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1. INTRODUCTION 

The major thesis of this chapter is that the economic analysis of forest distur­
bances will be enhanced by linking economic and ecologic models. Although we 
only review a limited number of concepts drawn generally from mathematical and 
empirical ecology, the overarching theme we present is that ecological models 
of forest disturbance processes are complex and not particularly well-behaved 
from an economic perspective. We discover that standard concepts in the econo­
mists' tool kit, such as asymptotic equilibrium and convex production, may not 
adequately represent the dynamic behavior of forest disturbances. Consequently, 
other tools for economic analysis will be required. 

This chapter proceeds by first sketching out the economic problems deriving 
from the peculiar temporal and spatial dynamics associated with forest distur­
bances (section 2). Then we provide a brief overview of select topics in ecolog­
icalliterature supporting the view that some important forest disturbances exhibit 
multiple- or non-equilibrial processes and that, additionally, stochastic factors 
induce high variation in the spatial pattern of disturbance production (section 
3). These themes are illustrated by reviewing two models: (1) the classic spruce 
budworm model of pest outbreak, demonstrating how the interaction of slow and 
fast ecosystem variables cause multiple equilibria (section 4), and (2) a cellular 
automata model of forest fires, which demonstrates how the local interaction of 
stochastic processes can generate the emergence of unconventional spatial signa­
tures at larger spatial scales (section 5). The chapter ends with a summary of the 
main points and some suggestions for future research (section 6). 

2. ECONOMIC EQUILIBRIUM, NON-CONVEX 
PRODUCTION, AND SPATIAL SCALE 

Since the early decades of the twentieth century, the concepts of equilibrium and 
comparative static analysis (the qualitative change in equilibrium conditions in 
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response to a change in a structural parameter) have been central in the devel­
opment of neoclassical economic theory. Much credit for this development is 
due to Samuelson (1947) who emphasized that comparative static analysis needs 
to correspond with an underlying, asymptotic dynamic model. In the standard 
market model, for example, excess demand is usually thought to cause an increase 
in price until equilibrium is restored. This result can be found as the solution to 
an ordinary differential equation describing price dynamics, for which the root 
of the characteristic equation for the complementary function is negative (Chiang 
1974, p. 472-473).1 The resulting equilibrium is said to be asymptotically stable 
(Tu 1994, p. 33). 

Of particular relevance to this chapter, Samuelson (1947) further recog­
nized that some economic processes move rapidly relative to other, slow long 
run processes and that it is often convenient to treat slow processes (such as 
changes in the stock of capital) as fixed parameters while concentrating on the 
fast processes of economic interest (such as the level of investment, income, or 
employment). He goes on to note that due recognition needs to be given to the 
evolution of the slow variables in order to study the development of the economic 
system over time.2 

In this chapter, we propose that some economically important forest disturbance 
processes, such as pest outbreaks and fires, result from the interaction of variables 
across fast and slow timescales, and that policy-relevant economic models need 
to recognize the impacts of long-term ecosystem dynamics on the fast behavior 
of economic variables. Because movement in a slow ecosystem variable (e.g., 
forest foliage, fuel accumulation) can induce a sudden, catastrophic eruption in 
a fast variable (e.g., area infested by pests, area burned) which is linked, in turn, 
to various economic variables (e.g., pest eradication costs, fire suppression costs, 
economic damages), simple comparative static analysis may provide uninforma­
tive predictions of changes in economic variables. This more complex situation 
arises when the root(s) of the characteristic equation describing system dynamics 
are non-negative, and the Implicit Function Theorem breaks down (Tu 1994, 

1 It may be recalled that the general solution to a first-order differential equation is of 
the form p(t) = Aert where p (say, price) is a function of time (t) and r is the root of the 
characteristic equation of the complementary function describing the deviation of p(t) 
from asymptotic equilibrium. If r < 0, then p(t) will asymptotically converge to the 
particular integral describing equilibrium as t ~oo. 

2 This decomposition into slow and fast variables was also suggested by Simon and 
Ando (1961) regarding the aggregation of variables in a dynamic macroeconomic 
system. They argued that aggregation could be accomplished by classifying the vari­
abies of an economic system into a small number of sectors. Because the dynamic 
interactions within a sector reach eqUilibrium relatively rapidly, an index representing 
the eqUilibrium condition for each sector could be established and then the slower 
interactions between sectors could be studied. 
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p. 241). Intuitively, the equilibrium path is not asymptotically stable and may 
suddenly jump to a different domain.3 

A recent Symposium held by the Beijer Institute of Ecological Economics in 
Stockholm focused attention on the implications of discontinuities in ecosystem 
dynamics for economic analysis, and emphasized the importance of understanding 
Nature's non-convexities (Dasgupta and MaIer 2004).4 One of the themes of the 
Symposium was that bifurcations in equilibrium paths, representing ecological 
thresholds, manifest across time and therefore require dynamic analysis. Non­
convexities in ecosystem production due to discontinuities are consequential 
for economists because, under these conditions, a decentralized price system 
cannot reliably guide the economy to an optimal solution and other institutions 
are required for efficient resource allocation (Dasgupta and Maler 2003).5 Fortu­
nately, when the economic planner is confronted with discontinuous ecosystem 
production, optimal economic programs can be evaluated using optimal control 
methods (Brock and Starrett 2003, Crepin 2003, Dasgupta and Maler 2003, 
Maler et al. 2003). 

Although economists are generally familiar with dynamic processes operating 
over time, they are less familiar with dynamic processes operating over space. 
Spatial dynamics have been extensively studied by ecologists who have recog­
nized that characteristic spatial patterns in complex adaptive systems can emerge 
purely from interactions at the local level (Levin 2002, Chave and Levin 2003, 
Hastings 2004, Pascual and Guichard 2005), and the use of statistical analysis 
for detecting complex patterns of spatial dynamics is an emerging discipline in 
ecology (Gumpertz et al. 2000, Turchin 2003, Liebhold et al. 2004). 

Statistical models have been productively employed in the economic analysis 
of management interventions to control wildfires (Davis 1965, Ward et al. 2001, 
Prestemon et al. 2002, Bridge et al. 2005) by recognizing that, if wildfire occur­
rences converge to a statistical distribution, then interventions can be evaluated by 
identifying corresponding changes in the parameters of the statistical distribution. 
Some spatial patterns associated with forest disturbances are not well-behaved in 

3 The case of the backward-bending supply curve provides a good example of an 
unstable equilibrium separating two stable eqUilibria. Small shH'ts in demand can 
cause catastrophic jumps in price and quantity (Clark 1976). 

4 A standard assumption of economic analysis is that production sets are convex, where 
a set is convex if the line joining any two points of the set is also entirely within the set. 
Non-convexities in forest production have been studied for the case of multiple local 
optimal solutions in a continuously differentiable multiple-use benefit maximization 
problem (Swallow et al. 1990) and for the case of multiple-use forest production with 
bifurcations occurring in the production possibility set (Crepin 2(03). 

5 Standard comparative static analysis of forest protection programs that equate the 
marginal benefit of a management intervention with the marginal input cost may like­
wise provide inadequate guidance for optimal economic decisions if forest disturbance 
production is non-convex. 

~-------------------------------------.------
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that they are scale invariant (i.e., they display self similar patterns across scales 
of measurement) as typified by power law relationships (Malamud et al. 1998, 
Chave and Levin 2003, Malamud et al. 2005). In such cases, innovative statistical 
methods are required to conduct economic analysis (chapter 4). 

3. DISTURBANCE ECOLOGY AND 
THE LOSS OF BALANCE 

The balance of nature paradigm has a long-standing tradition both in Western 
culture and in the development of ecological theory (Egerton 1973). A quasi­
scientific foundation for the balance of nature perspective is found in the essay 
"The Oeconomy of Nature" (1749), written by the famous Swedish biologist 
Carl von Linne. In this article, Linneaus presents a view of nature that is divinely 
ordered and functions like a well-oiled machine (Worster 1994). This perspec­
tive was echoed throughout the 19th century, and can be found in the works of 
George Perkins Marsh (who authored the widely cited conservation classic Man 
and Nature in 1864) and Charles Darwin, both of whom accepted the view of 
nature as fundamentally orderly and maintaining a permanent structure (Wu and 
Loucks 1995). 

More modern statements of the balance of nature paradigm are found in 
mathematical-ecological concepts such as eqUilibrium, stability, steady-state and 
homeostasis (De Angelis and Waterhouse 1987). Separation of the mathemati­
cally tractable concept(s) of equilibrium from the more vague notions of balance­
of-nature has allowed ecologists to test equilibrium theories and models, at least 
in principle. However, even fundamental mathematical models of population 
equilibrium, such as density dependent regulation of population size, are often 
empirically untestable because the scale at which density dependence operates 
may be much broader than the scale at which observations are typically made 
(DeAngelis and Waterhouse 1987). Notably, when models of static ecosystem 
stability have been tested, they often fail (Wu and Loucks 1995). 

Much interest in ecology has focused on thresholds and alternate stable 
states in ecosystems (May 1977). More than three decades ago, a critique of the 
equilibrium perspective of nature was advanced by Holling (1973) who argued 
that the classical equilibrium concept cannot account for the transient behavior 
observed in many ecological systems. As an alternative, he proposed a model 
based on the idea of resilience, which he defined as a measure of the ability of an 
ecosystem to absorb disturbance before flipping over to an alternative domain of 
attraction. In particular, Holling (1973) argued that random disturbances such as 
wildfires and pest outbreaks can drive ecosystems from one domain of attraction 
to another and he proposed that research should focus on locating the domain 
boundaries. 

A second approach to thinking about ecosystem stability that does not rely on 
asymptotic equilibrium was provided by Botkin and Sobel (1975). By examining 
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the fire history of the Boundary Waters Canoe Area (BWCA) in northern Minne­
sota as described by Heinselman (1973), they concluded that static stability was 
an inappropriate concept either for the analysis or management of fire-dependent 
ecosystems. They proposed a definition of stability based on a-persistence which 
characterizes the bounds attained by ecosystem states (characteristics of interest 
such as biomass or population). In their view, the trajectory of an ecosystem is 
a-persistent about state Xo if Ixo-xtl ~ a for all t ~ O. Here, Xo does not connote 
a state of equilibrium, but rather a state within the system. By emphasizing the 
bounds attained by ecosystem states, this perspective is consistent with natural 
variability concepts that are currently applied by resource managers to maintain 
biological diversity and understand human impacts on forests (Landres et al. 
1999). 

Along the trajectory of an a-persistent ecosystem, various ecological states can 
be repeated, and thus represent recurrent states. Botkin and Sobel (1975) argue 
that management interventions should focus on maximizing the size of the state 
space that is recurrent and that minimizes the recurrence time of desirable states. 
They go on to argue that the satisfaction of these two conditions "is equivalent 
to ensuring the aesthetically desirable wilderness status-an ecosystem having 
maximal structural (species) diversity" (p. 636). We prefer to view this conjec­
ture as a hypothesis and suggest that forest ecosystems in continual flux offer 
opportunities for economists to evaluate public preferences for dynamic, time­
varying ecosystem characteristics.6 

The shift away from a focus on asymptotic dynamics in ecology can also be 
found in Hastings (2004) who proposed that transient ecosystem dynamics may 
hold the key to long-term ecological understanding, where the term "transient" 
implies rapid changes in the state variable(s) of interest. An illuminating example 
of transient dynamics is the study of epidemics by Kermack and McKendrick 
(1927) who, employ ing a system of nonlinear differential equations, demonstrated 
that the outbreak and termination of an epidemic depends upon a particular set of 
infectivity, recovery, and death rates and a threshold population density.7 The key 
to this approach was to focus attention on the time course of an epidemic and not 
on the asymptotic state (which is, of course, the state where the epidemic dies out 
and may occur where only a small proportion of the susceptible members of the 
population have been infected). Further, the timescale of an epidemic in humans 
is shorter than the average human lifespan, and it is this juxtaposition of times­
cales that has been identified as the essential element for understanding transient 
dynamics in ecosystems (Rinaldi and Muratori 1992, Carpenter and Turner 2001, 
Rinaldi and Scheffer 2001, Hastings 2004). 

6 See chapter 10 for recent empirical evidence of post-wildfire wilderness demand. 

7 For an application of epidemiological methods to an invasive pathogen of trees, see 
Swinton and Gilligan (1996). 
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An alternative perspective argues that because ecosystems are open systems 
under the influence of stochastic processes, they are best characterized as none­
quilibrium systems (DeAngelis et al. 1985, DeAngelis and Waterhouse 1987). 
This view is supported by historical evidence on wildfires and pest epidemics. For 
example, fire history data reconstructed from tree rings sampled in giant sequoia 
groves in the Sierra Nevada Mountains suggest that fire patterns are a nonequilib­
rial process synchronized by weather events (Swetnam 1993). This view is addi­
tionally supported by long-tenn fire history data from the Yellowstone sub-alpine 
ecosystem (Romme 1982). Stochastic meteorological phenomena have also been 
identified as key variables affecting outbreak dynamics for several forest insect 
pests (Peltonen et al. 2002). 

The statistical analysis of forest disturbances has been enhanced by recent 
developments in phenomenological time series analysis that integrates detennin­
istic nonlinear ecological models of population dynamics with stochastic vari­
ables due to exogenous factors. Berryman (1992) shows how to identify models 
for analyzing ecological time series using the autocorrelation and partial autocor­
relation functions familiar to economists, and Berryman and Turchin (2001) later 
modified the standard time series model by introducing the partial rate correla­
tion function. Turchin (2003) provides a detailed analysis of complex popuhi­
tion dynamics and demonstrates that, for the economically important case of the 
Southern Pine Beetle, population fluctuations exhibit chaotic behavior. 8 

In sum, this review finds substantial evidence in the ecology literature that 
"the equilibrium view of ecological systems, which has always had a fair number 
of skeptics, now seems unsatisfactory to a large fraction, perhaps a majority, 
of ecologists" (DeAngelis and Waterhouse 1987, p.l). A pressing challenge for 
forest economists is to incorporate complex ecosystem dynamics into economic 
analyses of forest disturbances and, ultimately, to integrate economic analysis 
with decision-making (Pielke, Jr. and Conant 2003) and adaptive ecosystem 
management. 

4. SLOW-FAST ECOSYSTEM PROCESSES: 
TEMPORAL DIMENSION 

At an intuitive level, wildfires and biotic forest disturbances such as insect and 
disease outbreaks must rely to some degree upon the forest resource. This intu­
ition has been fonnalized in ecological models by viewing forest disturbances 
as resulting from the interaction of variables across time scales. For example, 
the change in forest biomass during wildfires takes place on the scale of hours 
to months, while the growth of trees occurs on the scale of centuries. Models 

8 For a general reference on the evidence for chaos in ecology, see the work of Hastings 
et al. (1993). Turchin and Taylor (1992) provide an accessible overview of complex 
dynamics in ecological time series. 
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designed to describe the evolution of a forest ecosystem over time in the pres­
ence of wildfire would have to simultaneously integrate the equations of motion 
for the slow and fast variables which, for practical purposes, is not possible. 
However, mathematicians have developed special methods for solving this type 
of problem, known as singular perturbation theory (Kokotovic 1984). In this 
section, we provide a simple example that demonstrates how singular perturba­
tion methods can be used to characterize the temporal dynamics of an important 
forest pest, the spruce budworm, which causes severe mortality in boreal forests 
in eastern Canada and the northeastern United States on roughly 40 year cycles 
(Boulanger and Arseneault 2(04).9 

Simply stated, the singular perturbation method separates the dynamic vari­
ables into slow and fast categories which allow the fast and slow dynamics to 
be studied sequentially rather than simultaneously (Simon and Ando 1961, May 
1977, Rinaldi and Muratori 1992, Rinaldi and Scheffer 2000). In the spruce 
budworm model, spruce budworm is a fast variable f(t) and forest foliage is a 
slow variable set): 

f (t) = F (f (t), s(t» 

set) = G S(f(t), set»~ 

(2.1) 

where the dot notation is used to represent the rate of change over time, and e is 
a constant representing the ratio of the slow and fast time scales. For example, 
if forests grow on the scale of centuries and bud worms grow on an annual scale, 
then e = 0.01. Since the budworm dynamics occur much faster than forest growth. 
the quasi-equilibrium position for budworms can be evaluated by treating set) as 
a fixed parameter s(O): 

J(t) = F(f(t),s(O» (2.2) 

which is equivalent to the singular case e = O. 
Ludwig and others (1978) showed that budworm dynamics f(t) result from 

the interaction of the per capita rate of budworm growth and the per capita 
rate of bud worm death, due to predation by birds. Avian predation is limited at 
low levels of budworm density because budworms are scarce and predators are 
not rewarded for specializing on that prey. At higher bud worm levels, predation is 
limited by satiation-a relatively fixed population of birds can eat only a limited 
number of budworms. This behavior gives rise to a non-convex per capita death 
rate function (fig. 2.1). When the per capita budworm growth rate is greater (less) 
than the predation rate, budworm density increases (decreases). Thus, steady-

9 We note that the model we present is deterministic while recent research on forest 
pest dynamics emphasizes the importance of stochastic factors (Peltonen et al. 2002). 
The importance of the model is that it provides a simple demonstration of non-convex 
ecosystem production with multiple steady-states. 
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Figure 2.1. Spruce budworm dynamics demonstrating multiple steady states and 
catastrophic outbreak. Adapted from Ludwig, et al. (1978), with permission. 

state positions for the budwonn, holding forest growth constant, are found at 
the intersections of the per capita growth and predation curves. Considering an 
initial budwonn growth curve (cl), three equilibrium points can be identified, for 
which two population levels are stable (A and C) and one is unstable (B). 

The next step in singular perturbation analysis is to examine what happens 
to the equilibrium positions of the fast variable for any given value of the slow 
variable, ~(s). In the case of the spruce budwonn, this can be represented by an 
upward rotation of the budwonn growth function as the forest foliage parameter 
increases (fig. 2.1). Assume that budwonn populations are initially at a low level 
(A). As forest foliage increases, the lower equilibrium converges with the unstable 
equilibrium. When these two equilibria become coincident (c2), budwonn popu­
lations jump to the upper equilibrium and an outbreak is underway. 

However, this is not the end of the story. Changing the time unit from 1 (for 
the fast variable) to 1/£ (for the slow variable), and substituting ~(s(t)) for f(t), 
the dynamics of the slow variable are: 

set) =S[fe (s(t)),s(t)]. (2.3) 

As forest foliage is consumed by budwonns, the slow parameter (the amount of 
forest foliage) decreases and the budwonn growth function rotates downwards. 
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At first, the unstable equilibrium re-appears and slowly moves towards the upper 
equilibrium. However, when forest foliage is at a low level, avian predation can 
again regulate the bud worm population, and the population will crash. In figure 
2.1, this occurs when the per capita bud worm growth function lies nearly along 
the horizontal axis, and only the lower, stable equilibrium remains. As forest 
foliage regrows, the pattern is repeated and the cycle of forest growth followed 
by a rapid release of accumulated capital recurs. to 

Although this model of ecosystem dynamics was presented in a heuristic 
fashion, it provides a qualitative illustration of the complexity of designing forest 
protection policies that maximize economic welfare. ll Because the threshold 
for spruce bud worm outbreak is not the same as the threshold for population 
collapse, the behavior of the system is history dependent (i.e., it exhibits hyster­
esis), and optimal policies depend upon the system memory. For example, 
historical evidence illustrates that forest-wide insecticide spraying in areas with 
high bud worm densitites and imminent severe tree mortality can keep budworm 
populations in a perpetual outbreak condition (Ludwig et al. 1978). An alterna­
tive approach is to spray early when budworrn egg masses are in isolated areas 
and at low densities (Stedinger 1984). Instead of focusing on the dynamics of 
the fast variable (budworms), alternative management strategies focus attention 
on managing the slow variable (trees) by harvesting live trees (Shah and Sharma 
2001). Such a strategy may help prevent an outbreak, but once an outbreak is 
underway, vast amounts of timber would need to be harvested to cause a popula­
tion collapse. In such a situation, the optimal policy may focus on salvaging dead 
and dying timber (lrland 1980). A complete economic analysis of the spruce 
budworm problem would thus need to evaluate the trade-offs between a suite of 
economic variables including spraying costs, public welfare impacts of increased 
use of insecticides, timber market impacts of pre-emptively harvesting green 
timber and timber salvage, and the non-market economic impacts of changes in 
forest health. 

The slow-fast interaction leading to spruce budworm outbreaks suggests that 
management strategies may need to simultaneously address both pest and forest 
dynamics rather than focusing exclusiveJy on the dynamic behavior of a single 
variable. This approach is evidenced in the recent paradigm shift in fire manage­
ment (Dombeck et al. 2004). The long standing '10 a.m." policy that sought to 
control all wildfires by the morning after they were first detected focused on 
direct control of the fast variable (fire) to protect lives and property and ensure a 
predictable supply of timber. However, suppression or exclusion of the fast vari-

10 Technically, this ecological process is described as a cusp catastrophe because the 
dynamics can jump back and forth between states, and is therefore reversible. For the 
application of a cusp catastrophe to wildfires, see (Hesseln et aI. 1998). 

II Grimsrud and Huffaker (2006) demonstrate the complexity of finding the solution to 
an economic optimization problem that is subject to constraints incorporating 
slow-fast dynamics. 
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able (fire) can lead to a critical change in the slow variable, forest growth/fuel 
accumulation, resulting in larger and more intense fires (GAO 1998, GAO 1999, 
Stephens and Ruth 2005). Increased prescribed burning, wildland fire use, and 
mechanical fuel reduction programs are evidence of the resulting paradigm shift 
away from a policy of fire suppression and exclusion toward one that recognizes 
fire as a vital ecosystem process. Unfortunately, it is not yet known what effect 
fuel reduction efforts will have on wildfire dynamics or fire suppression costs. 
Until the linkages between these slow and fast ecosystem variables are under­
stood, a full economic analysis of fire protection programs will be incomplete. 

The long-term periodicity in the spruce bud worm example provides another 
lesson. Data sets spanning decades or centuries may be required to understand 
slow-fast ecosystem dynamics (Holling and Gunderson 2002). Data that do not 
incorporate evidence of the feedback between fast and slow variables would 
likely yield misleading analyses and inadequate policy prescriptions. 

Finally, we note that climate change might alter slow-fast ecosystem dynamics 
for some important forest disturbances (Dale et al. 2000, Logan et al. 2003). 
Westerling et al. (2006) identified a statistically significant change in the annual 
frequency of large (> 400 ha) western United States wildfires after 1987 that 
was correlated with mean March through August temperatures, suggesting that 
climatic thresholds may be important for fire dynamics. Others (Logan and 
Powell 2001, Logan et al. 200~) have suggested that global warming may be 
an important factor in widespread insect epidemics such as the recent Mountain 
Pine Beetle outbreak in British Columbia. 

5. SLOW-FAST ECOSYSTEM PROCESSES: 
SPATIAL DIMENSION 

In the previous section, we demonstrated how the interaction of slow and fast 
ecosystem variables can give rise to transient dynamics and rapid changes in 
ecosystem states. Our goal in this section is to show how the interaction of slow 
and fast variables can give rise to characteristic spatial patterns that are amenable 
to statistical analyses. Because the ecological literature on spatial spread and 
spatial pattern is extensive and succinct reviews are available elsewhere (Hast­
ings 1996, Hastings et al. 2005), we are not compelled to review the entire span 
of this literature. Rather, we focus our attention on a recent innovation in spatial 
modeling, cellular automata, that utilizes Monte Carlo simulation to analyze 
spatial pattern. A more focused review of this literature reveals that some uncon­
ventional statistical distributions are associated with forest disturbances. Conse­
quently, novel statistical methods may be required for economic analysis of 
interventions into these processes (chapter 4). 

Cellular automata have been developed to model a variety of abiotic 
phenomena, including fire and wind damage in forests (Pascual and Guichard 
2005). These models consist of a grid of cells on which discrete system dynamics 
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unfold according to rules that specify the consequences of interactions between 
cells in a local neighborhood. Iteration of these models over many time steps 
simulates how characteristic patterns of disturbance can develop across forested 
landscapes, and these spatial patterns are characterized by spatial power laws 
(Malamud 1998). This spatial signature is not pre-determined by the specific rules 
governing local interactions. Rather, it is a self-emergent property resulting from 
many interactions across the entire system. Cellular automata Monte Carlo simu­
lations generate simulated wildfire size distributions similar to those observed in 
fire data recorded in temperate and boreal forests (Ricotta et al. 1999, Cumming 
2001, Song et al. 2001, Zhang et al. 2003, Malamud et al. 2005). 

A cellular automaton uses a d-dimensional lattice with L d regularly spaced 
cells to represent the spatial organization of the ecosystem. During the simula­
tion, the value of each cell is updated in discrete steps according to deterministic 
or probabilistic rules, and rules governing cell behavior are applied equally to all 
cells. Thus, there is no local heterogeneity governing system behavior. Given a 
set of rules describing nearest neighbor interactions, the system is simulated over 
many time steps and the spatial pattern of disturbed areas is analyzed. 

Drossel and Schwabl (1992) describe a prototypical forest fire model where 
each site (cell) is either empty, occupied by a living tree, or occupied by a burning 
tree. The system is updated in discrete steps using the following rules: (1) empty 
site ~ living tree with probability p, simulating regeneration that is well-mixed 
across the forest matrix; (2) living tree -4 burning tree with probability f, simu­
lating an ignition source such as lightning; (3) living tree -4 burning tree if at least 
one immediate neighbor is burning, and (4) burning tree -4 empty site. Simula­
tion of this model over many time steps results in a fire size-frequency density f(,) 
characterized by a power-law (Malamud et al. 1998, Malamud et al. 2005): 

!(Area;)=aArea j -
P (2.4) 

where Are~ is the area burned in normalized fire class i, and ex and ~ are param­
eters.12 As emphasized by Pascual and Guichard (2005), the power-law spatial 
pattern that results from many iterations of this model depends on a double sepa­
ration of time scales. Fire spread is a fast variable, forest growth is a slow vari­
able, and the rate of fire ignition (lightning strikes per unit area) is a very slow 
variable. 

One convenient aspect of a power law is that a plot in log-log space results in 
a straight line. Figure 2.2 illustrates this result for the empirical size-frequency 

12 Following Malamud et al. (2005), frequency density is defined as: 

N [(Area;) = __ F_ 

t5Area; 

where NF is the number of fires in a bin width of BAre~. and bin widths increase with 
fire size. 
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Figure 2.2. Frequency density for wildfires in Florida caused by lightning, showing 
power law behavior on a log-log scale. 

5 

distribution for lightning fires in Florida, U.S.A. A linear function fitted to the 
Florida data shows that a power law representation fits the data well across 4 
orders of magnitude. The fitted function over-predicts fire frequency for fires 
exceeding about 5,000 acres, perhaps due to the fragmentation of forest fuels on 
the landscape (Ricotta et al. 2001). 

Power law functions have heavy tails-most of the disturbance occurs in a 
small number of large events. Power laws are unconventional statistical distri­
butions as they have infinite variance and may have an infinite mean. However, 
robust statistical procedures are available for analyzing spatial power law distri­
butions (chapter 4). Power laws have also been used to describe the spread 
of plant pathogens (Shaw 1994), so their use in economic modeling of forest 
disturbance may become more common as their properties become more widely 
understood. 

6. CONCLUSIONS 

Over the past few decades, the view that nature is balanced and tends to return 
to a stable equilibrium following a natural disturbance has been challenged by 
alternative paradigms. Accompanying this change 'has been a shift in perspec­
tive regarding the role of forest disturbances such as wildfires, insect outbreaks, 
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disease epidemics and storms. No longer are disturbances viewed as nuisance 
variables that temporarily perturb ecosystem equilibrium. Rather, disturbances 
are now generally regarded as key processes driving the temporal and spatial 
structure of landscapes. In this chapter we have highlighted how the interac­
tion of slow and fast variables contributes to forest disturbance processes across 
temporal and spatial scales. 

The literature we reviewed demonstrated that forest disturbance production 
functions represent the complex, transient behavior of ecosystems. Certain 
ecosystem processes such as wildfires, pest outbreaks and storms can be char­
acterized as stochastic, nonlinear dynamic processes which induce a variety of 
temporal and spatial signatures including multiple steady-state cycles and non 
steady state dynamics. Given this evidence, we suggest that forest economists can 
utilize two general approaches to incorporate ecological models in the economic 
analysis of forest disturbances. First, ecosystem dynamics can be included in 
the specification of an economic welfare maximization problem. Notably, this 
bioeconomic approach to analysis has recently been applied to the economics 
of biological invasions (Sharov and Liebhold 1998, Leung et a1. 2002, Olson 
and Roy 2003, Leung et al. 2005, Perrings 2005), and a call for the development 
of explicit bioeconometric analysis has been articulated (Smith 2006). Second, 
complex ecosystem dynamics can be summarized using statistical distributions. 
Taking advantage of the stochastic behavior of forest disturbance systems allows 
economists to investigate how statistical distributions shift in response to abiotic, 
biotic, and economic variables (Davis 1965, Prestemon et aI. 2002, Mercer et a1. 
2007, chapters 3-5 of this book). 

This chapter is necessarily incomplete and has not addressed some topics in 
ecology relevant to economic modeling of forest disturbances. These include 
the problem of aggregation across scales, the explicit spatial modeling of fires, 
insects, and pathogens in heterogeneous environments, and understanding the 
interactions among multiple forest disturbances. However, we hope that we have 
provided insight into the complexities associated with modeling forest distur­
bances and guidance into how ecological analysis can be incorporated into 
economic analysis. In sum, we think that economic analysis of forest distur­
bances will be improved by its congruence with ecological understanding and 
that, ultimately, joint economic-ecologic analysis will provide more relevant 
information for use in adaptive ecosystem management. 
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