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ABSTRACT We examined relationships
cypermethrin in tobacco bud

scores incorporating degree of debilitation and survival time were used

hrvalweightanddegreeofredmneeto

tolerance (i.e., a continuous measure of resistance). At larval weights <100 mg, relationships

between tolerance and weight were linear for both doses. At the rate of 0.

weight

& Taylor 1986, Uyenoyama 1986, Via 1986, Roush
& McKenzie 1987), Resistance to any particular
insecticide depends not only on resistance alleles
that an individua) but also on a variety

of nonheritable genetic and environmental factors

he accuracy of models designed to predict
genetic change depends not only on how accurately

. genetic factors have been defined but also on the

;extent to which epigenetic factors affecting genetic

- expression of resistance are considered.

. Because expression of resistance is affected by
multiple genetic and epigenetic factors, individuals
within populations do not fall into discrete cate-
gories. Instead they show continuous tolerance
variation (Finney 1971). The term tolerance is
sometimes associated with low-level resistance, but
we use tolerance in its original sense to refer to a
continuous measure (Finney 1971) of less-than-
complete resistatice (Georghiou 1972). For con-
venience, resistance to insecticides has been typi-
cally treated us a categorical trait (i.e., susceptible

This paper reposts the results of research only. Mention of a
Peopeictary product or pesticide does not constitute an endorse
memt or a secommendation for s use by USDA nor does 1t inply
fegistration under FIFRA 4 amended
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versus resistant), but continuous measures exist
(Finney 1971, Cohan & Graf 1985, Holloway 1986,
Tabashnik & Cushing 1989). With a continuous
measure of resistance (i.e., tolerance), relationships
between tolerance and other continuous traits (e.g.,
weight, fecundity, age) can be analyzed directly
with parametric statistical procedures (e.g., regres-
sion, analysis of variance),

It is commonly accepted that an individual’s
weight affects expression of tolerance, For tobacco
budworm, Heliothis virescens (F.), Roush & Wol-
fenbarger (1985) reported that small weight dif-
ferences affect percentage of larval mortality after
treatment with methomyl. Mullins & Pieters (1982)
reported significantly different LDy’s (methyl
parathion and permethrin) among discrete weight
classes. However, the functional relationship be-

tinent because weight variation confounds genetic

analyses and predictions of genetic change that are

based solely on genotype; small individuals pos-

sessing genotypes for superior tolerance are more

easily killed than expected, and large individuals

with genotypes for inferior tolerance may survive
ause of their size alone.

Weight effects are partially controlled by testing
larvae within particular weight ranges (i.e., 10 mg
is a typical range for Heliothis studies), However,
when larvae weigh 18 + 5 mg (Luttrell et al. 1987),
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the largest larva is 77% heavier than the smallest.
Although weight ranges of this magnitude may be
typical of variation in field populations, laboratory
sudies that examine particular factors affecting
expression of resistance (e.g., genetic factors) are
most accurate when factors such as larval weight
are either tightly controlled or precisely consid-
-ered. Therefore, laboratory-derived relationships
‘between tolerance and weight can be coupled with
: data on size variation in wild populations to im-

" prove the resolution of resistance predictions. To-

: ward this end, we quantified larval tolerance to
* cypermethrin in laboratory-reared H. virescens and

. examined relationships between tolerance and lar-
- val weight.

Materials and Methods

We collected H. virescens eggs during Septem-
ber 1987 from a 950-acre (=380 ha) cotton field
(three cotton varieties) immediately southeast of
Leland, \Washington County, Mississippi. Eggs were
randomly collected from 3 plots (8 ha) within the
field. Larvae were reared in plastic cups (22.5 ml)
containing about 15 ml of artificial diet (King &
Hartley 1985) containing a mold inhibitor (Powell
& Hartley 1987). Of the field-collected eggs, 219
survived to the pupal stage and founded the lab-
oratory colony. Initially, pupae emerged and mat-
ed in 4-liter cardboard cartons (25 males and 25
females in each at 25 = 2°C, 60 = 10% RH, and
a photoperiod of 14:10 [L:D]). Rearing techniques,
which were designed specifically to maintain ge-
netic diversity in the colony, resulted in overlap
among generations. Multiple breeding chambers
were used at all times. Eggs were collected from
each container 3-4 times each week until all adults
died, and larvae from each collection were includ-
ed among the breeding population. All individuals
surviving to the adult stage (regardless of devel-

" opment time) were provided with potential mates

i
- 3-5 generations with approximate cohort sizes of

.= 200, 548, 1,185, and 1,699. Beginning in April 1988,

R
.
b4

and given the opportunity to contribute to subse-
quent generations. Colony size was increased over

Z virgin adults were collected daily, their sexes were

determined, and they were mated as single pairs
in 0.5-liter cardboard cartons to produce the ex-

% . perimental cohort. Relatedness between parents was

minimized by pairing males and females from dif-
ferent subcolonies. Not all pairings produced lar-
vae, and not all larvae were used; 158 females and
54 males produced the 416 larvae used in this ex-
peritnemt.

Each larva was weighed to the nearest 9.1 mg
no more than 1 h before topical treatment (1.0 ul)
with cither 0.1 or 1.0 ug cypermethrin (technical-
grade; FMC Corporation, Princeton, N.J.) in ace-
tone (analvtical grade). Larvae were treated in their
original dict cups where they remained until they
died or pupated. Large larvae were not available
for 1.0-ug treatments. Although we did not dis-
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Table 1. Scoring criteria
Ability
Score ri:;n Activity and capabilities
itself
o No None
1 No  Minor activity after persistent probing
2 No  Minor activity, immediate response
3 No  Slight independent activity, responsive
4 No  Active, slow writhing, no control
S No  Active, vigorous writhing. no attempts to right
itself
6 No Active, attempts to right itself
7 Yes  Active, rights itself with difficulty
8 Yes  Active, rights itself easily, but adverse effects
9 Yes  Active, rights itself easily, minor effects only
10 Yes  Active, no visible effects

Each individual larva was assigned a score from 0 to 10 at each
observation (see text).

criminate against larvae in specific weight classes,
larvae showing evidence of an impending or recent
molt were not used.

Beginning 0.5 h after treatment, we observed
each larva when it was agitated gently with a blunt
probe; upright larvae were rolled onto their backs.
Responsiveness, activity level, type of activity, and
ability of the larva to right itself were the criteria
for scoring tolerance as a continuous trait. Eleven
levels of adverse response (0-10) were distin-
guished (Table 1). In other studies, individuals that
were scored from O to 6 on our scale would have
been considered dead (Roush & Wolfenbarger 1985,
Luttrell et al. 1987, Hoy et al. 1988). We observed
and scored each individual at 0.5, 1, 2, 4, 8, 24, 48,
72, 96, and 120 h after treatment. Data from con-
secutive observations were summed to provide
variables for analysis that represented cumulative
scores through times (T) 24, 48, 72, 96, and 120 h
(variables T24h, T48h, T72h, T96h, and T120h).
Individual observations were not independent (e.g.,
once an individual died all subsequent scores were
0), but this continuous measure of tolerance incor-
porated degree of debilitation at numerous inter-
vals and total survival time. SAS (SAS Institute 1985)
was used for analysis of variance and regression

procedures.

" Results

Larval tolerance to cypermethrin in H. virescens
was expressed as a continuous trait at both doses
(Fig. 1 and 2). The shapes of the frequency his-
tograms of tolerance phenotypes were similar to
those described by Finney (1971) for tolerance phe-
notypes. Histogram shape depended partly on the
underlying distribution of larval weights that was
approximately uniform. Many larvae (9.0-173.4
ng) treated with 0.1 pg evpermethrin survived.
some individuals that could have been clissilied as
dead after 24 h subsequently recovered. pupated,
emerged as adults, and reproduced. Some individ-
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Fig. 1. Frequency histogram of cumulative toler-

ance scores of H. virescens larvae, dose = 1.0 kg cyper-

methrin per larva. Larvae weighed 9.4-36.] mg. Vari-

able, T72h (sum of tolerance scores through 72 h, see
text); n = 173. ~

uals probably survived because of their size alone.
At larval weights <100 mg, the relationship be-
tween tolerance and weight was linear, with weight
- variation accounting for 55% of observed tolerance
variation (Fig. 3). Tolerance values reached an as-
ymptote near 100-mg larval weight. The 100-mg
cutoff is probably dose-specific; based on our re-
sults, we expect the asymptote to occur at heavier
weights for higher doses. Tolerance scores of some
large larvae approached the maximum possible
value. Only 5 of 31 larvae >100 mg died before
reaching pupation (86% survival),

Most larvae (9.4-36.1 mg) treated with 1.0 ug
cvpermethrin were totally debilitated within 24 h,
none survived to pupation, and none showed evi-
dence of weight gain following treatment. The
weight range of these larvae is greater than that
usually used for Heliothis studies, but the results
can be put into familiar perspective. No larvae
scored higher than 4 at the 48-h observation, in-
dicating that 1.0 ug per larva corresponds with at
least a 48-h LD,, for this population. Table 2 shows
frequency distributions of tolerance scores at par-
ticular observation times (24-, 48-, and 72-h ob-
servations, noncumulative). Tables 1 and 2 can be
used to generate LD, values for a variety of fatal
symptoms,

Among larvae treated with 1.0 ug cypermethrin,
weight variation accounted for 11% of the observed
tolerance variation (Fig. 4). Less tolerance varia-
tion was explained by weight variation at 1.0 Hg
relative to 0.1 ug (F ig. 3) largely because a smaller
weight range was examined (26.7 versus 91.0 mg).
Genetic variation among individuals explained
much of the observed tolerance variation and wil]

reported separately (M.J.F. & J.L.H., unpub-
lished data); consequently, the amount of variation
explained by weight depended on the size of weight
range examined. Over very narrow weight ranges,
weight variation explained only a small portion of
observed tolerance variation and other factors pre-
dominated. However, even over g 10-mg weight
range typically used for pyrethroid toxicity studies

Jourxal or Economic ExTomoLocy
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Fig. 2. Frequency histogram of cumulative toler.
ance scores of H. virescens larvae, dose = 0.1 ug cyper.
methrin per larva. Larvae weighed 9.0-175.4 mg. Vari.

able, T48h (sum of tolerance scores through 48 h, se, !

text); n = 24].

in Heliothis, weight variation was a significant fac.
tor and explained 9% (P < 0.005) of observed tol-
erance variation among larvae treated with 1.0 ug
cypermethrin (Fig. 5). Over wider weight ranges,
weight accounted for a larger portion of observed
tolerance variation (Fig. 3 and 4).

To examine how dose affected relationships be.
tween tolerance and weight, tolerance scores of
individuals treated with 1.0 ug (9.4-36.1 mg, n =
173) were compared with those of larvae treated
with 0.1 ug (9.0-36.3 mg, n = 69; Fig. 6). Regres-
sion lines for T24h differed in height because larvae
were more tolerant to Q.1 ug. The interaction be.-

ranges, large larvae were relatively more tolerant
than small larvae at 0.1 ug than they were at 1.0
ug. Differences in slope were greater than T24i;
for T48h and T72h (data not shown); however,
neither interaction was significant. The lack of sig-
nificance at later time periods may indicate tha!
size advantages disappear over time, or it may in-
dicate overall greater variability among individual;
48 or 72 h after treatment (Table 2) as individuals
either died or continued to accumnulate high scores.

Table 2. F, requency distribution of lolenn&: scores for
H. virescens larvae treated with cypermethrin

v ewE VG LACH INISSTVSILAMA saaiod

Score

- R N WY

Scores are for particular observation perids, not cumulative
seores. Dose = 10 py per larva, n = 173 Larvae weghed 9 4-
36.1 mg. See Table 1 lor deseription of scores,

m———_eio p

-———

]

1990  FIRKO & Hay
wugust
70
60
*

MOZ>IM O
1))
S o

Fig. 3. Plot of tolergnce verst
larvae weighing 9.0-175.4 mg, n
weight was linear. Least-squares :

Discussion

With topical application of
that individuals in particular t
ceive and the actual amount o
ing detoxification vary slightly.

30 1
1 R-SQUARE
TZB"
0 d
L
26
E .
R 24- *
A 3
N 224 *
c 4 x %
20 -
E 1 %
J *
T 18‘—"__*’-——-__'_,_—;:
~ *
2 16‘ .
2 - * %
" 14‘ .
12 1

[T yrrrrprrrroT s

8 i2

Fig. 1. Plot of wlerance ver
Lirvae weigling 9.4-36 1 mg, »



august 1990 FIRKO & HAYES: LARVAL WEIGHT AND RESISTANCE IN TOBACCO BUDWORA

70 1
5 *
0 601 *
Lo & x ¥ *;#"* *x o T VEx
E A *d'* x % £ ¥ ou * % *
:‘50' ! 1‘.;?'*, * ¥ x *x ¥y . *
4 * %%
N & & ?‘ e * ¥ X
C 407 ***"5" * *&: * % gk FEx*
E . * ok oy *’#i* *
;et** * * ¥ * *
30 4 - *. *
* *
N ";
:20. * * *f* .
Ho *
10 1
1 b 1 i 1 ¥ | § i 1 b 1 ¥ ] " | M I ¥ )
0 20 40 60 80 100 120 140 160 180
WEIGHT, MG

Fig. 3. Plot of tolerance versus weight for H. virescens larvae treated with 0.1 ug cypermethrin per larva for
larvae weighing 9.0~175.4 mg, n = 241. For larvae <100 mg (n = 205) the relationship between tolerance and
weight was linear. Least-squares regression equation, tolerance = 18.03 + 0.25(weight), r* = 55%; P < 0.0001.

Discussion

With topical application of insecticides, doses
that individuals in particular treatment groups re-
ceive and the actual amount of insecticide requir-
ing detoxification vary slightly. Each individual in
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our tests was treated with as precise a dose as pos-
sible with microapplication techniques. Resistance
to insecticides has a complex biological and genetic
basis (Georghiou & Taylor 1986). Absorption rates,
transport through cell membranes, and various
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Fig. 4. Plot of tolerance versus weight for H. virescens larvae treated with

fvae weighing 94301 mg, n = 173, Least-squares regresion equation, tolerance = 13,16 + 0 Poiwegh).

1.0 ug cvpermethrin pere larva lor
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(lh(’ds of detosification are only some of the
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these factors, relationships between toler-
o and larval weight were readily observed and
- atified inour study. Small dilferences in weight
"‘:':‘iﬁc;m(ly affected expression of tolerance.
"Lp“-vious reports of susceptibility increases with-
, cortain size classes of H. cirescens larvae were
~ .J on one observation per larva (Mullins & Pie-
ers 1962, Roush & Wolfenbarger 1983). Our re-
sted observations of the same individuals indi-
ated that they responded differently over time to
a (methrin. Some larvae that appeared dead af-
ter 24 h later recovered completely. Estimates of
mortality based on a single observation may intro-
Juce bias against larvae in particular weight classes
because larvae in different weight classes respond
differently over time. By deleting larvae nearing
2 molt (see Mullins & Pieters 1982) and repeatedly
observing each larva, we detected no consistent
mortality or tolerance differences among weight
classes beyond reported linear relationships be-
tween tolerance and weight.

Tolerance variation among individuals not ex-
phined by weight variation may have resulted from
any number of genetically based tolerance mech-
anisms. Because insect growth rates and weights at

articular stages are genetically determined traits
.Zirkle & Riddle 1983; Via 1984a,b; Roff & Mous-
seau 1987), genetically based variation in weight
Jffects tolerance variation. However, most weight
variation in field populations probably results from
asynchronous hatch, food availability, or nutrition.
Although weight variation is only one factor af-
fecting expression of tolerance, laboratory-derived
relationships between tolerance and factors that
mediate expression of tolerance in the field can be
used to improve the accuracy of models designed
to predict the direction and extent of genetic change
in populations following insecticide applications.
For example, linear relationships between toler-
ance and weight can be incorporated into single-
gene (Taylor 1983), multi-gene (Plapp et al. 1979),
or quantitative genetic (Via 1986; M.J.F. & J.L.H,,
unpublished data) models.

Expression of tolerance may be mediated by
weight to an even greater degree in field appli-
cations than in laboratory studies. With aerial ap-
plications of insecticides, the dose that a larva re-
ceives depends partly on a squared function of
length (its surface area), whereas its weight is a
cubed function of length (Schmidt-Nielsen 1972).
Small larvae receive a larger dose of insecticide per
gram of body weight. Because the amount of chem-
ical that an individual can detoxify depends partly
on the extent of its metabolic capabilities, the re-
lationship between tolerance and weight may not
be linear in field applications. Large larvae may
have an even greater advantage compared with
small lurvae than that predicted by a linear model.
Techniques that apply insecticide in proportion to

v size (e.g., spray table application techniques)
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Table 3. Results of analysis of varinnee 1esting for in-
teraction hetween dose of cypermethrin and weight of I,
virescens larvae

EHewt ull Mo I oridi
Weight
Dose x weight
Error

Analyzed variable: cumulative tolerance score through 24 h
(T24h). Larvae treated with 0.1 ug per larva weighed 9.0-36.3
mg, n = 69; larvae treated with 1.0 ug per larva weighed 9.4-
36.1 mg, n = 173. Mean squares (MS) are based on Tvpe 11l sums
of squares. *, Significant at P = 0.035; ***, significant at P = 0.001.

may provide relationships between tolerance and
weight that more accurately reflect field patterns.

If large larvae are more tolerant than small lar-
vae because they have more resources to fight the
insecticide, the significant interaction between dose
and weight may result for purely physical reasons.
For example, at 1.0 ug per larva, 20 g and 100 g
larvae have 2 g and 10 g of body weight, respec-
tively, for each 0.1 ug of insecticide, a difference
of 8 g. At 0.1 ug per larva, 20 g and 100 g larvae
have 20 g and 100 g of body weight, respectively,
for each 0.1 ug of insecticide, a difference of 80 g.
At lower doses, large larvae have relatively more
resources to fight a given amount of insecticide
than they do at high doses.

In H. virescens, as in other pest species, resis-
tance has developed more slowly in the Leld than
in laboratory selection experiments (Brown & Payvne
1988). Any epigenetic factor affecting expression
of tolerance can potentially facilitate or delay de-
velopment of resistance in the field. Most epige-
netic factors probably delay resistance develop-
ment in the field because of increased
environmental variability in field populations rel-
ative to laboratory strains. Delaved resistance in
the field can result from effects mediated by weight
if enough larvae survive field application because
of their large size alone. Differences between lab-
oratory and field in the length of time required for
the development of resistance may be reduced by
using empirically derived relationships to correct
for the relatively high variability in weight and
other epigenetic factors in field populations.
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