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Abstract. Weather predictions from the MM5 mesoscale model were used to compute gridded predictions of 
National Fire Danger Rating System (NFDRS) indexes. The model output was applied to a case study of the 2000 
fire season in Northern Idaho and Western Montana to simulate an extreme event. To determine the preferred 
resolution for automating NFD RS predictions, model performance was evaluated at 36, 1 2, and 4 km. For those 
indexes evaluated, the best results were consistently obtained for the 4-km domain, whereas the 36-km domain had 
the largest mean absolute errors. Although model predictions of fire danger indexes are consistently lower than 
observed, analysis of time series results indicates that the model does well in capturing trends and extreme changes 
in NFDRS indexes. 

Introduction 

The purpose of the present research was to couple the 
National Fire Danger Rating System (NFDRS) with the MM5 
meteorological model, to provide NFDRS predictions at grid 
points over the full landscape withm the domain ofthe model, 
and to evaluate the value of decreasing grid cell spacing in the 
modeling process. The NFDRS was developed in the 1970s 
to provide indicators of fire severity based on weather and 
fuel conditions and thereby help fire managers make deci- 
sions and plan for staffjig and resource management in the 
control of wildfires (Deeming et al. 1977; Burgan 1988). 
Traditionally, NFDRS observations and forecasts have been 
made at locations considered to be representative of the fuels 
and climatology in a broad area. With high-speed, high- 
resolution modeling becoming more affordable and timely, 
it may be possible to produce NFDRS predictions on hourly 
time scales and at spatial resolutions that may be useful for 
application in both fire danger rating and fire behavior pre- 
diction. The present paper documents some first steps in that 
direction. In addition to developing techniques for applying 
modeled weather data to NFDRS predictions, a case study of 
an extreme fire season is used to test the predictions and to 
compare predictions from three different model domains. 

Data and model simulations fiom the 2000 fire season 
in North Idaho and Western Montana were used to develop 
and evaluate automation of predicted NFDRS indexes. A case 
study approach was used in order to evaluate the usefulness of 
predictions as applied during a period of known lvgh fire dan- 
ger. Because NFDRS values are most critical under extreme 
conditions, data sample points w i h n  mapped fire perime- 
ters were used in order to ensure the model was tested for 
performance in areas where actual fires occurred. Evaluation 
of the results for the 36-km, 12-km, and 4-km domains was 
done by comparing model output with NFDRS observations 
in three different ways: (1 ) averaged w i h  fire weather zones 
as defined by land managers in coordination with National 
Weather Service fire weather meteorologists; (2) interpolated 
over the landscape; and (3) at the closest available Remote 
Automatic Weather Station (RAWS). 

NFD RS indexes calculated on different fuel models vary 
differently with incremental changes in the weather. Fuel 
models mapped to grid cells may be different at any given 
point from the fuel model at the same point at a different 
spatial resolution. Gridded fuel models may also be different 
from what is observed on the ground. Thus it is difficult to 
compare point to point predictions in a meaningful way using 
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Background jt ', - - 
, "( The NFDRS integrates fuels, topography, and weather data to 

j- generate fire danger indexes. Manual observations taken once 30 . .?, ,' +: 30N 
a day have, for the most part, been replaced by RAWS, which 140 w 130 w 120 w i i o w  

collect hourly weather data. However, NFDRS is calculated 
Fig. Modeling domains. rn is 36-lan resolution, D02 is 12-lan 

only once a day in mid-afternoon (1 300 LST) to estimate the resolution, md rn3 is 410n resolution. 
upper bound of fire danger when conditions are usually the 
hottest and driest. 

Through the Fire Consortia for Advanced Modeling of location, leaving only weather data to be obtained once a 
Meteorology and Smoke (FCAMMS), many modeling cen- day. Similarly, in calculating NFDRS indexes with mod- 
ters are now running hgh-resolution mesoscale models to eled weather at every grid cell (rather than at widely spaced 
produce regional weather predictions on a real-time, oper- observation sites), the topography and fuel information can 
ational basis. These mesoscale models can generate the be determined once for each grid cell, with only the mete- 
meteorological fields necessary to calculate NFD RS indexes. orology changing every day. Therefore there are several 
This opens the door for providing fire managers with fire dan- 'static' gridded fields that are used in the index calculations. 
ger predictions at a finer temporal and spatial resolution than These constant fields include the terrain slope, and maximum 
has ever been available. The present research takes a first step and minimum Normalized Difference Vegetation Index 
in examining the usehlness of such fine-scale predictions (NDVI) grids, which are used for estimating live fuel moisture 
when applied to an extreme fire season. (Burgan and Hartford 1993,1997; Burgan et al. 1996). NDVI 

data are derived from satellite observations obtained with 
Modeling the NFDRS the Advanced Very High Resolution Radiometer (AVHRR) 

A case study run of the MM5 was used to simulate the 2000 sensor. 

wildfire season in the Northern Rocky Mountains and calcu- 
late the predicted daily NFDRS fields. For a more detailed to NFDRSequations 

background on the case study, see Hoadley et al. (2004). The Because model-generated predictions, rather than observa- 
case study area contained three nested modeling domains: an tions, are used to compute the NFDRS indexes, some modi- 
outer 36-km grid, an intermediate 12-km grid, and an inner fications to the equations are required. Specifically, there are 
4-km grid (Fig. 1). Four NFDRS indexes, Energy Release differences in the way some he1 moistures are computed. 
Component (ERC), Spread Component (SC), Burning Index The smaller dead fuel elements (l-h and 10-h fuels) respond 
(BI), and Ignition Component (IC), were computed on all very quickly to weather changes; therefore, the small dead 
three grids to determine the preferred grid cell spacing for fire fuel moistures can be calculated using the same equations as 
danger predictions. ERC is an index of the available energy the traditional NFDRS, and prediction errors do not propa- 
per unit area within the flaming front of the fire, and depends gate with time. The larger (1 00-h and 1000-h) fbels respond 
on fuel moisture. SC 1s a measure of the forward rate of much more slowly to changes in atmospheric conhtions and 
spread of the fire, and is sensitive to wind speed, slope, and are modeled by daily boundary conditions of maximum and 
1 -h fuel moisture. BI is an indicator of the difficulty of con- minimum temperature, relative humidity, and hours of precip- 
tainment, and is a combination of ERC and SC. IC is an itation. Consequently, the equations for 1 OO-h fuels keep track 
index of the probability a firebrand will start a fire requir- of weather conditions over the past 24 h, whereas the 1000-h 
ing suppression activities, and is affected by SC and 1-h fuel equations keep a memory of the weather variables over the 
moisture. past 7 days. Additionally, both of the larger fuel classes are 

Traditionally, the NFDRS indexes have been computed sensitive to day length. Because of the effect of the previous 
from weather data collected at point locations. The topog- weather on these large fuels, it is necessary to 'nudge' the 
raphy and fuels information are determined once for each automated NFDRS process daily with ~bserved data to keep 
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errors in the 24-h boundary conditions from accumulating in 
the large fuel moisture computations. 

Observed values of fuel moisture from the previous day 
were used as the 'initial' value to compute fuel moisture for 
the prediction day. For the case study, the archived RAWS 
point data were obtained and interpolated to each of the 
three MM5 domains using Cressman's interpolation scheme 
(Cressman 1959). One additional daily grid required to com- 
pute the indexes is the Keetch-Byram Drought Index (KBDI). 
KBDI was also available from the archived RAWS data 
and interpolated to the MM5 domains using the Cressman 
scheme. 

Preparatiort of gridded input fields 

Live &el moisture in the predcted NFDRS implementa- 
tion is estimated from relative greenness (RG) maps, whch 
are derived from NDVI. These maps depict how green the 
vegetation is in each grid cell relative to how green it 
has been historically (1 989-1 995). New relative greenness 
maps on the 1 -km hll-US grid are available for download- 
ing from the Wildland Fire Assessment System (WFAS) 
once a week. Archived RG maps were used for the case 
study. 

The US 1-km grids of NFDRS input fields such as he1 
moisture and relative greenness use a Lambert Azimuthal 
projection, and have 2889 rows and 4587 columns. The MM5 
domains used in the present study use a Lambert Conformal 
Conic projection. The 36-km domain has 126 rows and 150 
columns, the 12-km domain has 1 1 1 rows and 150 columns, 
and the 4-km domain has 2 19 rows and 204 columns. There- 
fore, all the 1-km grids were re-projected and re-sampled to 
be geographically aligned with the MM5 grids. 

After the static grids were all re-projected to the MM5 
domains, the necessary meteorological fields were extracted 
from the MM5 output files for each day. The model run ini- 
tialized at 0000 UTC each day was used to generate the 
NFDRS predictions. The NFDRS indexes were calculated 
for the period from 1500 Mountain Daylight Time (MDT) 
to 1500 MDT the following day (forecast hours 21 through 
45). The index calculations require fields of temperature, rel- 
ative humidity, wind speed, and cloud cover at 1500 MDT 
(forecast hour 4 9 ,  and the previous 24-h (forecast hours 21 
through 45) fields of maximum and minimum temperature 
and relative humidity, precipitation amount, and precipitation 
duration. 

Because model data, rather than observations, were used to 
compute the indexes, two of the input variables obtained from 
the model were handled differently than the data obtained 
from RAWS sites. Cloud cover, a variable not predicted by 
the model, is required for NFDRS calculations. The MM5 
does, however, compute incoming shortwave (SW) radiation, 
which was used to estimate cloud cover. For each day, the 
maximum possible incoming SW radiation was computed 
at the center of each grid cell in all the domains, based on 

time of day and latitude and longitude of the grid cell. These 
computations were based on the following equation: 

qs = qa(a + b x cloudfrac), 

where qs = actual SW radiation reaching the earth's surface 
(from MM5), qa = extraterrestrial SW radiation (computed 
from latitude, date, and time), 'a' ranges from 0.18 to 0.4 
(a mean of 0.27 was used), 'b' ranges fiom 0.42 to 0.56 (a 
mean of 0.52 was used), and cloudfrac = 1 if clear, 0 if cloudy 
(Maidment 1993). The percentage of sky covered by cloud 
was estimated by solving for cloudfrac. 

The second variable modified was precipitation dura- 
tion (number of hours in the past 24 h when precipitation 
occurred). The MM5 predicts convective and non-convective 
precipitation. One characteristic of the convective parameter- 
ization is that it tends to over-predict convective precipitation 
in the summer. If there is a small probability of convective 
rainfall, the model predicts trace amounts of precipitation 
over large areas for several hours. Consequently, some days 
were found when a significant number of grid cells in the 
domain had up to 24 h of precipitation predicted, even though 
the amount was little more than a trace. To rectify this prob- 
lem, a minimum of 1.3 mm (0.05 inch) of convective rainfall 
in an hour was required before that hour was added to the 
duration total. To include cases when convective rainfall was 
less than 1.3 mm for any single hour in a day but accumu- 
lated to more than 1.3 mm over the 24-h period, at least 
1 h of rainfall was counted whenever the 24-h total was 
greater than 1.3 mm. Because the MM5 more accurately pre- 
dicts the duration of non-convective rainfall, any amount of 
non-convective rainfall was included in the totals for both 
precipitation duration and amount. 

Evaluation results 

NFDRS observations are taken at point locations whereas our 
automated fields were output to grids at 36,12, and 4 km. 7 h s  
presented some challenges for objective evaluation. Because 
fire danger ratings are intended to be applied over a large geo- 
graphic area (Schlobohrn and Brain 2002), observations were 
aggregated by: (1) averaging over fire weather zones (zonal 
averaging); and (2) interpolation using an inverse distance 
square scheme in ESRI's ArcGIS s o h a r e  (ESRI, Redlands, 
CA, USA). The closest available RAWS observation to each 
fire was also considered, however, to allow comparison with 
the results for zonal averaging and interpolated observation 
fields. 

Each of the three mapped observation fields was over- 
laid with mapped output grids at each of the three domains 
in ArcGIS, and data were extracted from within the study 
fire perimeters (or the closest RAWS). In cases where fire 
perimeters overlapped more than one grid cell or f r e  weather 
zone, the hghest observed or predicted value within the f r e  
perimeter was recorded for evaluation. 
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Fig. 2. Map showing fire weather zones (thin dark grey lines), Remote 
Automatic Weather Stations (RAWS) (grey dots), study fire area burned 
(black shapes), and RAWS closest to study fires used for evaluation 
(dark grey squares). 

Zone average Interpolated 

Fig. 3. Mapped values of Energy Release Component for 30 July 2000. 
Lower values are represented by light colors and higher values by darker 
colors. Heavy black lines show the border between Idaho and Mon- 
tana. Black shapes are fire perimeters used as sampling points for data 
extraction. 

Zonal averages were achieved using ArcView Spatial 
Analyst to average the observed NFDRS indexes from all 
available RAWS stations within a fire danger rating area 
for each day. Fire danger rating areas, also referred to as 
fire weather zones, are areas of generally homogeneous hel, 
weather, and topographic features and may be tens of thou- 
sands of acres in size (Schlobohm and Brain 2002). In the 
western USA, these zones are generally defined collabo- 
ratively by land managers and fire weather meteorologists. 
Fire weather zones for the study area are shown in Fig. 2. 
ArcView Spatial Analyst was also used to compute inter- 
polated values. For all available RAWS stations, an inverse 
distance-weighting scheme was applied to arrive at interpo- 
lated values across the landscape for each index each day. 
Figure 3 shows a typical pattern for zone-averaged and inter- 
polated ERC data, as well as grid patterns for each of the 
three model domains. 

Six fires or complexes were selected for the evaluation, 
based on the size and duration of the fire as well as the exis- 
tence of adequate geographic information system mapping of 
the fire perimeter through the life of the fire. Table 1 provides 
a summary of the size and duration of each fire. Figure 4 
shows the relative size and location of these fires, Data were 
extracted fiom the model grids overlaid with fire perime- 
ters. Because NFDRS is intended to identify the worst-case 
scenario, if more than one grid cell value occurred within a 
fire perimeter, the lughest value was selected for evaluation 
purposes. 

The six fires and a 30-day study period (26 July through 24 
August 2000) produced 168 prediction and observation pairs. 
Although the fires started on different dates within the study 
period, predictions were evaluated for the entire 30 days at 
each fire location. 

Because observed and predicted values of SC varied only 
in very small increments during the study period, SC was not 
included in the evaluation. Discussions with NFDRS experts 
at the Missoula Fire Laboratory indicated that this is normal 
and that, in general, SC is not widely used by fire managers. 
It is also likely that the wet bias of the MM5 resulted in very 
low values because of the influence on fme fuel moisture. 

For each index, mean error (ME), mean absolute error 
(MAE) and root mean square error (RMSE) were computed 
to measure the accuracy of the predictions. ME, also called 
bias, is the average of the difference between the prediction 
and observation: 

where P = the highest predicted value within a fire perime- 
ter, 0 =the highest observed value w i t h  a fire perimeter, 
and N = the number of sample pairs. ME gives an indication 
whether, on average, errors are more likely to be positive or 
negative but, because the positives and negatives cancel each 
other out, ME does not tell us much about the average size 
of the error. MAE averages the absolute value of the errors 
((ZIP - 0I)M) and is a better indicator of the size of the error 
but tells nothing about the sign of the error. RMSE is calcu- 
lated by computing the average of the squares of the errors and 
then finding the square root (SQRT ([C(P - O)~]N)). T h s  
statistic gives an indication of the tendency for large errors 
to occur. In general, the RMSE scores in the present study 
were similar in magnitude to the MAE scores, indicating 
that individual large errors were not influencing the statistics. 
Therefore, RMSE errors are not presented in the discussion. 

Erzer~y release component 

ERC is a number relating to the available energy per unit area 
within the flaming front at the head of a fire. It is expressed 
as an index value but can be related to units of the order 
of 450 ~ / m ~  (British thermal unit/ft2 divided by 25). ERC is 
based solely on variations in he1 moisture (Schlobohm and 
Brain 2002). 
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Table 1. Study fire information 

FireJcomplex name Location Start date Contained Acres burned 

MontureISpread Ridge Lolo NF 13 July 6 September 27 500 
Mussingbrod Beaverhead/Deer Lodge NF 3 1 July 26 September 84 939 
Blodgett Trailhead Bitterroot NF 3 1 July 10 September 1 1 276 
Ryan Gulch 15 miles E of Clinton. MT 7 August 30 August 17 118 
Thompson Flat Lolo NF 4 August 8 September 14 396 
Burnt Flats Clearwater NF 1 1 August 1 September 22 527 

Fig. 4. Location of 2000 wildfres within the 4-km domain (shaded). 
Burned area of all fires is shown by darker grey shading and study fires 
are shown in black. The circle-with-dot symbols show location of all 
fues; owing to the map scale, smaller fires will not show burned area. 
Solid black triangles are major cities, and solid black lines are state 
boundaries. 

Table 2. Mean error (ME) and mean absolute error 
(MAE) of predicted energy release component 

Statistic Domain 

36-km 12-km 4-km 

ME 
Interpolated - 17.46 - 14.20 -6.99 
Closest -19.45 -16.19 -8.98 
Zone -9.43 -6.17 1.04 

MAE 
Interpolated 18.59 15.65 11.16 
Closest 21.61 18.62 14.34 
Zone 1 1.67 8.89 6.45 

In a previous evaluation of meteorological parameters pre- 
dicted by MM5 using the same case study, it was found that 
the model-predicted relative humidity values were generally 
too moist (Hoadley et al. 2004). Because relative humid- 
ity directly influences fuel moistures, whch are the primary 
influence on ERC, it was expected that predicted ERC values 
would be low. Table 2 shows the ME and MAE statistics for 
ERC in all three domains using three different approaches to 
interpreting observed values. In general, the ME is negative 
as expected, indicating predicted ERC values lower than 

observed. When observations were averaged over fire weather 
zones, however, the 4-km domain showed a slight positive 
bias, indicating predicted values higher than observed. Also, 
ME scores of the 4-km results showed greater accuracy than 
those of the other domains regardless of observation strategy. 
The MAE results indicate that all domains are better at pre- 
dicting the zonal average and the 4-km domain consistently 
has the least error. During the study period, the observed 
ERC at RAWS stations closest to the study fires had values 
generally ranging from the mid-50s to low 90s. The range 
from minimum to maximum observed ERC at any one sta- 
tion during the study period was as little as 13 points on the 
Thompson Flat and Burnt Flats complexes, to as much as 
36 on the Ryan Gulch Fire. MAE for predicted ERC of the 
magnitude observed in t h s  study may be unacceptable for 
fire operations given that they represent a high percentage 
of the seasonal variability. It may be necessary to develop 
techniques to remove the bias in order to make them more 
meaning h l  for practical application. 

Figure 5 shows a pocket card for the Bitterroot National 
Forest. Pocket cards were developed as a tool for firefighters 
to gauge the severity ofthe current fire season against average 
and extreme years. The graphics show seasonal variability of 
ERC. From this, one can see that the difference between an 
average and an extreme year at tlus location is of the order 
of 15 points of ERC, so underpredcting ERC values by 15 
points could be very misleading in assessing the actual fire 
danger. 

Figure 6 shows a time series of the observed and predicted 
indexes for two of the study fires graphed against the daily 
acreage increase of the fue. Although there are many fac- 
tors influencing the growth of a fire, and a correlation with 
NFDRS indexes is not expected, it is interesting to consider 
whether there might be an observable relationship between 
fire growth and NFDRS indexes. In general, the predicted 
values of ERC capture the overall trend of the observations 
for the two fires shown. The predictions show considerably 
more variability, however. This is likely due to over-prediction 
of precipitation. 

Burning index 

The BI combines SC and ERC to provide a number that 
relates to the difficulty of controlling a fire owing to fire 
behavior. Values of BI have units that approximate 10 times 
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Fire danger - Bitterroot National Forecast : Fire danger area: 
Maximum, average, and 90th percentile : Southwest Montana Misoula area weather 

1 Forecast zone 109 forecast zone 109 

Extreme - Use extreme caution 
(Caution) -Watch for change 
Moderate - Lower potential, but always be aware 

Maxnnum - Hghest Energy Release Component by day 
for 1993-2003 

I Average - shows peak f~re season 
90th ~ercentlle - cniy 10% of the days f rom 1993 to 2003 

W 
10 had an iergy release component above 44 

i Local thresholds - watch out: Combinations 
0 of any of these factors can greatly increase fire behavior: 

20' Wind speed over 15 mph. RH Less than 20%. 
temperature over 85, hehaceous fuel moisture less than 100 

Years toremember: 2% 2>_3 

- Apr May ' June July Aug ' Sept Oct 

Remember what fire danger tells you: 
J Energy Release Component gives seasonal trends 

calculated from 2 ptn temperature, humidity, 
daily temperature 8 RH ranges, and precip durat~on. 
Wind is NOT part of ERC calculation. 
Watch local condiions and variations across 
the landscape -fuel, weather, tapography. 

J Listen to weather forecasts- especially WIND. 

Past experience: 

Most large fires are wind driven or fuel dictated. 
RHs i 18% without wind w~ll produce active fire with short range spotting. 
Prevai l i  winds are normally westerly or southwesterly. 
Season-ending event normally occurs by mid September. 
A 2 week drying trend and ERCs > 45 indicate potential for large fire growth 
=North Rye Fire in 1998 burned 3950 acres 
Wear Fire in 2000 burned 145040 acres 
XXGold Gne Fire in 2003 bumed 8296 acres 

Fuel model: G - Short-Needle (Heavy Dead) : Developed by NWCG-Fire Danger Working Team FF+3.0.1 02119/2004 4:35 

Fig. 5. Pocket card for the Bitterroot National Forest showing seasonal variability of Energy Release Component for average and extreme years. 

the flame length in feet. The scale is open ended. BI is 
sensitive to changes in wind speed, slope, and relative hwnid- 
ity (Schlobohm and Brain 2002). MM5-predicted values of 
BI are expected to be low owing to the bias in relative humid- 
ity seen in an earlier study (Hoadley et al. 2004). Table 3 
shows the ME statistics for BI. Not only are the results 
negative as expected, indicating predicted values lower than 
observed, but the average errors are quite large. Errors of -40 
for BI imply that flame lengths are underestimated by 1.2 m. 
This can mean a significant difference in tactics or even in 
the ability to use direct attack strategies on a fire. Because 
f~el ine  intensity increases more than twice as fast as flame 
length, the underpredicted values of BI give an even more 
distorted view of potential fire behavior. All three domains 
do a better job of predicting the zonal average and once again 
the 4-km domain has the consistently best performance of 
the three. Figure 6 shows time series data for BI for two fires 
during the study period. 

ranging from 0 to 1 00 (Schlobohm and Brain 2002). Earlier 
analysis showed that the MM5 performed reasonably well 
in predicting wind speeds (Hoadley et al. 2004). Thus, any 
errors in predicted IC should be attributed to errors in the pre- 
dicted relative humidity. High relative humidity predictions 
would cause the fine fuel moisture values to be too high, 
resulting in too low values of IC. 

Table 4 shows the ME and MAE statistics for IC. As 
expected, based on the model predictions ofrelative humidity, 
the results show that predicted values of IC are consistently 
lower than observed. As with ERC, the 4-km results are con- 
sistently better than the other domains. However, errors of 
19-29% of the full range of values for IC should be consid- 
ered too large for operational requirements. It may be possible 
to develop a simple filter to bring the predicted values into an 
acceptable range for operational use by adjusting for known 
biases in the model. Figure 6 shows a time series of IC for 
two of the study fires. 

Ignitior~ component Discussion 

The IC is a rating of the probability that a fire requiring sup- Predicted grids of NFDRS indexes using the MM5 meso- 
pression action will ignite given that an ignition source is cale model output have been created. The predictions were 
present. IC is sensitive to variations in wind and fine fuel evaluated using a sample of points extracted from actual 
moisture. IC is expressed as a probability and has values fire locations, and compared with observed NFDRS values 
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Blodgett trailhead burning index Monturelspread ridge complex burning index 
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Fig. 6. Time series charts of observed (solid lines) and predicted (dashed lines) National Fire Danger Rating System indexes for two of the study 
fires. The closest Remote Automatic Weather Station observation is shown by the heavy black line, the zonal average by the thin black line, and the 
interpolated value by the heavy grey line. Predicted data includes 36-km resolution shown by the thin dashed black line, 12-km resolution by the 
dashed grey line, and 4-km resolution by the heavy black dashed line. For reference, only daily increase in fire acreage is indicated by the black bars. 

Table 3. Mean error (ME) and mean absolute error 
(MAE) of predicted burning index 

Table 4. Mean error (ME) and mean absolute error 
(MAE) of predicted ignition component 

Statistic Domain 

36-km 1 2 - h  4-km 

ME 
Interpolated -41.00 -40.89 -33.08 
Closest -40.40 -40.29 -32.48 
Zone -27.27 -27.16 -19.35 

MAE 
Interpolated 41.15 40.96 33.61 
Closest 42.12 4 1.02 35.28 
Zone 27.95 27.40 20.82 

Statistic Domain 

36-km 12-km 4-km 

ME 
Interpolated -33.17 -3 1.02 -26.80 
Closest -32.39 -30.25 -26.02 
Zone -23.31 -21.17 -16.94 

MAE 
Interpolated 33.24 3 1.38 28.06 
Closest 33.14 3 1.08 28.71 
Zone 23.49 22.08 19.21 
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calculated at the closest observation point, an interpolation of Acknowledgements 
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