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ABSTRACT

Wildfire regimes in natural forest ecosystems have been characterized with power–law distributions. In this paper, we evalu-
ated whether wildfire regimes in a human-dominated landscape were also consistent with power–law distributions. Our case
study focused on wildfires in Florida, a state with rapid population growth and consequent rapid alteration of forest ecosys-
tems and natural fire regimes. We found that all fire size–frequency distributions evaluated in this study were consistent with
power–law distributions, but the power–law distributions were piece-wise linear. A kink in the power–law distributions
occurred at about 640 ha for flatwoods fires and at about 290 ha for swamp fires. Above these levels, fires “exploded” into a
catastrophic regime. If the kink represents the level at which fires become immune to fire suppression effort, we would expect
that the location of the kink would occur at smaller fire sizes during extreme fire years due to the increased flammability of
fuels and the relative scarcity of fire suppression resources. We found this result for three of four extreme fire years in flat-
woods ecosystems and for all four extreme fire years in swamps. These results suggest that catastrophic fires may not be pos-
sible to prevent and that suppression efforts during extreme fire years may be best applied to strategic areas that decrease the
connectivity of fuels. 
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INTRODUCTION

The catastrophic wildfires that occurred in Florida
during the summer of 1998 were the worst in terms
of area burned in at least a half-century (Barnett and
Brenner 1992). In northeast Florida alone, approxi-
mately 202,430 ha burned and produced economic
losses of at least $600 million (Butry et al. 2001).
Although there is some recent empirical evidence
that catastrophic wildfire seasons in Florida are relat-
ed to the El Niño–Southern Oscillation phenomenon
(Brenner 1991, Prestemon et al. 2002), the broad-
scale characteristics of fire regimes over time and
space are not well understood. As human populations
increase in the urban–wildland interface, it becomes
increasingly important to understand the nature of
wildland fire regimes and how they are affected by
human actions such as fragmentation of wildlands,
prescribed burning, and fire suppression.

Recent attempts to characterize forest fire regimes
have been developed using a theory known as “self-
organized criticality” (Drossal and Schwabl 1992).
This theory has also been used to describe the

dynamics of large interactive natural systems such as
avalanches and earthquakes (Bak and Chen 1991).
Self-organized criticality is a holistic theory that
explains the global features of a dynamic system with
parameters that summarize the relative number of
small and large events. A key feature of self-orga-
nized systems is that the small-scale properties of a
system cannot be used to predict large-scale behav-
ior. Rather, large-scale behavior emerges over time
and space, resulting from the dynamic interactions
between parts of the system.

A widely cited example of self-organized critical
behavior is the “sandpile model” (e.g., see Kauffman
1995). In this model, grains of sand are persistently
placed in a pile on the top of a table. Over time, the
sandpile grows and avalanches of many sizes occur,
with an occasional catastrophic avalanche that car-
ries sand off the table to the floor below. However,
catastrophic avalanches are initiated by the same
event that causes smaller avalanches—the addition of
a grain of sand. In this model, a catastrophic cause is
not required to induce a catastrophic effect. 

An avalanche is a branching process that causes
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chain reactions through the system. While some
avalanches are catastrophic, most avalanches are of
small or medium size. The theory of self-organized
critical behavior posits that the large-scale behavior
of a system over many time steps can be described by
a power–law relation:

(1)

where NE is the number of events, NS is the number
of time steps, AE is area covered by an event, and β
is a parameter describing the power–law relationship.
If small events and large events contribute equally to
the total area impacted by a series of events, then β =
1. Equation 1 states that there is a negative exponen-
tial relationship between the number of events per
time period and their size. The negative exponential
relationship has been reported for fire regimes in
southern California–northern Baja California (Min-
nich 1983) and the Boundary Waters Canoe Area of
Minnesota (Baker 1989). 

Forest fires can be thought of as branching pro-
cesses, and recent empirical analysis has been under-
taken to evaluate how consistent historical fire data
are with the theory of self-organized criticality
(Malamud et al. 1998). In that study, data were
obtained for four fire regimes in the United States
and Australia: 1) U.S. Fish and Wildlife Service lands
(1986–1995), 2) western U.S. (1150–1960), 3)
Alaskan boreal forests (1990–1991), and 4) Aus-
tralian Capital Territory (1926–1991). Malamud et al.
(1998) found that forest fires followed a power–law
distribution. They reported estimates of β ranging
from 1.3 to 1.5, indicating that small fires contribut-
ed the most to the total area burned by all fires.

The impacts of human interventions on fire
regimes are not well understood, although it is antic-
ipated that humans alter the probability of fire spread
both intentionally and unintentionally. Fire spread is
affected by fuel connectivity, topography, and
flammability of neighboring ecosystems (Chris-
tensen 1985). Research in shrubland ecosystems sug-
gests that fire return intervals can be altered by
human activities such as road building and agricul-
tural development (Forman and Boerner 1981). Fuel
connectivity may also be influenced by fire suppres-
sion activity and weather. In a simulation study,
Miller and Urban (2000) found that fire suppression
increased connectivity under moderate levels of fuel
moisture and, consequently, resulted in larger fires.
In addition, conditions of very low levels of fuel
moisture, as would be present during extreme

drought, dramatically increased the risk of large fires
in that study, regardless of the spatial distribution of
fuel loads. However, in an analysis of fire regimes in
California shrublands, Keeley and Fotheringham
(2001) concluded that there is no evidence that fire
management policies have altered historic fire
regimes. 

In this paper, we evaluate whether wildfire regimes
in a human-dominated landscape are consistent with
power–law distributions. Our case study focuses on
wildfires in Florida, a state with rapid population
growth and consequent rapid alteration of forest
ecosystems and natural fire patterns. How successful
have fire suppression strategies been in reducing fire
spread? How much do catastrophic fires contribute to
the total area burned by wildfires in Florida? What
strategies are available to fire managers in control-
ling wildfires in Florida? We address these questions
in the analysis below. 

STUDY AREA AND DATA

Fire data were analyzed for the entire state of Flori-
da (excluding federal lands) spanning 20 years from
1981 to 2000. Data were provided by the Florida
Division of Forestry (DOF) and consisted of opera-
tional records for 110,685 fires. However, because
we wanted to focus on fires that most closely
approached “natural forest” conditions, we only used
fire records for forest fires started by lightning. Dur-
ing this time span, about 15% of wildfire ignitions
were attributed to lightning (other important ignition
sources include arson, debris burning, and
cigarettes). Lightning fires are thought to be larger in
size, on average, than fires ignited by humans
because they generally occur in more remote loca-
tions with less road access. Fewer roads serving as
firebreaks would be encountered by a spreading fire
in these remote areas. Remoteness also would be
linked to slower detection and more difficult mobi-
lization of suppression resources. 

Florida DOF fire records contained information on
a variety of characteristics, including dominant fuel
type. Grassy fuels accounted for the greatest propor-
tion of fires in the fire records (about 39%), followed
by saw palmetto (Serenoa repens, Sabal spp.) and
gallberry (Ilex glabra) (35%), dense pine (Pinus
spp.) (8%), blowy leaf (7%), swamp (4%), muck
(1%), and other (6%). Palmetto–gallberry fires were
fires that occurred in the understory of flatwoods
pine forests, and “dense pine” fires were crown fires
in this forest type. “Blowy leaf” refers to fires in
upland hardwood forest types. Swamp fires occurred
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in baldcypress (Taxodium distichum)-dominated
stands on sandy soils where organic layers were gen-
erally less than 25 cm in depth. Muck fires occurred
in swampy areas where organic soils were greater
than 25 cm in depth. In this study, palmetto–gallber-
ry and dense pine fuel types were combined to repre-
sent “flatwoods.”

Fire regimes were evaluated for flatwoods and
swamp fuel types. We chose these two fuel types
because they allowed us to investigate the hypothesis
that fire suppression is less effective during extreme
fire years. The parameters describing power–law
relationships are altered in years of extreme drought.
For example, in the spring and summer of 1998, the
Keetch-Byram drought index approached the maxi-
mum possible value of 800 for several weeks. We
therefore hypothesize that very low levels of fuel
moisture resulted in an increase in 1) the area burned
by catastrophic fires during that fire season, and 2)
the proportion of total area burned that was con-
sumed by catastrophic fires. If this pattern occurred
for flatwoods fuel types, this would provide evidence
consistent with the hypothesis. If this pattern also
occurred for swamp fuel types, this would provide
stronger evidence that fire suppression effectiveness
decreases in years of extreme drought.

METHODS

Operational fire records obtained from the Florida
Division of Forestry contained measurement error
because fire sizes were rounded-off during the
recording process to correspond with “conventional”
fire sizes. Consequently, the frequency of fires for
rounded-off fire sizes, such as 10 acres (4.13 ha) or
100 acres (41.3 ha), were typically several orders of
magnitude larger than reported fire frequency for
neighboring fire sizes, such as 9.9 acres (4.09 ha) or
101 acres (41.7 ha). This procedure created an
extreme “sawtooth” pattern in the raw data that was
an artifact of the data-recording procedure. Thus, it
was necessary to smooth the data prior to data analy-
sis to minimize the impact of these artifacts on sub-
sequent analysis.

Nonparametric smoothing techniques are available
that do not impose a parametric functional form on
the distribution of data, but rather let the data deter-
mine the appropriate functional form (Hardle 1990).
In this paper, we used a running-line smoother
(Hastie and Tibshirani 1990) based on a local regres-
sion:

(2)

where s(x0) is the smoothed data for target point x0,
and δ and γ are least squares estimates for the data
points in the local neighborhood of x0. After the value
for a target point has been estimated as s(x0), the
smoothed value of an adjacent target point is esti-
mated until all target points have been smoothed. A
running-line smoother corrects the first-order bias of
a running-mean smoother near the upper and lower
limits of the data (Hastie and Tibshirani 1990). This
property makes the running-line smoother useful for
examining the tails of empirical distributions.

Target points in our data that needed smoothing
were observations on fire frequency. Frequencies
were computed using SAS software (SAS Institute
2000) by first sorting fire records in ascending order
of fire size and then counting the number of fires in
each fire size class. Smoothed data points were esti-
mated for each fire size class using Mathcad software
(Mathsoft 1991). 

To evaluate whether the smoothed fire size–fre-
quency data followed a power–law distribution, base
10 logarithms were computed for fire sizes and
smoothed frequencies. Smoothed data were plotted
with the logarithm of fire frequency on the Y-axis and
the logarithm of fire size on the X-axis. If fire
regimes in Florida followed a power–law distribu-
tion, then the plot of fire size and fire frequency in
log–log space would result in a negatively sloping
straight line. Where this pattern was observed, an
ordinary least squares (OLS) regression was per-
formed to estimate the parameters of the power func-
tion:

(3)

where NF is the number of fires, AF is fire size, α is a
location (intercept) parameter, and β is the slope of
the power–law distribution. If a linear pattern was
observed over only part of the data range, then an
OLS regression was performed over the range(s) of
the data that appeared linear. Then, the proportion of
the total fire areas explained by the power–law was
computed.

Because the area burned in wildfires in Florida is
highly variable from year to year, we decided to eval-
uate three categories of fire size–frequency distribu-
tions. First, we estimated the power–law model using
all years in the data records. This provided a base line
with which to compare other size–frequency distribu-
tions and provided an indication of whether the data
generally followed a power–law distribution. Second,
we estimated power–law models for the most extreme



91FIRE REGIMES IN FLORIDA

fire years in the Florida data: 1981, 1985, 1989, and
1998. Area burned in these years was substantially
above average. Examination of the right-hand tail of
the size–frequency distributions for these years
allowed us to evaluate the hypothesis that catastroph-
ic fires contributed more to the total area burned dur-
ing extreme years. Finally, we estimated the
power–law model for “non-catastrophic” years. This
analysis provided an adjusted base line for fire years
in the absence of catastrophic fire spread conditions.

RESULTS

All fire size–frequency distributions evaluated in
this study obeyed a power–law relationship, but the
power–law distributions were piece-wise linear. We
discovered that fire regimes in Florida could be bro-
ken down into three segments, which we refer to as
“small,” “moderate,” and “catastrophic” segments of
the fire regimes. These segments were readily identi-
fied in plots of the smoothed fire size–frequency data
(Figure 1). 

Using the entire data record as an example, small
fires are defined by the horizontal segment on the
left-hand side of the fire regime and are located in the
range from 0.04 to 1.44 ha. This flat segment may be
due to under-reporting of small fires or fires that self-
extinguish so they are under-represented in the

size–frequency distribution. Moderate fires are
defined by the downward sloping, roughly linear seg-
ment located in the range from 1.44 to about 640 ha.
The fire regime again flattens off for fires greater
than 640 ha in size. This flattened segment, which we
refer to as the “catastrophic” range, includes fires up
to 24,940 ha.

Estimates of the slope parameters (β's) associated
with moderate fires provide information about the
efficacy of fire suppression activities during this
period. If fires of all sizes were equally difficult to
suppress, then we would expect that the fire size–fre-
quency distribution after suppression would maintain
the identical slope of a fire size–frequency distribu-
tion prior to fire suppression, although suppression
would tend to decrease the value of the vertical inter-
cept (α). However, if the efficacy of fire suppression
decreases as fire size increases (large fires are more
difficult to suppress), then we would expect that the
β's associated with moderate fires would be less than
1 (larger fires contribute the most to area burned),
and that this effect would be exacerbated in extreme
fire years. 

Baseline α's and β's for the entire 1981–2000 peri-
od and for the non-catastrophic years provide esti-
mates of “background rates” for fire size–frequency
distributions in Florida (Table 1). We note that the

Figure 1. Smoothed fire size–frequency distribution in log–log space for lightning-caused flatwoods fires in Flori-
da, 1981–2000. 
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background β's were smaller than the slope parame-
ters reported by Malamud et al. (1998), who found
that β > 1 (smaller fires contribute the most to area
burned) in each of the four fire regimes studied.
Background β's in Florida ranged from –0.83 to
–0.88 and provide evidence that, even within the
moderate range, larger fires contributed more to the
area burned than did smaller fires. This result is con-
sistent with the hypothesis that smaller fires are more
likely to be controlled than are larger fires.

What happened to the location and slope of the

flatwoods fire size–frequency distribution in extreme
years? The results showed that α increased relative to
the background level (1.36–1.39), indicating an
increase in fires of all sizes, and the β's were reduced
in size relative to the background rates. Thus, in
extreme fire years, catastrophic fires contribute more
to the area burned than in non-extreme years. This
suggests that, even within the moderate segment of
the fire regime, fires become more difficult to fight in
extreme fire years.

Does fire suppression become less effective in

Table 1. Parameter estimates describing power–law relationships in moderate fire regimes, size range of moderate
fires, and maximum fire size in catastrophic versus non-catastrophic years, Florida, 1998–2001.

Parameter

Fuel type Year(s) α               β
Moderate fire

range (ha)
Maximum fire

size (ha)

Flatwoods 1981–2000 1.36 –0.83 1.4–642 25,304
Non-catastrophic years 1.39 –0.88 1.1–486 2,040
Catastrophic years

1998 1.76 –0.61 1.4–202 25,304
1989 1.64 –0.54 1.4–810 810
1985 1.67 –0.53 1.4–770 11,174
1981 1.81 –0.59 1.4–405 12,146

Swamp 1981–2000 0.18 –0.50 0.04–287 8,259
Non-catastrophic years 0.17 –0.50 0.04–142 3,887
Catastrophic years

1998 0.89 –0.37 0.04–30 8,259
1989 0.50 –0.22 0.04–8 1,553
1985 0.49 –0.20 0.04–405 405
1981 0.50 –0.14 0.04–18 287

Table 2. Total area burned by lightning fires and area burned in the extreme fire regime in catastrophic versus non-
catastrophic years, Florida, 1981–2000. Average annual values, for comparison with values for catastrophic fire
years, are shown in parentheses.

Fuel type Year(s)
Total area burned

(ha)
Extreme fire regime

area (ha)
Percent area in

extreme fire regime

Flatwoods 1981–2000 261,930 (13,096/yr) 155,172 (7,759/yr) 59
Non-catastrophic years 56,646 (3,540/yr) 6,340 (396/yr) 11
Catastrophic years

1998 125,599 116,995 93
1989 12,438 0 0
1985 32,231 20,536 64
1981 34,349 19,445 57

Swamp 1981–2000 21,847 (1,092/yr) 15,824 (791/yr) 72
Non-catastrophic years 8,214 (513/yr) 5,347 (334/yr) 65
Catastrophic years

1998 9,402 9,401 99
1989 2,109 2,053 97
1985 1,220 1,190 98
1981 1,051 865 82
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swamp fires during extreme fire years? According to
the β parameter estimates, the answer is “yes”
because the contribution of catastrophic fires to total
area burned in the moderate region increased in
catastrophic fire years (Table 1).

It is quite possible that fires occurring in the catas-
trophic region represent fires that exceed the capaci-
ty for suppression. Under this interpretation of the
catastrophic region, suppression appears to be effec-
tive up to about 640 ha for flatwoods fires and up to
about 290 ha for swamp fires. We note that the size
of the moderate fire region shrinks during extreme
fire years. This may be due to the fact that increasing
fuel flammability promotes rapid fire spread so that
fire growth exceeds fire suppression capacity at
smaller fire sizes than under conditions less favor-
able to fire.

How much of the total area consumed by wildfire
was burned by fires in the catastrophic region? Table
2 shows that, in non-extreme fire years, only a small
proportion of the total flatwoods area burned was in
the catastrophic region. Of the extreme fire years,
1989 was unusual because all fires were in the non-
catastrophic region. However, in the other extreme
fire years, the majority of area burned by wildfires
was in the catastrophic region of the distributions. 

Swamp fire distributions showed that the majority
of the area burned was in the catastrophic region,
even in non-extreme years. This is likely because
swamp fires are hard to suppress for a variety of rea-
sons including the difficulties associated with operat-
ing heavy machinery in those areas. Catastrophic
fires consumed almost all of the area burned in
swamps during extreme fire years. 

DISCUSSION

Lightning-caused flatwoods fires were consistent
with power–law distributions, but the power–law dis-
tributions were piece-wise linear. A kink in the
power–law distributions occurred at about 640 ha for
flatwoods fires and at about 290 ha for swamp fires.
Above these levels, fires “exploded” into a catas-
trophic regime. 

These results suggest that fires occurring in the
catastrophic size range represent fires exceeding the
capacity of fire suppression activity. For catastrophic
fires, suppression activity may be focused on pro-
tecting lives and property rather than on establishing
perimeter fire lines. When large fires jump beyond
the limits of effective fire suppression, they may
resemble fire patterns reminiscent of fire regimes
that existed prior to modern fire suppression activity.

Gaining a better understanding of the catastrophic
fire regime is important as it is the fires in this regime
that burn the most acreage in extreme fire years. 

In the future, we plan to continue this line of
research by 1) examining fire regimes in Florida for
other fuel types (such as grasses) and sources of igni-
tion (such as arson), 2) examining the impact of other
factors such as weather and forest fragmentation on
fire regimes, and 3) studying the characteristics of
fires identified as occurring in the catastrophic region
using statistical models of extreme value distribu-
tions. These studies will enhance our understanding
of the nature of fire regimes in Florida and how they
are altered by human activity. 

MANAGEMENT IMPLICATIONS

Extreme fires may not be possible to prevent.
Therefore, fire managers need to recognize the con-
ditions under which extreme fires may occur as well
as the locations where they are most likely to occur.
Suppression effort may be best applied to strategic
areas that decrease the connectivity of fuels during
conditions that cause catastrophic fires. This may
involve establishing buffers that interrupt fire con-
nectivity during extreme fire seasons. 
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