
and mean absolute bias (MAB) (Loague and Green 1991,
Mayer and Butler 1993). These criteria are given below as

R2 � 1 �
�i�1

n �Yi � Ŷi�
2

�i�1
n �Yi � Ȳ�2 , (6)

RMSE � ��i�1
n �Yi � Ŷi�

2

n � p
, (7)

MB �
1

n �
i�1

n

�Yi � Ŷi�, (8)

MAB �
1

n �
i�1

n

�Yi � Ŷi�, (9)

where Yi, Ŷ, and Y� are the actual, predicted, and average
values of the dependent variable; n is the total number of
observations used to fit the model, and p is the number of
parameters in the model. The models evaluated in this
article were also examined visually by plotting the residuals
against the estimated values and independent variables.
Plots of the fitted curves for the self-referencing specific
gravity and biomass equations were also examined given
differing initial cross-sectional specific gravity values.

To truly assess performance of the models fit in this
study, validation of the models with an independent data set
would be the most desirable approach because quality of fit
does not always ensure the quality of prediction (Huang et
al. 2003, Kozak and Kozak 2003). The commonly used
validation methods of data splitting and cross-validation, as
shown by Kozak and Kozak (2003), do not provide any
additional information on model performance compared to
the statistics obtained from models fit to the entire data set.
Models validated with an independent data set prove that
either the data are from the same population and will per-
form as per se validation utilizing data splitting, or the data
are from a different population entirely, in which case the
models should be refit to obtain more appropriate parameter
estimates. Due to the scarcity of data resembling that used
herein, the models fit in this study were evaluated using the
goodness-of-fit statistics and graphical analyses described
above.

Model Development

Because this is an exercise to determine whether self-
referencing implicitly defined specific gravity and biomass
models are superior to the explicitly defined base equations,
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we have selected relatively simple mathematical models to
focus more on the methodology for estimation in self-ref-
erencing systems.

A taper equation developed by Brister et al. (1980),
which describes the change of diameter inside bark with
height, was chosen as the base taper function for this study.
The model has the form

dib � �1dbh�2H�3�H � h��4 � �, (10)

where dib is diameter inside bark, dbh is diameter at breast
height, H is total height, h is merchantable height of interest,
and � is residual error.

Volume inside the bark of the stem from the stump to
some upper height limit can be found by integrating the
taper equation, which is equal to

Vm � k�
hl

hu

dib�h�2 dh, (11)

where Vm is merchantable volume inside bark from the
stump to some upper height limit, dib(h)2 is the taper
function, k � �/40,000 in conventional metric units for
converting dib2 from cm2 to area in m2, hl is the lower limit
of integration (stump height), and hu is the upper limit of
integration. Integration of Equation 11 yields

Vm � ��k�1
2dbh2�2H2�3

2�4 � 1 �
	 ��H � hu�

2�4�1 � �H � hl�
2�4�1� � �. (12)

Numerous specific gravity functions have been devel-
oped for the prediction of whole disk cross-sectional
specific gravity at varying heights (Parresol and Thomas
1987, 1989, Parresol 1999, Phillips 2002, Zhang et al.
2002). These functions include the use of stem height, or
some other height ratio transformation. Often, additional
covariates are included in these models that may help to
explain the variation of specific gravity with height.
Parresol and Thomas (1987, 1989, 1996) and Thomas et
al. (1995) proposed both linear and nonlinear models for
estimating density as functions of relative height and
age.

Zhang et al. (2002) found that density modeled as a
quadratic function of height was a better fit for 12-year-old
loblolly pine. Phillips (2002) describes several linear and
nonlinear models for predicting cross-sectional specific
gravity of loblolly pine in Georgia. Phillips also fit several
self-referencing specific gravity functions that were derived
from these nonlinear equations, finding that the self-refer-
encing equations consistently provided better fits based on
several statistical indices.

Several linear and nonlinear models were found to fit our
data set well. On the basis of fit statistics and amenability to
integration with the taper function Equation 10, we choose
the model

SGh � 
1e
�
2h/H � �. (13)

A plot of specific gravity versus disk height for all trees
(not shown) indicated that an anamorphic model may best
suit the data. We then fit Equation 13 allowing 
1 then 
2

to be tree-specific parameters. Fit statistics indicated that
referencing the 
1 parameter resulted in a better fit,
confirming the need for anamorphic curves. Following
Cieszewski and Bailey (2000), solving Equation 13 for

1 and setting the reference point at dbh produces the
following height invariant self-referencing specific grav-
ity equation:

SGh � � SGD

e��
21.37/H�� e��
2h/H� � � (14)

To ensure that the stochastic model was performing
favorably, we fit the base equation (13) and the self-refer-
encing equation (14) for comparative purposes. Parameter
estimates for both equations are given in Table 1. From
Table 1, it can be seen that the rate parameters of the two
models are nearly equivalent. However, the standard error
of the rate parameter in the self-referencing function is on
the order of 50% lower than the base equation. R2 and
RMSE values for Equation 13 were 0.56 and 0.0410, and for
Equation 14 were 0.89 and 0.0218. It can be seen that the
unbiased parameter estimation of Equation 14 significantly
improved model performance.

A plot of the self-referencing specific gravity equation
(14) with varying initial dbh cross-sectional specific gravity
values is shown in Figure 1. The curves in Figure 1 are
anamorphic and predict higher specific gravity values up the
tree stem given a larger initial value at dbh. Plots of the
residuals (Figure 2) versus relative height and the predicted
values indicate Equation 14 provides a better fit. The resid-
ual values from Equation 14 are more tightly centered on
zero and show no apparent trends.

The mass equation can be defined as the integration of
the product of the density and taper equations and is given
as

Bm � k1k2�
hl

hu

��h�dib�h�2 dh, (15)

where Bm is merchantable biomass inside bark from the
stump (hl) to some upper height limit hu, �(h) is the specific
gravity function, dib(h) is the taper function, k1 � �/40,000
in conventional metric units for converting dib2 from cm2 to
area in m2, and k2 � 1,000 in conventional metric units for
converting specific gravity to density (kg/m3). Integration of

Table 1. Parameter estimates, standard errors, and P values for the
base specific gravity equation (13) and the stochastic self-referencing
equation (14)

Model Parameter Estimate Standard error P value

Eq. 13 
1 0.5352 0.0025 �0.0001

2 0.3365 0.0100 �0.0001

Eq. 14 
2 0.3387 0.0053 �0.0001

84 Forest Science 52(1) 2006



Equation 15 using the self-referencing Equation 14 and base
Equation 13 specific gravity models yields

BmSR � k1k2�
hl

hu�SGDe��
2h/H�

e��
21.37/H� �
	 ��1

2dbh2�2H2�3�H � h�2�4� dh,

Bm � k1k2�
hl

hu

�
1e
��
2h/H��

	 ��1
2dbh2�2H2�3�H � h�2�4� dh, (16)

where BmSR and Bm denote biomass of the self-referencing
and base equations, respectively. Extracting the constants
and simplifying gives

BmSR � k1k2�1
2dbh2�2H2�3

SGD

e��
21.37/H�

	 �
hl

hu

�H � h�2�4e��
2h/H� dh,

Bm � k1k2�1
2dbh2�2H2�3
1

	 �
hl

hu

�H � h�2�4e�
2h/H� dh. (17)

Integration of Equation 17 for the self-referencing function yields
the merchantable dry biomass of the tree stem from the stump (hl)
to some merchantable height limit (hu) and is given as

BmSR � �k1k2�1
2 dbh2�2 H2�3

SGD��e�
2H�

e��
21.37/H�
2
�

	 	 (H � hu)
2�4�� 
2�H � hu�

H ��2�4

	�1 � 2�4, �

2�H � hu�

H �
� �H � hl�

2�4�� 
2�H � hl)

H ��2�4

	�1 � 2�4, �

2�H � hl�

H �

� �. (18)

The merchantable dry biomass equation using the base
specific gravity model follows that of the self-referencing
function and is given as

Bm � �k1k2�1
2 dbh2�2 H2�3 
1

��e�
2H�


2
�

	 	 �H � hu�
2�4�� 
2�H � hu�

H ��2�4

	�1 � 2�4, �

2�H � hu�

H �
� �H � hl�

2�4�� 
2�H � hl)

H ��2�4

	�1 � 2�4, �

2�H � hl)

h �

� �. (19)

The term

	�1 � 2�4, �

2�H � hx�

H �
resulting from the integration of Equation 17 is an incom-
plete gamma function. It should be noted that, even though
a closed form solution exists for the integrals presented in
Equation 17, evaluation of

	�1 � 2�4, �

2�H � hx�

H �
will result in a complex argument, i.e., an imaginary num-
ber. This arises from the negative coefficient in the second
argument of the incomplete gamma function and takes one
into the realm of complex analysis. Several methods are
available for evaluating this complex function, including a
hypergeometric power series, Laurent series, or power se-
ries of the half argument, and numerical integration (Mathar
2004).

We chose the two-point closed Newton–Cotes formula
called the “trapezoid rule” for numerical integration. We
then wrote code using the SAS/MACRO function to eval-
uate only the integral presented in Equation 17 using the
trapezoid rule, because the terms outside of the integrand
are constants and parameters to be estimated. We then
implemented this macro within the SAS/ETS Proc Model
procedure, which evaluates the integral and simultaneously
estimates the parameters. An iterative procedure is used,
with a criterion for convergence being agreement of the
estimated integral between successive iterations to within
1 
 10�6. Interested readers can contact the corresponding
author for the SAS code used in this article. As pointed out
by one anonymous reviewer, evaluating the incomplete
gamma function of negative arguments in Equations 18 and
19 requires more advanced and difficult numerical analysis
techniques than the numerical integration method we chose.
However, Equations 18 and 19 can still be used in conjunc-
tion with one of the methods described above for evaluating
complex functions. Thus, when referring to Equations 18
and 19 throughout the study, we are indirectly referring to
Equation 17. A proof of the integral presented in Equation
17 is found in the Appendix.

Figure 1. Curves produced by the self-referencing specific gravity
equation (14) at a reference height of 1.37 meters with differing
cross-sectional dbh initial specific gravity values.
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Results
Initial Results

We fit the system of self-referencing specific gravity and
merchantable dry biomass equations, along with the taper
and volume equations denoted as SYSSR (Equations 10, 12,
14, 18) for comparison against the base system of equations
SYSBASE (Equations 10, 12, 13, 19). Parameter estimates
for the respective model fits are presented in Table 2. All
parameter estimates for both system fits were found to be
significant at the 0.0001 level, are logical, and ensure com-
patibility between equations. The specific gravity rate pa-
rameter 
2 was found to vary significantly between the
SYSBASE and SYSSR fit. The parameter values were
found to be 0.3326 and 0.2676 for the SYSBASE and
SYSSR systems, respectively. The rate parameter for the
self-referencing model from the system fit is also substan-
tially different from the value found when Equation 14 was
fit independently (Table 1).

Fit statistics for the system fits are presented in Table
3. It can be seen that the self-referencing mass equation
(18) outperforms the base mass equation (19), which is

evident by the fit statistics presented. It can also be seen
that both specific gravity functions possess similar fit
statistics. However, the self-referencing specific gravity
function R2 has decreased significantly compared to the
independent fit of Equation 14. Because the self-refer-
encing biomass equation (18) shares common parameters
with both the volume and self-referencing specific grav-
ity functions, this suggests that the system fit is disre-
garding the specific gravity equation and fitting param-
eters that best estimate volume and biomass. This indi-
cates that precise estimates of volume are more important
in predicting stem biomass than is stem-specific gravity.
On examination of the cross-equation correlation matrix
(Table 4), it was found that the volume equation (12) and
the self-referencing specific gravity equation (14) were
highly negatively correlated. This suggests that, if vol-
ume is overestimated, specific gravity will have to be
grossly underestimated to predict the appropriate mass.
Similarly, if volume is underestimated, specific gravity
will be overestimated to obtain a more precise prediction
of stem mass. Plots of the residual specific gravity values

Figure 2. First row, residuals versus relative height and predicted values for the base specific gravity equation
(13). Second row, the stochastic self-referencing equation (14).

Table 2. Parameter estimates, standard errors, and P values for the SYSBASE (Equations 10, 12, 13, 19) and SYSSR (Equations 10, 12, 14, 18)
system fits

Parameter

SYSBASE SYSSR

Estimate SE P value Estimate SE P value

�1 0.6116 0.0114 0.0001 0.7264 0.0109 0.0001
�2 0.9770 0.0085 0.0001 1.0376 0.0071 0.0001
�3 �0.4446 0.0107 0.0001 �0.53159 0.0083 0.0001
�4 0.5971 0.0059 0.0001 0.5612 0.0034 0.0001

1 0.5381 0.0021 0.0001

2 0.3326 0.0111 0.0001 0.2676 0.0105 0.0001

86 Forest Science 52(1) 2006



versus height (not shown here) indicated that individual
trees were constantly being either over or underpredicted
for specific gravity.

Additional Model Development

On finding that the self-referencing specific gravity
equation (14) parameter estimates were being disregarded to
fit the best self-referencing biomass and volume models, we
then fit a similar system of equations estimating mass using
the volume as calculated by Smalian’s formula and the
self-referencing specific gravity function. This will ensure
that the correct volume is being used in the mass equation,
thus allowing for the best estimates of the self-referencing
specific gravity and biomass equations. Smalian’s taper
equation is defined as

dib2 � D1
2 �

�h � H1��D2
2 � D1

2�

H2 � H1
, (20)

where D1 is diameter inside bark at the base of the bolt, D2

is diameter inside bark at the top of the bolt, H1 is height at
the base of the bolt, H2 is height at the top of the bolt, and
h is height of interest. We want to be able to calculate the
volume between any two points along the tree stem. Thus,

we integrate Equation 20 from H1 to H2, yielding Smalian’s
volume equation,

V � k�
H1

H2

D1
2 �

�h � H1��D2
2 � D1

2�

H2 � H1
dh

� k
�D1

2 � D2
2��H2 � H1�

2
, (21)

where k is the conversion constant �/40,000 for converting
diameter inside bark into cross-sectional area.

The mass of the stem between the limits of H1 and H2

can be found by integrating the product of the self-refer-
encing specific gravity equation (14) and Smalian’s taper
formula, which gives

BmSR � k�
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H2�D1
2 �

�h � H1��D2
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Similarly, stem biomass estimated as a function of Sma-
lian’s taper and the base specific gravity equation is given as

Bm �
kH
1e

�
2�H2�H1�/H�


2
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 � �.

(23)

Because we are interested in the cumulative mass of the
tree stem from the stump to some upper merchantable
height, we wrote an algorithm using SAS/BASE, which
evaluates Equations 22 and 23, and adds the subsequently
determined bolt mass estimates for a cumulative mass esti-
mate. We then implemented this algorithm within the
SAS/ETS model procedure. To ensure that this procedure
was working correctly, we fit Equation 22 independently
and then Equations 22 and 14 as a system fit. If the correct
volume is being used in estimating stem biomass, then the
parameter estimates for the self-referencing specific gravity
equation (14) should provide the best and unbiased param-
eter estimates. The estimated values of the rate parameters
should be approximately the same whether the equations are
fitted independently or as a system.

Table 3. Fit statistics of the SYSBASE (Equations 10, 12, 13, 19) and
SYSSR (Equations 10, 12, 14, 18) system fits, where R2 is the coefficient
of determination, RMSE is the root-mean-square error, MB is the
mean bias, and MAB is the absolute mean bias

R2 RMSE MB MAB

SYSBASE
Eq. 10 0.9604 1.1378 0.1408 0.8132
Eq. 12 0.9891 0.0158 �0.0015 0.0098
Eq. 13 0.5616 0.0411 �0.0032 0.0303
Eq. 19 0.9891 7.9284 �0.6939 4.543

SYSSR
Eq. 10 0.9596 1.1494 �0.0463 0.8066
Eq. 12 0.9905 0.0147 �0.0022 0.0088
Eq. 14 0.5702 0.0415 0.0032 0.0323
Eq. 18 0.9996 1.4607 0.1404 0.9497

Table 4. Cross-equation correlation matrix of residuals for the SYS-
BASE (Equations 10, 12, 13, 19) and SYSSR (Equations 10, 12, 14, 18)
system fits

SYSBASE Eq. 10 Eq. 12 Eq. 13 Eq. 19

Eq. 10 1 0.2993 �0.2037 0.2151
Eq. 12 1 �0.2384 0.5529
Eq. 13 1 0.2828
Eq. 19 1

SYSSR Eq. 10 Eq. 12 Eq. 14 Eq. 18

Eq. 10 1 0.3522 �0.3112 �0.0507
Eq. 12 1 �0.4832 0.2990
Eq. 14 1 0.2126
Eq. 18 1
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Results of Additional Model Development

Table 5 contains the parameter estimates and fit statistics
of the independent fit of Equation 22 and the system fit of
Equations 22 and 14. It can be seen from Table 5 that the
estimates of the rate parameter are approximately equiva-
lent. The high R2 values from both fits indicate that the
volume algorithm is performing, and that Smalian’s volume
is being used in computing cumulative stem biomass.

The utility of Equations 22 and 23 is limited in the fact
that Smalian’s taper equation assumes a linear change in
cross-sectional area and would only be applicable for esti-
mating stem biomass between relatively short bolt lengths.
However, computing cumulative stem biomass using the
correct volume ensures that the best parameter estimates
will be obtained for the self-referencing specific gravity
function and the taper and volume functions, respectively.
We then proceeded to simultaneously fit the taper and the
volume equations with the respective base and self-refer-
encing specific gravity and biomass equations, denoted as
SYSBASE2 (Equations 10, 12, 13, 23), representing the
base functions fit, and SYSSR2 (Equations 10, 12, 14, 22)
the self-referencing system fit. Even though we are using
the volume derived from Smalian’s formula, we fit the
original taper and volume equations to account for possible
cross-equation correlation, and to enhance the utility of the
system. Because application of the biomass equations de-
rived using Smalian’s volume formula are not practical, the
parameter estimates obtained can be used in conjunction
with Equation 17, or the derived self-referencing biomass
equation (18), and should produce more precise estimates of
stem biomass.

Parameter estimates for the system fits using the volume
obtained from Smalian’s volume equation are given in
Table 6. The rate parameter for the self-referencing specific
gravity function (Equation 14) was found to increase sig-

nificantly from 0.2676 (Table 2) to 0.3615. The rate param-
eter for the self-referencing specific gravity and biomass
equations is the parameter that best estimates specific grav-
ity and biomass jointly, and is not influenced by volume. Fit
statistics for the SYSBASE2 and SYSSR2 system fits are
presented in Table 7. It can be seen from Table 7 that using
the true volume improved the estimation of biomass for
both the SYSBASE2 and SYSSR2 system fits. However,
the RMSE of the base and biomass equations differed
greatly and were found to be 7.41 and 0.63, respectively.
The fit index values of the self-referencing specific gravity
equation increased from 0.5702 to 0.8403, and the RMSE
decreased from 0.0415 to 0.0253 when compared to the fit
statistics presented in Table 3. As expected, the fit statistics
for the original taper (Equation 10) and volume (Equation
12) equations are nearly identical for both the SYSBASE2
and SYSSR2 system fits. This should be the case, because
neither model was used to estimate stem biomass, and thus
neither share nor influence the parameters in the respective
specific gravity and biomass equations.

Plots of the residuals versus relative height and the
predicted values for the base (Equation 23) and self-refer-
encing (Equation 22) biomass equations are shown in Fig-
ure 3. It can be seen that the residuals versus relative height
for the self-referencing biomass function are more tightly
centered on zero and indicate no trends, ranging from 4 to
�3 kg. The residuals for the base equation versus relative
height were found to vary substantially and ranged from 40
to �20 kg. The mean residual value for the base and
self-referencing biomass equations were found to be
�0.3208 and 0.0750, respectively. Plots of the residuals
versus predicted biomass values for the base equation indi-
cate patterns of heteroskedasticity, whereas the self-refer-
encing biomass equation does not exhibit signs of noncon-
stant variance.

Table 5. Parameter estimates, standard errors, P values, R2, and root-mean-square error (RMSE) values for Equation 22 fit using Smalian’s volume
formula and the system fits of the stochastic self-referencing specific gravity and biomass equations (14 and 22)

Model Parameter Estimate Standard error P value R2 RMSE

Eq. 22 
2 0.3633 0.0035 0.0001 0.9999 0.6392
Equation 
2 0.3604 0.0030 0.0001

22 0.9999 0.6333
14 0.8399 0.0253

Table 6. Parameter estimates, standard errors, and P values for the SYSBASE2 (Equations 10, 12, 13, 23) and SYSSR2 (Equations 10, 12, 14, 22)
system fits using Smalian’s volume formula

Parameter

SYSBASE2 SYSSR2

Estimate SE P value Estimate SE P value

�1 0.6773 0.0131 0.0001 0.7083 0.0137 0.0001
�2 1.0223 0.0090 0.0001 1.0522 0.0090 0.0001
�3 �0.5266 0.0108 0.0001 �0.5741 0.0108 0.0001
�4 0.5984 0.0056 0.0001 0.6007 0.0056 0.0001

1 0.5438 0.0015 0.0001

2 0.3463 0.0079 0.0001 0.3615 0.0030 0.0001
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A plot of cumulative stem biomass versus relative height
for the self-referencing biomass equation (Equations 17 or
18) using the parameter estimates obtained from the
SYSSR2 system fit is given in Figure 4. It can be seen in
Figure 4 that a higher initial dbh specific gravity value
results in an increase in cumulative stem biomass. For a tree
20 m in height and 25 cm dbh, a 20 kg increase in total tree
biomass results from an increase in specific gravity of 0.05.

Discussion

The use of merchantable biomass equations is a crit-
ical component of forest characterization. These models
allow industry to assess the product yields of trees to
capture the highest value from raw wood. Biomass is
most important in assessing chip furnish yields for the
paper industry, and is often used by the solid products

industry as a rough approximation of tree volume. In this
study we derived a system of anamorphic and height-in-
variant self-referencing specific gravity and biomass
equations using the algebraic difference approach
method. These equations will allow users to input indi-
vidual tree or aggregated stand-level specific gravity
information into the models for more precise prediction
of stem/stand biomass. It is easy to derive an estimate of
tree specific gravity by obtaining increment cores at
breast height or another randomly selected height, such
as done by Van Deusen and Baldwin (1993) and dis-
cussed by Parresol (1999). By simple extension an unbi-
ased estimate of stand specific gravity is obtained from a

Figure 3. First row, residuals versus relative height and predicted values for the base biomass equation (23).
Second row, the stochastic self-referencing biomass equation (22) using Smalian’s volume formula.

Figure 4. Curves produced by the self-referencing biomass equation
(Equations 17 or 18) using the parameters obtained in the SYSSR2
system fit, at a reference height of 1.37 meters with differing dbh
cross-sectional initial specific gravity values for a tree 20 m in height
and 25 cm dbh.

Table 7. Fit statistics of the SYSBASE2 and SYSSR2 system fits using
Smalian’s volume formula, where R2 is the coefficient of determina-
tion, RMSE is the root-mean-square error, MB is the mean bias, and
MAB is the absolute mean bias

R2 RMSE MB MAB

SYSBASE2
Eq. 10 0.9623 1.1103 0.1045 0.7951
Eq. 12 0.9904 0.0148 �0.0015 0.0089
Eq. 13 0.5551 0.0414 �0.0056 0.0308
Eq. 23 0.9904 7.4162 �0.3208 4.1463

SYSSR2
Eq. 10 0.9628 1.1038 0.0773 0.7963
Eq. 12 0.9903 0.0149 �0.0019 0.0088
Eq. 14 0.8403 0.0253 �0.0114 0.0189
Eq. 22 0.9999 0.6346 0.0750 0.3865
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weighted average of the specific gravity cores from a
random sample of trees.

The self-referencing specific gravity and biomass
equations presented in this article were found to be
superior to the base equations, and resulted in more
accurate estimates of stem specific gravity and biomass.
This study indicates that precise estimates of taper, and
subsequently volume, are more critical in accurately pre-
dicting biomass than specific gravity or density. It was
found in this study that the parameter estimates of the
self-referencing specific gravity equation (14) were being
biased in the SYSSR fit to best fit the relationship be-
tween volume and biomass. We then fit a new system
of equations (SYSSR2) using the volume calculated
from Smalian’s volume equation to estimate unbiased/
uninfluenced parameters of the self-referencing specific
gravity model. The SYSSR2 system fit provides the best
parameter estimates for both taper and volume and the
self-referencing specific gravity and biomass equations.
These parameters can be used in conjunction with Equa-
tion 17, or the originally derived self-referencing biomass
equation (18) for prediction of stem biomass to any
merchantable height limit.
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Appendix

The indefinite integral
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It suffices to show that
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Using the product rule,
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where
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Using the chain rule where
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Using the chain rule
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Let w � 	(a, z), where a � (1 � 2�4) and
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Combining Equations A4, A5, and A6, and substituting
in c, u, v, and w from A3, gives
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Factoring the first two terms in Equation A7 and simplify-
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ing the third term gives
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Further simplification of A8 yields
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