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Abstract. The purpose of the present work is to quantify parametric uncertainty in the Rothermel wildland fire spread
model (implemented in software such as BehavePlus3 and FARSITE), which is undoubtedly among the most widely used
fire spread models in the United States. This model consists of a non-linear system of equations that relates environmental
variables (input parameter groups) such as fuel type, fuel moisture, terrain, and wind to describe the fire environment. This
model predicts important fire quantities (output parameters) such as the head rate of spread, spread direction, effective
wind speed, and fireline intensity. The proposed method, which we call sensitivity derivative enhanced sampling, exploits
sensitivity derivative information to accelerate the convergence of the classical Monte Carlo method. Coupled with
traditional variance reduction procedures, it offers up to two orders of magnitude acceleration in convergence, which
implies that two orders of magnitude fewer samples are required for a given level of accuracy. Thus, it provides an efficient
method to quantify the impact of input uncertainties on the output parameters.

Introduction

One of the primary goals of wildland fire management is to
minimise the negative impact of fire on property and soci-
ety through the application of scientific research. To meet this
goal, fire researchers employ a variety of tools such as satellite
imagery, experiments and fire danger indices, as well as math-
ematical models. A typical mathematical fire behaviour model
usually consists of a set of non-linear equations. These equa-
tions, which are most commonly non-linear algebraic equations
or non-linear differential equations, describe the interaction of
the various environmental variables and can be used to predict
valuable information such as the maximum rate of spread and
spread direction.

Fire models typically fall into one or more of the following
categories. They are either physics-based, or derived empirically,
or constructed from statistical considerations. A fire model that
is physics-based uses physical principles such as conservation
of energy, mass and momentum to derive a formula for the rate
of spread and other quantities of interest; see Weber (2001) and
the references therein for an in-depth discussion. It is also pos-
sible to use a statistical description of test fires to predict fire
behaviour occurring under similar conditions. The McArthur
models (McArthur 1966) used for grassland and forest fires in
Australia are one such example. Finally, laboratory experiments
can be performed to empirically determine quantities such as the
propagating flux, which can, in turn, be used to obtain an expres-
sion for the rate of spread. The Rothermel model (Rothermel
1972), a fire spread model that spans the physical and empirical
classes, is perhaps the best-known model in the United States
and although more recent models include a wider range of fire
phenomena, it is still in wide use today.

Not all fire models, however, can be employed as efficient
fire prediction tools. Some of the more complex models, which
couple atmospheric and fire behaviour effects, for instance, are
currently too computationally expensive to serve as viable real-
time prediction tools.These complex models, nevertheless, assist
researchers in gaining a more profound understanding of fire
behaviour.

The Rothermel fire spread model
The Rothermel wildland fire spread model (Rothermel 1972)
was one of the first models to describe the fire environment
through equations derived, for the most part, from thermody-
namic principles. The term fire behaviour is used to describe
physical characteristics of a fire such as its rate of spread, fire
line intensity, flame length, etc. The ensemble of fuels, terrain,
and weather is usually referred to as the fire environment. In
North America, where forests and grasslands provide an abun-
dant source of wildland fuel, wildland fires are of particular
interest. Wildland fuels are fuels that consist primarily of vege-
tation, both live and dead, but may include organic layers within
the soil. A surface fire, the type of fire the Rothermel model
was developed for, spreads through a layer of contiguous fuel
extending from the ground up to approximately 2 metres. This
definition differentiates a surface fire from one moving through
the tree canopies (crown fires) or one burning through organic
soil material (ground fire). Although this model uses the prin-
ciple of conservation of energy to derive an equation for the
rate of spread, no distinction is made between the different
modes of heat transfer. The propagating flux ξ, which is used to
extract an equation for the rate of spread, is determined empir-
ically. Thus, the Rothermel model is sometimes referred to as
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a semi-empirical model to emphasise its hybrid physical and
empirical nature.

The Rothermel model groups input parameters into four main
categories: fuel type, fuel moisture, topography, and weather.
One simplifying assumption regarding the fuels is that for a
small area and short time periods, the fuels are taken to be
homogeneous. The fuel parameter groups include fuel parti-
cle properties such as fuel loading, fuel moisture content, and
surface-area-to-volume ratio. The remaining topography and
wind groups account for the slope, aspect, relative humidity,
wind speed, etc. The burning layer, composed of the conglomer-
ate of fuel parameters, is referred to as the fuel bed or fuel model.

The output variables we shall consider are the rate of spread
(ros in m s−1), the direction of maximum spread (sdr in degrees),
and the effective wind speed (efw in m s−1). Other quantities such
as fire line intensity, heat release per unit area, and flame length
can also be derived.

There are certain fire behaviour aspects that the Rother-
mel model does not take into account, however. The model’s
assumptions of steady-state and spatial homogeneity preclude
its application to transitory events such as crown fire initiation or
spotting. The addition of ad hoc wind and slope factors intended
to modify the rate of spread also warrant deeper scrutiny.

Despite its limitations, the Rothermel model has enjoyed
widespread success and it is currently employed in software such
as in BehavePlus3 and FARSITE. Using either default fuel mod-
els or user-defined input parameters, BehavePlus3 can calculate
output variables such as the rate of spread and spread direction.
FARSITE (Finney 1998) is a fire growth simulation system that
uses a combination of models to simulate surface fires along
with other phenomena such as crown fires, spotting, and post-
frontal combustion. FARSITE requires the use of a geographic
information system (GIS) database to obtain spatial landscape
information. Using a fire spread model in conjunction with esti-
mated evacuation times, Cova et al. (2005) have also exploited
the use of GIS to develop a method similar to hurricane warnings
to set trigger points used in evacuation.

Parametric uncertainty in fire spread models
To properly use a fire model, it is essential to understand its
limitations and scope of applicability. However, even when fire
models are used adequately, discrepancies between the observed
phenomena and model results are inevitable as models are
derived under idealised conditions. Model errors can result
from several factors including inadequate physical description,
numerical errors, and parametric uncertainty (Walters and Huyse
2002). In the present work, we concentrate our efforts solely on
those errors originating from parametric uncertainty. In order
to adequately describe the impact of parametric uncertainty, it
is important to quantify the uncertainty mathematically. As the
value of an input parameter is seldom known exactly, a common
approach (and the one we will pursue) is to assign it a mean
value and an associated probability density function. The stan-
dard deviation can then be taken as a measure of the uncertainty
in the parameter value. The impact of parametric uncertainty on
the results can then be estimated using, for instance, a Monte
Carlo simulation or a moments method.

Sometimes uncertainty in an input parameter is not only
a consequence of the intrinsic complexity of the phenomena

being modelled. Instead, uncertainties may be the inevitable by-
products of economic and efficiency constraints. For example,
it may be expensive or intractable to measure fuel data directly,
as in the case of a large area.

However, it is not always necessary to concern ourselves with
the uncertainty associated with every single parameter. A sen-
sitivity analysis can help us identify the input parameters that
have the greatest influence on output variables (Saltelli et al.
2004). Those parameters that have only a marginal impact on
the quantities of interest can be assigned constant characteristic
values to reduce computational demands. Having identified the
major sources of error due to parametric uncertainty, the next
step involves taking measures to improve the reliability of our
predictions. Fujioka (2002) proposes a methodology to analyse
the error in a two-dimensional fire spread simulation that can
also be used as a correction tool when it is coupled with updated
information.

Problem formulation

We will focus on quantifying the impact and propagation of para-
metric uncertainty only on the following output variables: the
rate of spread (ros in m s−1), the direction of maximum spread
(sdr in degrees), and the effective wind speed (efw in m s−1).
Using the same notation as in Bachmann (2001), the Rothermel
steady-state rate of spread equation can be written as:

ros = IRξ(1 + �c)

ρbεQig
(1)

where IR is the reaction intensity, ξ is the propagating flux ratio,
ρb is the oven-dry bulk density, ε is the effective heating number,
and Qig is the heat of pre-ignition. If �w and �s are the wind and
slope correction factors, respectively, then the combined slope
and wind factor �c is given by:

�c =
√

[�s + �w cos(θ)]2 + [�w sin(θ)]2

Here θ is the angle between the upslope direction and the
direction where the wind is blowing to. The spread direction and
the effective wind speed are given by:

sdr = arcsin

[
�w sin(θ)

�c

]
and

efw = 1

196.85

[
�c

C(σ)(β/βopt)−E(σ)

]1/B(σ)

respectively. B, C and E are functions of the characteristic
surface-area-to-volume ratio σ, β is the mean packing ratio, and
βopt denotes the optimal packing ratio; the full set of equations
as well as their derivatives can be found in Bachmann (2001).

The output variables depend on the following parameters:
fuel loading w0d1, w0d2, w0d3, w0lh, w0lw (in kg m−1), surface-
area-to-volume ratio svd1, svd2, svd3, svlh, svlw (in m2 m−3), fuel
moisture content md1, md2, md3, mlh, mlw (in %), fuel bed depth d
(in m), wind speed wsp (in m s−1), wind direction θ (in degrees),
aspect ratio asp (in degrees), and slope slp (in degrees). The
subscripts d1, d2, d3, lh, lw denote the size classes traditionally
used to categorise the different fuel moisture time-lag classes
(Deeming et al. 1978): dead fuel, 0–0.6 cm; dead fuel,
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0.6–2.5 cm; dead fuel, 2.5–7.5 cm; live herbaceous fuel; and
live woody fuel, respectively. Throughout the present paper, we
assume that those parameters that are not held constant follow a
normal distribution with a given mean and standard deviation.

The methodology we will use to quantify the propagation
and impact of parametric uncertainty will be to employ an effi-
cient Monte Carlo method. The Monte Carlo convergence rate is
accelerated through the use of a sensitivity derivative enhanced
sampling method that exploits derivative information of the out-
put functions with respect to the input parameters to make more
judicious use of the samples generated in a simulation. We esti-
mate the mean and standard deviation of the output variables
using a traditional Monte Carlo method as well as with the
sensitivity derivative enhanced sampling method (SDES), and
compare the advantages of SDES over the Monte Carlo method
via improvement ratios and timing performance. The distribu-
tions of output variables will also be generated. It should be
noted that the computation of the required sensitivity deriva-
tives accounts for only a fraction of the total cost of a simulation;
these can be easily extracted using, for instance, an automatic
differentiation package.

Numerical method

To investigate the propagation and impact of input variable
uncertainties, Bachmann and Allgower (2002) used a first-order
Taylor method in place of a fully-fledged Monte Carlo simulation
to avoid the prohibitive computational expense incurred through
a direct application of the classical Monte Carlo method. Indeed,
because of its slow convergence rate and the costly generation of
correlated input variables in the multivariate case, Monte Carlo
methods are usually reserved to establish a reference against
which other methods are compared. However, by identifying
and generating stochastic versions of only those parameters to
which the output variables are most sensitive and at the same time
improving the convergence characteristics of traditional Monte
Carlo methods, it is possible to perform simulations utilising
the original model to capture the more intricate behaviour that a
low-order approximation, such as a first-order Taylor expansion,
might otherwise sacrifice.The modified Monte Carlo method we
describe below is a step towards this goal.

Although Monte Carlo methods have long been popular in
part because they are simple to implement and use the under-
lying model as a ‘black box,’ their slow convergence rate often
proves to be too inefficient especially when multiple simulations
are required. A common approach to improve the convergence
rate, which is known to be proportional to the variance of the
objective function, is to reduce the variance via a suitable refor-
mulation of the problem. Variants of this approach encompass a
large class of methods collectively known as variance-reduction
methods. The SDES method, which we describe below, is a
variance-reduction method that has already been employed with
success in fields such as optimal control (Cao et al. 2003, 2004)
and computational fluid dynamics (Mathelin et al. 2004). In this
section, we review the theory underlying the method (our dis-
cussion closely follows Cao et al. 2004, 2006). The methods we
shall employ are described in their proper mathematical setting,
but for the reader who is unfamiliar with some of the concepts
discussed below, the textbooks of Ross (1997) and Shiryayev

(1984) should elucidate some of the mathematical details that are
omitted.

Monte Carlo method
Given a random variable X with finite expectation, let p(x) (x ∈ R)
be its associated probability density function (pdf ). If f: R → R
is a smooth function of x, we recall that the expectation Ef (X)
of f is defined by

Ef (X ) :=
∫

f (x)p(x)dx (2)

where the integration is taken over the entire domain of the pdf.
The variance Vf (X) is defined by

Vf (X ) := E( f (X ) − Ef (X ))2 (3)

For brevity, we will sometimes write µx and σ2
x for the

expectation and variance of the random variable X, respectively.
In the classical Monte Carlo method, we estimate Ef (X) by

Ef (X ) ≈ 1

N

N∑

i=1

f (xi) (4)

The N samples x1, . . . , xn are generated according to the prob-
ability density of X. The convergence of this estimate to Ef (X) as
N → ∞ is guaranteed by the large number theorem (Shiryayev
1984; Ross 1997).

It is well known that the approximation error made using
Eqn 4 is proportional to

√
Vf (X )/

√
N . For computationally

intensive problems, this slow convergence rate might render the
Monte Carlo approximation impractical. In our Results section,
we will see the extent to which the sensitivity derivative Monte
Carlo method alleviates this slow convergence.

Moments method
Let us again assume that f: R → R is a smooth function of
the random variable X and that X has a given probability den-
sity function. In the moments method, the function y = f(x) is
expanded in a Taylor series about the expectation µx of X:

y = f (µx) + f ′(µx)(x − µx) + 1

2
f ′′(µx)(x − µx)

2

+ O((x − µx)
3) (5)

Here the primes denote derivatives with respect to X. With
only a minimal amount of effort, the moments method gives the
following first-order approximations of the expectation µy and
variance σ2

y of y = f(x)

µy = f (µx) + O(σ2
x ) (6)

σ2
y = σ2

x f ′(µx)
2 + O(σ3

x ) (7)

Sensitivity derivative enhanced sampling
Recently, Cao et al. (2003, 2004) developed a variance-reduction
method that exploits information regarding the sensitivity of f
with respect to the random variable X (measured via derivatives
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of f with respect to X) to improve the convergence characteristics
of the Monte Carlo method. The result of their efforts was the
sensitivity derivative enhanced sampling method (SDES). The
first-order SDES method is described below.

Under the tacit assumption that the appropriate derivatives of
the function f exist, consider the first-order Taylor expansion of
f about µx:

J1(x) := f (µx) + f ′(µx)(x − µx) (8)

Using
∫

p(x)dx = 1 and
∫

(x − µx)p(x)dx = 0

it is clear that
∫

(f (x) − J1(x))p(x)dx =
∫

f (x)p(x)dx − f (µx)

On rearranging for Ef (X), this suggests the sensitivity deriva-
tive Monte Carlo approximation of the expectation of f

Ef (X ) ≈ f (µx) + 1

N

N∑

i=1

(f (xi) − J1(xi)) (9)

The N samples are again generated according to the pdf of X.
The following inequalities illustrate the extent to which the

variance of Eqn 9 is reduced compared with the variance of the
traditional Monte Carlo expectation estimate Eqn 4. Let

m1 = max
s∈R

|f ′(s)| and m2 = max
s∈R

|f ′′(s)|

Then

Vf (X ) ≤ 2m2
1V (X ) (10)

V ( f − J1) ≤ m2
2

2
(V (X )2 + E((X − µx)

4)) (11)

Eqns 10 and 11 indicate that the SDES method is most effi-
cient when V(X) is small. See Cao et al. (2006) for a rigorous
proof of these results as well as a generalisation to the nth-order
SDES method.

It must be emphasised that whereas the convergence rate
of the Monte Carlo method depends on

√
Vf (X )/

√
N , the

SDES convergence rate for the first-order case depends on√
V ( f − J1)/

√
N , where the quantity V ( f − J1) is simply the

variance of the first-orderTaylor remainder of the objective func-
tion. (Note that although the Monte Carlo and SDES estimates
are formulated differently, they converge to the same quantity
Ef (X), albeit at different rates.) If the objective function satisfies
certain smoothness properties, the variance of theTaylor remain-
der V ( f − J1) is always less than that of the objective function
Vf (X) itself, leading to an order of magnitude faster convergence
of SDES relative to that of the Monte Carlo method. For instance,
suppose we are to perform a simulation using n = 10 000 sam-
ples for both the Monte Carlo method and SDES. SDES is able
to achieve an order of magnitude (factor of 10) greater accuracy
(because it converges to the exact value faster) than the Monte

Carlo method, because V ( f − J1) is smaller than Vf (X). For a
given accuracy, SDES is found to require a factor of 10 fewer
samples than the standard Monte Carlo method. If the SDES
is coupled with another variance reduction procedure such as
stratified sampling, a reduction in the number of samples of up
to two orders of magnitude can be achieved.

SDES and the Rothermel model
Although in the present article we concentrate our efforts on
the Rothermel model, we will state the mathematical model as
a general non-linear system of equations. The SDES method is
applicable to any fire behaviour model satisfying the appropriate
smoothness assumptions.

Let the vector X = (X1, . . . , Xm) represent the ensemble of
input parameters that comprise the local fire environment and
suppose y = f(X) is a function of the random variable vector X.
Here y may represent the effective wind speed efw, the maximum
rate of spread ros, or the spread direction sdr. The vector X is
composed of the fuel type, fuel moisture, terrain, and weather
parameters. We shall denote the expectation of the parameter
vector X by µx = (µx, . . . , µxm ) and the covariance of X by �.
In this case, the second-order SDES method is given by:

Ef (X ) ≈ 1

N

N∑

i=1

( f (xi)− J2(xi))+ f (µx)+ 1

2
trace(∇2f (µx)�)

(12)

where

J2(x) = f (µx)+∇f (µx)(x−µx)+ 1

2
(x−µx)

T ∇2f (µx)(x−µx)

Here ∇f and ∇2f denote the gradient and Hessian of f.

SDES coupled with stratified sampling
To further improve the efficiency of our sampling methods, we
couple SDES with stratified sampling. The standard stratified
sampling technique is developed below.

Let � represent the cumulative distribution function (cdf )
of the random variable X with associated probability density
function p; then

�(x) :=
∫ x

−∞
p(s)ds (13)

Notice that � is a non-decreasing function with range [0,1].
In stratified sampling, we divide the interval [0,1] into K strata
(not necessarily of equal length):

[ωk , ωk+1] (k = 0, 1, . . . , K − 1)

where

ωk = k

K
(k = 0, 1, . . . , K − 1)

Then, for each stratum k, we choose N k random samples
uk

1, . . . , uk
Nk

, uniformly distributed in the interval [ωk , ωk+1].
Next, we use the inverse cdf of X to generate Nk new samples
xk

1, . . . , xk
Nk

distributed according to the pdf of X:

xk
i = �−1(uk

i ) (i = 1, . . . , Nk )
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A Monte Carlo estimate of the expectation of a function f:
R → R of a random variable X can now be computed as

Ef (X ) ≈ 1

K

K−1∑

k=0



 1

Nk

Nk∑

i=1

f (xk
i )



 (14)

Similarly, to couple the first-order SDES and stratified
sampling, we proceed as follows:

Ef (X ) ≈ 1

K

K−1∑

k=0



f (µk
x ) + 1

Nk

Nk∑

i=1

(f (xk
i ) − J k

1 (xk
i ))



 (15)

where

J k
1 (x) := f (µk

x ) + f ′(µk
x )(x − µk

x ) (16)

and µk
x denotes the expectation of X in the kth stratum and is

given by

µk
x =

∫ ωk+1

ωk sp(s)ds
∫ ωk+1

ωk p(s)ds
(k = 0, 1, . . . , K − 1) (17)

In the case of a normal distribution, the integral in the numer-
ator can be computed analytically. The denominator can be
calculated using numerical software that approximates the cumu-
lative distribution function. It is worth emphasising that coupling
stratified sampling with SDES makes even greater use of sen-
sitivity derivatives. Whereas a first-order SDES uses only one
set of derivatives (evaluated at µx), stratified sampling takes
advantage of a set of K derivatives (evaluated at µ0

x, . . . , µ
K−1
x ).

A simple example
Before proceeding to the main results, we will illustrate the
previous methods with a simple example. Consider the function

f (X ) = eX

where we take X ∼ N(µ, σ2) (i.e. X is a normally distributed
random variable with mean µ and variance σ2).

To form the classical Monte Carlo estimate of the expecta-
tion of f, we must first generate N samples x1, . . . , xN that are
normally distributed with mean µ and variance σ2. Next, we use
Eqn 4 to find

Ef (X ) ≈ 1

N

N∑

i=1

f (xi) = 1

N

N∑

i=1

exi

We may use the same N samples x1, . . . , xN and Eqn 9 to
form the first-order SDES estimate of the expectation of f

Ef (X ) ≈ f (µ) + 1

N

N∑

i=1

[f (xi) − J1(xi)]

= eµ + 1

N

N∑

i=1

[exi − (eµ + eµ(xi − µ))]

The second-order SDES estimate is formed similarly.
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Fig. 1. Monte Carlo v. sensitivity derivative enhanced sampling method
(SDES). Log-log plot of the average relative errors in the L2-norm using
N = 32, 64, . . . , 1024 samples. Top solid line = 1/

√
N , Monte Carlo = MC,

first-order SDES = SD1, second-order SDES = SD2. The average is taken
over 120 sets of different samples. Here f(X) = eX where X is normally
distributed with mean µ = 1/2 and variance σ2 = 1/16.

Because X is normally distributed, the probability density
function is given by

p(x) = 1√
2πσ2

e
− (x−µ)2

2σ2

with domain (−∞,∞). Performing the integration Eqn 2, the
exact value of the expectation is

Ef (X ) =
∫ ∞

−∞
exp(x)dx = 1√

2πσ2

∫ ∞

−∞
exe

− (x−µ)2

2σ2 dx

= e
1
2 σ2+µ

Fig. 1 illustrates the average relative errors using the L2-norm
(more on this later) with N = 32, 64, . . . , 1024. To produce the
plots above, 120 different sample sets per sample are used. Notice
the substantial improvement of nearly two orders of magnitude
in the convergence characteristics using the second-order SDES
over the traditional Monte Carlo method.

Results and discussion

Because the main functions of interest, the rate of spread and the
effective wind speed, depend on 15 variables or more, it is not
possible to generate meaningful plots of these functions with-
out making some simplifications. However, some representative
plots of the rate of spread and the effective wind speed have been
included (see Figs 2 and 3); in these figures, all input variables
save two – the fuel bed depth d and the surface-area-to-volume
ratio svd1 – are set to a constant mean value.
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Fig. 2. Representative plot of the rate of spread (ros) using the Chaparral fuel model with all parameters, except d and svd1,
set to the constant mean values indicated in Table 1.
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Fig. 3. Representative plot of the effective wind speed (efw) using the Chaparral fuel model with all parameters, except d
and svd1, set to the constant mean values indicated in Table 1.
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To compare the efficiency of SDES with traditional Monte
Carlo methods, we compute the rate of spread ros, effective
wind speed efw, and the spread direction sdr using two of
the original fuel models found in Rothermel (1972): the short-
grass and chaparral fuel models. The main fuel parameters are
summarised in Tables 1 and 2. The following parameters are
held constant throughout for both fuel models: the dead fuel
moisture 8%, the live fuel moisture 150%, and the low heat
content 18 622 kJ kg−1. We shall also examine the additional
speed-up obtained by coupling SDES with standard stratified
sampling.

The uncertainty associated with an input parameter is
described by assigning it a normal distribution with a typical
mean (taken to be the value given in the original model) and
a corresponding standard deviation (typically between 10 and
50% of the mean value). Two types of computations will be per-
formed for each fuel model. First, we take the fuel bed depth d
and the 1-h surface-area-to-volume ratio svd1 to be normally dis-
tributed random variables; all other parameters are fixed. Then,

Table 1. Chaparral fuel model parameters

Parameter Symbol µ σ Units

1-h fuel load w0d1 1.12 – kg m−2

10-h fuel load w0d2 0.90 – kg m−2

100-h fuel load w0d3 0.45 – kg m−2

Live herbaceous fuel load w0lh 0.0 – kg m−2

Live woody fuel load w0lw 1.12 – kg m−2

1-h surface area/volume ratio svd1 6562 740 m2 m−3

Live herb surface area/volume ratio svlh 4921 – m2 m−3

Live woody surface area/volume ratio svlw 4921 – m2 m−3

Dead fuel moisture of extinction mx 20 – %
Fuel bed depth d 1.83 0.3 m
Slope slp 14.04 – degrees
Midflame wind speed wsp 2.3 0.5 m s−1

Direction of wind vector (from upslope) θ 45 20 degrees

Table 2. Short-grass fuel model parameters

Parameter Symbol µ σ Units

1-h fuel load w0d1 0.17 – kg m−2

10-h fuel load w0d2 0.0 – kg m−2

100-h fuel load w0d3 0.0 – kg m−2

Live herbaceous fuel load w0lh 0.0 – kg m−2

Live woody fuel load w0lw 0.01 – kg m−2

1-h surface area/volume ratio svd1 11 483 1150 m2 m−3

Live herb surface area/volume ratio svlh 4921 – m2 m−3

Live woody surface area/volume ratio svlw 4921 – m2 m−3

Dead fuel moisture of extinction mx 12 – %
Slope slp 14.04 – degrees
Fuel bed depth d 0.30 0.05 m
Midflame wind speed wsp 2.3 0.5 m s−1

Direction of wind vector (from upslope) θ 45 20 degrees

we include a random wind speed wsp and wind direction θ in
addition to d and svd1.

To measure improvement ratios of Monte Carlo approxi-
mations v. SDES, we use the L2-norm (Euclidean distance).
Recall that the L2-norm is defined for a vector x = (x1, . . . , xn)
as ‖x‖2 = (x2

1 + · · · + x2
n)

1/2. If EMC = (EMC
1 , . . . , EMC

M ) is a
sequence of relative errors obtained from M Monte Carlo
simulations, then a measure of the average error is given by:

‖EMC‖2 =
(

1

M

M∑

i=1

[EMC
i ]2

)1/2

To compute the relevant errors, we take the ‘exact’ expected
value to be the Monte Carlo estimate using 250 sets of ∼32 000
samples each. The L2 improvement ratio is computed from:

I2 = ‖EMC‖2

‖ESDES‖2
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Table 3. Average improvement ratios for first moment estimates of the
rate of spread using first-order sensitivity derivative enhanced sampling
method (SDES) with four strata v. Monte Carlo (improvement ratio
denoted by IMC). Improvement ratio using only stratified sampling with

four strata v. Monte Carlo (improvement ratio denoted by IS4)
Here N = 32, 64, . . . , 1024 and M = 100 different sets of samples

Fuel model IMC (2 vars) IMC (4 vars) IS4 (2 vars) IS4 (4 vars)

Chaparral 37.2 5.6 13.5 2.8
Short grass 24.2 4.3 10.0 3.1

Table 4. Timing results (in seconds)
Average computational time comparison of Monte Carlo (MC) v. first-
order sensitivity derivative enhanced sampling method (SDES) coupled with

stratified sampling with four strata (SSD1)

N (Chap)MC (Chap)SSD1 (Shtgrs)MC (Shtgrs)SSD1

32 4.297 × 10−2 4.437 × 10−2 4.063 × 10−2 4.344 × 10−2

64 8.188 × 10−2 8.250 × 10−2 7.922 × 10−2 8.250 × 10−2

128 1.617 × 10−1 1.656 × 10−1 1.567 × 10−1 1.566 × 10−1

256 3.231 × 10−1 3.295 × 10−1 3.113 × 10−1 3.158 × 10−1

512 6.423 × 10−1 6.255 × 10−1 6.216 × 10−1 6.262 × 10−1
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Fig. 4. Histograms of the effective wind speed, rate of spread, and spread direction using four random variables:
fuel bed depth, 1-h surface area/volume ratio, midflame wind speed and direction of wind vector denoted by d, svd1,
wsp and θ respectively. In all cases, the ordinate denotes the frequency (number of samples). The mean values for
the Chaparral fuel model are given by efwµ = 2.41 m s−1 (mean effective wind speed), rosµ = 0.353 m s−1 (mean
rate of spread) and sdrµ = 41.3◦ (mean spread direction).

Suppose, for example, that we use a Monte Carlo and a first-
order SDES simulation to approximate the rate of spread using
5000 samples. If the improvement ratio is I2 = 10, then this says
that the average relative error obtained from SDES is 10 times
smaller than that obtained from a Monte Carlo method using
the same number of samples. Put another way, if we use SDES,
we need only 500 samples to achieve the same accuracy as the
Monte Carlo method.

Table 5. Chaparral fuel model summary results using the four random
variables: d, fuel bed depth; svd1, 1-h surface area/volume ratio; wsp,
midflame wind speed; and direction of wind vector (from upslope) θ

using sensitivity derivative enhanced sampling method (SDES) coupled
with four strata

N = 1024 samples using M = 100 different sample sets

Parameter Symbol µ σ Units

Effective wind speed efw 2.41 7.39 × 10−6 m s−1

Rate of spread ros 0.353 1.02 × 10−4 m s−1

Spread direction sdr 41.3 1.71 × 10−4 degrees
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Fig. 5. (Chaparral fuel model) Average relative errors in first moment estimates for the rate of spread ros (m s−1) using
(a) two random variables svd1 ∼ N(6562, 740) (m2 m−3) and d ∼ N(1.83, 0.3) (m); and (b) four random variables svd1 ∼
N(6562, 740) (m2 m−3), d ∼ N(1.83, 0.3) (m), wsp ∼ N (2.3, 0.5) (m s−1) and θ ∼ N(45, 20) (degrees).

Table 3 shows that even with a simple first-order SDES
method, the convergence gain over a traditional Monte Carlo
simulation can be more than 30 times faster. Notice that as
IMC = 24.2 when we consider the short grass fuel model using
two random variables (namely d and svd1), this implies that,
on average, it takes the Monte Carlo method approximately 24
times the number of samples to achieve the same accuracy as a
first-order SDES coupled with stratified sampling (four strata).

It is important to note that SDES might require the com-
putation of several derivatives of the objective function. In
our computations, an automatic differentiation package (Stama-
tiadis et al. 2000) was used to find the relevant derivatives and
Table 4 illustrates that even when we couple SDES with strat-
ified sampling (denoted by SSD1, for a first-order SDES with
stratified sampling), the extra computational expense incurred is
marginal.

Fig. 4 illustrates that although the input parameters follow a
normal distribution, this is not the case with the output func-
tions efw, ros and sdr. This is to be expected, as the output
functions depend non-linearly on the random parameters. Using
four random variables in the chaparral fuel model, the mean
values are given by efwµ = 2.41 m s−1, rosµ = 0.353 m s−1,

and sdrµ = 41.3◦. The corresponding standard deviations
are efwσ = 7.39 × 10−6 m s−1, rosσ = 1.02 × 10−4 m s−1, and
sdrσ = 1.71 × 10−4 (see Table 5 for a summary of the results).
The standard deviation provides us with a measure of the
uncertainty in the outputs.

Figs 5, 6 and 7 show that the relative errors decay at the
theoretically expected rate proportional to 1/

√
N , where N is

the number of samples used. For the chaparral fuel, sample
sets range from N = 32, 64, 128, . . . , to 1024 samples per set.
Throughout, we use M = 100 different sets of samples and then
average the relative errors. Fig. 5a depicts the first-moment esti-
mate (mean value) of the rate of spread using only two Gaussian
random variables d ∼ N(1.83, 0.3) and svd1 ∼ N(6562, 740).
Observe that, in this case, stratified sampling is as much as
five times faster than the traditional Monte Carlo method. The
improvement in convergence when first-order SDES is coupled
with stratified sampling (using four strata) is even more dramatic.
This time, the estimate is approximately two orders of magni-
tude more accurate than that obtained with the traditional Monte
Carlo method. Equivalently, for a given accuracy, it would take
the Monte Carlo method as many as 100 times more samples to
achieve comparable results.
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Fig. 6. (Chaparral fuel model) Average relative errors in first moment estimates for the rate of spread ros (m s−1) (a) using
the random variables d ∼ N(1.83, 0.3) (m), svd1 ∼ N(6562, 740) (m2 m−3), θ ∼ N(45, 20) (degrees); and (b) using the random
variables d ∼ N(1.83, 0.3) (m), svd1 ∼ N(6562, 740) (m2 m−3), wsp ∼ N(2.3, 0.5) (m s−1). Here N = 32, 64, . . . , 1024 and
M = 100.

However, Fig. 5b illustrates that the acceleration gains are
more modest when we consider the four random variables d,
svd1, θ and wsp. As the improved convergence takes a toll with
the addition of the random parameters θ, the wind direction
relative to the upslope direction, and the wind speed wsp, we
investigate the impact each has on the first-moment estimate
individually. It is evident from Fig. 6 that the SDES convergence
improvement is of the same order with d, svd1 and θ as when
we consider only d and svd1. The convergence, however, dete-
riorates when the wind speed wsp is included as an additional
parameter along with d and svd1. As SDES exploits the sensi-
tivity of the object function (in this case ros) with respect to its
parameters (measured via derivatives of the function) to generate
a more efficient estimate of the expectation, we should observe
a more substantial improvement in the convergence whenever
the object function is highly sensitive to the given parameter.
Thus, the results in Fig. 6 can be restated by saying that, with
the given mean values, the rate of spread is more sensitive to
changes in wind direction than to changes in wind speed. The
importance of the wind direction relative to the upslope direc-
tion is not surprising as this is effectively how Rothermel couples
with different modes of heat transfer. Because this relative wind
direction is so important in the Rothermel model, it stresses the

need for detailed descriptions of topography and winds across
the landscape to minimise this source of uncertainty.

The short-grass fuel model, with M = 100 sample sets and
N = 32, . . . , 512 samples each (Fig. 7), exhibits a similar con-
vergence phenomenon. A reduced SDES convergence is evident
when we consider the four random variables d, svd1, θ and
wsp instead of just d and svd1. Nevertheless, first-order SDES
coupled with stratified sampling still results in a convergence
that is nearly 10 times faster than the traditional Monte Carlo
method.

Conclusions

The simplicity of the Monte Carlo method makes it an attrac-
tive method in simulations where fire spread models such as
the Rothermel model are used. However, its slow convergence
can render its application infeasible especially in time-sensitive
situations such as in the prediction of an ongoing fire. In
the present work, we propose sensitivity derivative enhanced
sampling (SDES), which offers fire researchers an economic
alternative to traditional Monte Carlo methods to quantify para-
metric uncertainty. The speed-up of approximately an order of
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Fig. 7. (Short grass fuel model) Average relative errors in first moment estimates for the rate of spread ros (m s−1) using
(a) two random variables svd1 ∼ N(11 483, 1150) (m2 m−3) and d ∼ N(0.030, 0.05) (m); and (b) four random variables
svd1 ∼ N(11 483, 1150), d ∼ N(0.030, 0.05), wsp ∼N(2.3, 0.5) (m s−1) and θ ∼ N(45, 20) (degrees).

magnitude gained by using first-order SDES over Monte Carlo
with the fuel models considered is encouraging. The results fur-
ther indicate that coupling SDES with stratified sampling can
further accelerate the convergence. When coupled with stratified
sampling, an improvement of nearly two orders of magnitude
could spell the difference between running a simulation for
10 h using the Monte Carlo method or 6 min with a first-order
SDES. It is clear that this relatively simple method endows fire
managers with the ability to run simulations efficiently, per-
haps in real time, while requiring only modest computational
resources.

Coupling SDES with more sophisticated sampling tech-
niques such as Latin hypercube sampling or orthogonal sampling
may improve the convergence rate even further. We will explore
these possible enhancements in future investigations. SDES can
also serve as a dual-purpose tool that can help identify those
parameters to which the object function is most sensitive. Under-
standing the impact of parametric uncertainty is of paramount
importance as key input parameters are seldom known exactly.
In some situations, it may be unnecessary to obtain a precise
measurement of a given parameter as the function, such as the
rate of spread, may largely be unaffected for a wide range of
values.

Although one of the primary goals of the current work was
to demonstrate that it is computationally feasible to estimate the
impact of parametric uncertainty using the Rothermel model, the
long-term practical applications of uncertainty quantification to
fire models are numerous. Although a single application of the
Rothermel model might generate an erroneous prediction of the
rate of spread because of, say, unreliable (uncertain) fuel data,
knowledge of the distribution of the fuel data (which can be
estimated if sufficient sample measurements are taken) can be
exploited to estimate the distribution of the rate of spread. An
estimated distribution of the rate of spread can be more useful
than a single prediction because not only can the average rate of
spread be computed, but an associated measure of uncertainty
via confidence intervals can also be assigned to it as well. A fire
manager who must prioritise the allocation of limited resources
can use the statistical information gained from an uncertainty
analysis to distribute resources optimally.

The important question of how parametric variance might
affect multiple spatiotemporal evolutionary calculations using
a fire growth simulation system such as FARSITE, and the
effect this might have on the averaging of randomly distributed
errors generated by the instantaneous sampling of the Rothermel
formulae will be addressed in future research.
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