Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements

BRENT E. EWERS1,2 and RAM OREN1

1 Nicholas School of Environment, Duke University, Durham, NC 27708-0328, USA
2 Present address: University Wisconsin, Department of Forest Ecology and Management, 120 Russell Laboratories, 1630 Linden Dr., Madison, WI 53706, USA

Received June 4, 1999

Summary We analyzed assumptions and measurement errors in estimating canopy transpiration (EL) from sap flux (JS) measured with Granier-type sensors, and in calculating canopy stomatal conductance (Gs) from EL and vapor pressure deficit (D). The study was performed in 12-year-old Pinus taeda L. stands with a wide range in leaf area index (L) and growth rate. No systematic differences in JS were found between the north and south sides of trees. However, JS in xylem between 20 and 40 mm from the cambium was 50 and 39% of JS in the outer 20-mm band of xylem in slow- and fast-growing trees, respectively. Sap flux measured in stems did not lag JS measured in branches, and time and frequency domain analyses of time series indicated that variability in JS in stems and branches is mostly explained by variation in D. Therefore, JS was used to estimate transpiration, after accounting for radial patterns. There was no difference between D and leaf-to-air vapor pressure gradient, and D did not have a vertical profile in stands of either low or high L suggesting a strong canopy-atmosphere coupling. Therefore, D estimated at one point in the canopy can be used to calculate Gs in such stands. Given the uncertainties in JS, relative humidity, and temperature measurements, to keep errors in Gs estimates to less than 10%, estimates of Gs should be limited to conditions in which D ≥ 0.6 kPa.

Keywords: air temperature, air vapor pressure deficit, leaf temperature, leaf-to-air vaporpressure deficit, relative humidity, time lags.

Introduction Stomata respond to environmental variation, regulate water loss and carbon dioxide gain, and thus biosphere-atmosphere exchange of mass and energy. From porometry measurements, leaf conductance (gs) can be calculated with Fick’s law as:

\[gs = \frac{E_L}{\delta_w}, \]

(1)

where \(E_L \) is transpiration per unit leaf area (mol m\(^{-2}\) s\(^{-1}\)), and \(\delta_w \) (mol mol\(^{-1}\)) is the water vapor pressure gradient between the substomatal cavity and the air near the leaf surface (Pearcy et al. 1989). Mean \(g_s \) of the canopy (\(<g_s> \); mol m\(^{-2}\) s\(^{-1}\)) (Sellars et al. 1997, Baldocchi and Meyers 1998, Pataki et al. 1998), can be obtained from measurements of \(g_s \) at several levels in the canopy, together with the vertical distribution of leaf area, and models describing stomatal responses to environmental gradients within the canopy (Jarvis 1995). However, variation among porometric measurements of \(g_s \) is large (Jarvis 1995, Hinckley et al. 1998). Leverenz et al. (1982) calculated that, in a uniform monospecific Norway spruce canopy, the number of sample leaves needed to produce an estimate within 10% of the mean at each time step may exceed 150 even if sampling is stratified by major sources of variation. Recently, \(<g_s> \) has been approximated from sap flux (JS) measurements scaled to \(E_L \) (Köstner et al. 1992, Ameth et al. 1996, Granier et al. 1996, Martin et al. 1997, Oren et al. 1998, Pataki et al. 1998a, 1998b, Phillips and Oren 1998, Oren et al. 1999a). When leaf and air temperature are similar, a condition that occurs for small leaves exposed to a sufficiently high wind speed (Herbst 1995, Martin et al. 1999), the bulk air vapor pressure deficit (D) can be used as an approximation of \(\delta_w \) for calculating gs (Monteith and Unsworth 1990). Under such conditions, calculation of \(g_s \) from sap-flux-scaled \(E_L \) (hereafter, Gs) can be simplified as suggested by Monteith and Unsworth (1990):

\[G_s = \frac{K_G(T_a)}{D} E_L, \]

(2)

where Gs is mean canopy stomatal conductance to water vapor (m s\(^{-1}\)), \(K_G \) is the conductance coefficient as a function of temperature (115.8 ± 0.4236 kPa m\(^3\) kg\(^{-1}\))—accounting for temperature effects on the psychrometric constant, latent heat of vaporization, specific heat of air at constant pressure, and the density of air—and \(T_a \) is bulk air temperature (°C). Phillips and Oren (1998) showed that errors associated with lumping the temperature-dependent physical coefficients into \(K_G \) are negligible.

Because sap-flux-scaled Gs is the product of measurements representing relatively large leaf areas, it is subject to certain.
sources of error. These include errors in estimating \(E_L \) and \(\delta_W \), because of systematic and random variations and instrument limitations. This study was designed to generate a conditional sampling scheme aimed at keeping the effect of measurement errors in the estimate of \(G_S \) to within 10% of the measurement error-free estimate.

Errors in estimating \(E_L \)
Sap-flux-scaled \(E_L \) may represent water uptake rather than transpiration if the quantity of water discharged from storage in the plant into the transpiration stream in the morning is large relative to transpiration (Granier et al. 1996, Phillips et al. 1996, Loustau et al. 1998, Phillips and Oren 1998). To assess if \(J_S \) can be used to calculate \(G_S \) in this stand, we evaluated the effect of stem water storage capacity on \(E_L \) by comparing a time series of stem \(J_S \) measured with Granier-type sensors with branch \(J_S \) measured with Kučera-type sensors (Cienciala et al. 1994) in the top and bottom branches of the canopy.

Increasingly, sap flux in the hydroactive xylem is estimated with Granier-type sensors (Granier 1987), which measure the maximum temperature difference between heated and unheated probes during times of zero flux (ATM) as a baseline. Temperature difference (AT) is also measured during the day as water carries heat away from the probe. Deviation from the baseline is used to estimate water flux. Granier-type sensors may be sensitive to temperature gradients in the stem creating an apparent temperature difference (Goulden and Field 1994, Kostner et al. 1998). This error can be large when fluxes are low, and trees are small (Granier 1987). Additional errors, even in large trees, may be caused by uncertainties in the baseline position (i.e., AT). Therefore, we quantified the effect of uncertainties in \(\Delta T_M \) on estimates of diurnal time courses of \(J_S \).

Errors in estimating \(\delta_W \)
Calculation of \(D \) requires measurements of relative humidity of bulk air \((R_H) \), and \(T_A \), and calculations of \(\delta_W \) require additional measurements of leaf temperature \((T_L; ^\circ C) \). It is often assumed that a single sensor is sufficient to represent \(D \) in the canopy (Köstner et al. 1992, Granier et al. 1996, Martin et al. 1997, Oren et al. 1998, Pataki et al. 1998a, 1998b). For well-coupled canopies at sufficiently high wind speeds, \(D \) approximates \(\delta_W \) (Jarvis and McNaughton 1986, Martin et al. 1999), and thus a single \(R_H-T_A \) sensor can be used to calculate \(G_S \). In this study, we analyzed the effects of measurement errors on values of \(\delta_W \) and \(D \) and, in turn, on the calculation of \(G_S \). We also tested the assumption that \(D \) does not vary horizontally and vertically by performing: (1) concurrent measurements in nearby stands with twofold difference in leaf area index \((L) \) and an adjacent opening, and (2) rapid measurements along a vertical transect within the canopy.

Material and methods

Study site and treatments
The Southeast Tree Research and Education Site (SETRES) was established in 1992 in a stand of Pinus taeda L. planted in 1984 in the Sandhills of North Carolina (35° N, 79° W) on an infertile, well-drained, sandy, siliceous, thermic Psammentic Hapludult soil (Wakulla series). Mean annual precipitation is 1210 mm with occasional growing season water deficits. Three treatments were established in addition to a control (C): irrigated (I), fertilized (F), and a combination of irrigation and fertilization (IF). Nutrient treatments have been maintained since March 1992 and irrigation treatments since April 1993. The treatments have resulted in peak \(L \) of 1.8, 1.9, 3.3, and 3.6 and basal areas of 14, 14, 20, and 25 m² ha⁻¹ for trees in the C, I, F and IF treatments, respectively. For details of nutrition and irrigation treatments see Albaugh et al. (1998) and Murthy et al. (1996).

Stem \(J_S \) and associated environmental variables were measured from August 1996 to January 1999. During this period, short measurement campaigns were carried out to evaluate potential sources of error.

Sap flux measurements
We measured \(J_S \) in stem xylem of eight trees in a 6-m diameter plot and in branch xylem in a subset of three trees within each treatment (Ewers et al. 1999). Measurements on the north side of stems (1.4 m above ground) were made with Granier-type sensors at two depths: the outer 20 mm of the xylem \((J_{S_{20}}) \) in eight trees, and, to account for radial patterns in \(J_S \), the next 20 mm of the xylem \((J_{S_{40}}) \) in a subset of five trees. The \(J_S \) \((m^3 H_2O m^{-2} s^{-1}) \) is calculated based on the empirical equation (Granier 1987):

\[
J_S = 119 \times 10^{-6} \left(\frac{\Delta T_M - \Delta T}{\Delta T} \right)^{1.291}
\]

We calculated mean \(J_S \), weighting \(J_{S_{20}} \) by the sapwood area represented in that xylem band and \(J_{S_{40}} \) by the sapwood area internal to the outer band (Ewers et al. 1999), assuming that \(J_{S_{20}} \) and \(J_{S_{40}} \) represent sap flux in the xylem between 20 and 40 mm from the cambium. On average, sapwood area internal to the outer 20-mm band was 15% of the total. On June 12-24, 1998, to evaluate whether scaling must account for a systematic circumferential variance in flux, we installed sensors to measure \(J_{S_{40}} \) on the south side of stems of a subset of five trees in C and IF, and compared these with measurements made on the north side. Trees in the C and IF treatments were chosen because they represented the highest and lowest \(L \) and differed in sapwood characteristics (Ewers et al. 1999).

We evaluated time lags between water uptake and transpiration by measuring xylem flux with Kučera-type sensors (Cienciala et al. 1994), based on the heat balance method, in upper branches of 6-12 mm diameter and lower branches of 12-18 mm diameter. Branch measurements were made from
Errors in estimates of \(J_S \) caused by baseline placement

Occasionally, an apparently stable AT became unstable in early morning when sap flux began. We chose the most unstable behavior found among all trees as an example in Figure 1. Relatively stable \(\Delta T_M \) (defined as the portion of \(\Delta T_M \) that varies within the narrow range of 0.02 mV for at least 2 h) is plotted alongside unstable \(\Delta T_M \) (defined as the \(\Delta T_M \) connecting the greatest temperature differences). The maximum difference
The effect of the difference between stable and unstable ΔT_M (Figure 1) on the absolute value of J_s was very small (Figure 2A). However, even a small error in ΔT_M placement may cause large errors in estimates of G_s under conditions of low sap flux. The effect of ΔT_M placement on errors in J_s (and thus E_l and G_s) was assessed by normalizing the difference between J_s estimated with stable and unstable ΔT_M by the values obtained with the stable ΔT_M and relating this relative error in J_s to D (Figure 2B).

Azimuthal and radial patterns in stem J_s

The $J_{s_{out}}$ in south-facing sensors was a constant proportion of $J_{s_{in}}$ in north-facing sensors along the entire range of D, but was highly variable at low D (Figure 3). In both the C and IF stands, the ratio of J_s measured toward the south relative to that measured toward the north was unity (paired t-test $P = 0.88$), even after reducing the variability by selecting data corresponding to $D \geq 0.6$ kPa. Therefore, the daily sum of J_s was similar in both directions ($P = 0.86$). Furthermore, the ratio of north to south J_s was similar in both stands ($P = 0.50$).

We quantified the fertilization-induced increases in L and growth rate on the radial change in J_s between the outer 20 mm and the next 20 mm in the xylem. In both the C and IF stands, the $J_{s_{in}}/J_{s_{out}}$ ratio was constant with respect to D. However, the daily sums of $J_{s_{in}}$ and $J_{s_{out}}$ differed ($P = 0.001$). In the slow-growing C stand, $J_{s_{in}}$ was 50% of $J_{s_{out}}$ ($P = 0.008$; Figure 3), whereas $J_{s_{in}}$ was only 39% of $J_{s_{out}}$ ($P = 0.003$; Figure 3) in the fast-growing IF stand.

Water uptake versus transpiration

The magnitude of J_s in branches and stems was similar in all treatments. Diurnal patterns of J_s in stems and lower and upper branches of control trees are shown in Figure 4A. Stem J_s val-
The lag between E_1 and J_S was analyzed by time series analysis of J_S measured in stems and branches. The dependence of J_S at one time point on the previous point (autoregressive coefficient) was lower in branches than in stems (Table 1) indicating greater variability between consecutive measurements because there is less buffering by stored water in branches than in stems. In addition, J_S of all branches and stems was correlated to D without a lag (Table 1), whereas J_S lagged two hours behind Q. In all cases, the cross-correlation between stem sensors and D was uniformly high (Table 1). Because neither branch nor stem J_S showed a lag with D, branch J_S did not lag stem J_S in any treatment (Figure 4B).

Effect of errors in measurements of R_H and T_A

Measurement errors in T_A were small relative to measurement errors in R_H (Figure 5A). According to the manufacturer’s specifications, measurement errors in R_H are ±2% below 90% R_H and ±3% above 90% R_H. The combined effect of measurement errors in R_H and T_A is shown in Figure 5B. Errors in measurement of R_H at 1300 h on June 13 caused an error in D of 5.9%, corresponding to 0.19 kPa. A 0.7 °C error in temperature measurements caused an error of 3.9%.

The time-averaged mean of half-hourly D over a 6-day period, calculated based on a ±2% measurement error below 90% R_H and ±3% above 90% R_H, showed a fairly constant absolute difference (Figure 6A). Because the large errors in R_H measurement during periods of high R_H would have caused R_H to be greater than 100% especially at nighttime, we set these masked by log scale in Figure 4A).

Table 1. Autoregression and cross correlation coefficients with vapor pressure deficit (D) in control, irrigated, fertilized, and irrigated + fertilized stands (C, I, F, IF) for the north side and south side of stems and branches in the upper and lower crown. The SEM is one standard error of the mean. $n = 5$ for stem sensors and $n = 3$ for branch sensors. Different letters indicate significant differences at $a = 0.05$ based on least significant differences.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sensor position</th>
<th>Autoregression coefficient (SEM)</th>
<th>Cross correlation coefficient with D (SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Stem north</td>
<td>0.64 (0.05) a</td>
<td>0.91 (0.03) a</td>
</tr>
<tr>
<td>C</td>
<td>Stem south</td>
<td>0.62 (0.05) a</td>
<td>0.93 (0.04) a</td>
</tr>
<tr>
<td>I</td>
<td>Stem north</td>
<td>0.63 (0.04) a</td>
<td>0.94 (0.04) a</td>
</tr>
<tr>
<td>F</td>
<td>Stem north</td>
<td>0.79 (0.07) b</td>
<td>0.89 (0.06) b</td>
</tr>
<tr>
<td>IF</td>
<td>Stem north</td>
<td>0.73 (0.12) b</td>
<td>0.93 (0.03) a</td>
</tr>
<tr>
<td>IF</td>
<td>Stem south</td>
<td>0.72 (0.15) b</td>
<td>0.90 (0.04) a</td>
</tr>
<tr>
<td>C</td>
<td>Upper Branch</td>
<td>0.40 (0.08) c</td>
<td>0.76 (0.15) a</td>
</tr>
<tr>
<td>C</td>
<td>Lower Branch</td>
<td>0.41 (0.11) c</td>
<td>0.87 (0.09) a</td>
</tr>
<tr>
<td>I</td>
<td>Upper Branch</td>
<td>0.39 (0.11) c</td>
<td>0.85 (0.15) a</td>
</tr>
<tr>
<td>I</td>
<td>Lower Branch</td>
<td>0.46 (0.07) c</td>
<td>0.79 (0.13) a</td>
</tr>
<tr>
<td>F</td>
<td>Upper Branch</td>
<td>0.28 (0.05) d</td>
<td>0.86 (0.17) a</td>
</tr>
<tr>
<td>F</td>
<td>Lower Branch</td>
<td>0.33 (0.05) c</td>
<td>0.85 (0.10) a</td>
</tr>
<tr>
<td>IF</td>
<td>Upper Branch</td>
<td>0.51 (0.14) ac</td>
<td>0.86 (0.12) a</td>
</tr>
<tr>
<td>IF</td>
<td>Lower Branch</td>
<td>0.59 (0.09) ac</td>
<td>0.54 (0.10) b</td>
</tr>
</tbody>
</table>
\[\begin{align*}
R_H \text{ values to 100\%. Similarly, the highest value of the lower estimate of } R_H \text{ cannot exceed 97\%. These limits predictably affected the error analysis at high } R_H \text{ values. Even when using the actual data (without generating a time average), the error increased to above 10\% at } D < 0.6 \text{ kPa (Figure 6B), a } D \text{ value that is typically exceeded for 12 h on a sunny day at this site.}
\end{align*} \]

Vertical gradients of } R_H, T_A, \text{ and } D

We evaluated the assumption that there is a negligible vertical gradient in } R_H \text{ with depth in the canopy regardless of } L, \text{ and the values of all stands were similar to the value found in the opening (Figure 7A). The effect of irrigation was noticeable only lower in the profile where it directly impacted the sensor at 2.8 m (Figure 7B). The vertical profile of } T_A \text{ generally showed similar responses to those of } R_H \text{ except that } T_A \text{ was 1 °C lower during the cooler, unirrigated day than in the opening and 2 °C lower during the warmer, irrigated day (Figures 7C and 7D). The high } T_A \text{ near the soil surface of the fertilized stands may reflect their location near a large opening that may have provided heat through advection to the space between the soil surface and the base of the canopy at 2 m in the two high-L plots.}

Difference between } D \text{ and } \delta_W

There was a linear relationship between } T_L \text{ and } T_A \text{ (} P = 0.002, \ R^2 = 0.99) \text{ with a slope of unity and an intercept of 0.03 °C (} P = 0.01, \text{ Figure 8A). The difference between } T_L \text{ and } T_A \text{ reached a maximum of 0.1 °C at 12 °C } > T_A > 33 \text{ °C. In early morning, dew formation on the } T_A \text{ sensor probably depressed its temperature below the true } T_A, \text{ and during midday hours of high radiation load } T_L \text{ was probably slightly greater than } T_A.\text{ The relationship between } D \text{ and } \delta_W \text{ was close to unity regardless of whether the measurement error in } R_H \text{ was considered (Figure 8B). The largest difference observed between } \delta_W \text{ and } D \text{ was 0.27 kPa at } \delta_W = 4.42 \text{ kPa, a difference of 6\%.}

Diurnal distribution of errors in } G_S

Diurnal patterns of } J_S \text{ in stems and branches of the C stand during one clear day and one cloudy day with early morning showers were converted to } G_S \text{ estimates (Figure 9). The random variability among individuals is shown as SE either in }
Figure 8. (A) Leaf temperature (T_l) plotted as a function of air temperature (T_A). (B) Vapor pressure deficit (D) plotted as a function of leaf-to-air vapor pressure deficit (δ_w). The uncertainty caused by errors in relative humidity measurements was incorporated into both the D and δ_w estimates.

Figure 9. Semi-log plot of diurnal courses of sap flux (J_s) measured with Granier-type sensors in stems, and Kucera-type sensors in top and bottom branches in the control stand during a clear day (A) and a rainy day (B). Bars are 1 SEM ($n = 3$). Diurnal courses of sap-flux-scaled canopy stomatal conductance (G_s) for the same days as in (A) and (B) are shown for upper branches in (C) and (D), lower branches in (E) and (F), and for the stems in (G) and (H). The two lines each represent high and low estimations of G_s incorporating measurement errors that affect vapor pressure deficit (D) in branches and both D and J_s in stems. The descending bars are 1 SEM ($n = 3$), and the scale is shown on the right-side y-axis. Nighttime hours are shown at the bottom.

The effect of using high and low estimates of D (i.e., reflecting low and high estimates of R_H) is shown by the difference between the lines representing low and high G_s, respectively (Figure 9C–H). The difference between the low and high estimates of D contributed most to the difference in estimates of G_s in the early morning and late afternoon of the clear day. For G_s estimated from stem J_s, additional large errors were introduced by baseline uncertainties (Figures 9G and 9H). The errors were particularly large in the early morning and evening hours when the combined effect of measurement errors in J_s and D produced estimates of G_s that ranged from 0 to 100 mmol m$^{-2}$ s$^{-1}$. During the night before the cloudy day, a stable baseline was not attained (Figure 9H). Although the uncertainty in G_s caused by the unstable baseline began to decrease with increasing J_s in the morning, R_H and its associated errors increased in mid-morning because of rains, causing the uncertainty in estimates of G_s to remain high until noon. In addition to errors in estimating G_s caused by measurement errors in J_s and D, stem recharge with water during the night produced artificial nighttime G_s values (Figures 9G and 9H).

Errors in G_s calculated from measurements of J_s in branches decreased to less than 10% at $D \geq 0.6$ kPa, whereas errors in G_s calculated from measurements of J_s in stems decreased to the same value at $D \geq 1.0$ kPa (Figure 10A). Measurement errors in Kucera-type sensors were not assessed, and the difference in D above which similar errors in G_s are produced by both sensors may change if this error is included.

Discussion

We evaluated the effects of measurement errors in J_s, R_H, and T_A on estimates of E_L and δ_w. We also evaluated the impact of
Spatial variation in J_S (both radially and azimuthally) on E_L, and the assumption that D at one position in the canopy can be used as a surrogate for D_{R} to calculate G_S. All of these errors, systematic variations, and assumptions are inherent to many recent studies in which sap flux is used to estimate G_S (Köstner et al. 1992, Granier et al. 1996, Martin et al. 1997, Pataki et al. 1998a, 1998b, Oren et al. 1999a).

Estimating E_L from sap flux measurements

Use of sap flux measurements to estimate E_L is problematic because of the potential effects of baseline error in J_S measurements, systematic spatial variation in J_S, and a lag between water uptake and transpiration caused by water storage in the stem. Typically, a stable ΔT_M is realized sometime at night, and is reached at a later hour as soil dries (Phillips et al. 1996). Goulden and Field (1994) used a small ΔT_M value (2.2 °C) and found that temperature gradients in the afternoon can cause relatively large ΔT_M shifts in trees of similar size. In this study, ΔT_M was large (12 °C, Figure 1) and thermal gradients never exceeded 0.01 °C (Ewers et al. 1999), thus making our setup less sensitive to thermal gradient. The error in J_S caused by uncertainties in AT, can be high at low D, corresponding to early morning, late afternoon, and nighttime (Figure 2B). The relative error in J_S was less than 10% at $D > 0.6$ kPa and stabilized at approximately 4% at $D > 1$ kPa.

Scaling of sap flux in small xylem patches to the entire stem is based on quantifying circumferential and radial patterns in xylem sap flux (Granier et al. 1996, Phillips et al. 1996, Cermák and Nadezhdina 1998, Oren et al. 1998). In *Taxodium distichum* (L.) L. Rich., sap flux on the north side of trees was 64% of that in directions 120° from the north (Oren et al. 1999). We found no difference in J_S between the north and south sides of trees (Figure 3). Although fertilization increased L from 1.8 to 3.6, the resulting light and radiation differences did not produce azimuthal changes in J_S, perhaps reflecting low variation among measurements made near the base of crowns (Loustau et al. 1998).

Inner, juvenile xylem in *P. taeda* stands of similar age and moderate growth rate showed a 45% decline in J_S relative to the outer, mature wood (Phillips et al. 1996). The radial decrease in J_S was 50% in the slow-growing C stand and 39% in the fast-growing IF stand (Figure 3), reflecting changes in wood properties and growth rate in response to fertilization (Ewers et al. 1999). It appears that J_S decreases with depth more in fast-growing trees than in slow-growing trees. We conclude that measurements in the outer xylem alone should not be used in comparative studies among individuals and stands growing at different rates, especially when the sapwood includes juvenile wood.

Calculating G_S from J_S requires corrections for the lag between water uptake and transpiration (Schulze et al. 1985, Granier et al. 1996, Martin et al. 1997). Commonly, the lag is estimated from a formal or informal time series analysis of environmental variables and J_S (Daiwara et al. 1991, Granier and Loustau 1994, Phillips et al. 1997). Time lags between J_S in stems and environmental variables range from 0 to 3.5 h and are not clearly related to tree size or measurement distance below the crown (Schulze et al. 1985, Köstner et al. 1992, Granier et al. 1996, Loustau et al. 1996, Martin et al. 1997, Phillips et al. 1997). Alternatively, one can measure J_S simultaneously in branches and in the stem and estimate the lag between the resulting time series (Meiner et al. 1997). The use of J_S in branches is justified when the branches are considered to represent the entire crown and store negligible amounts of water.

Sap flux in branches began about the same time as sap flux in the stem, but ceased earlier in the evening as transpiration stopped; whereas water uptake for stem recharge continued (Figures 4A and 9A). Time series analysis indicated that water storage in branches is much less than in the stem (Table 1). However, both time and frequency domain analyses indicated that J_S in stems did not lag either J_S in branches or D (Figure 4B, Table 1). Although this justifies using J_S in stems and branches to calculate G_S without lag, the observed nighttime uptake in stems (Figures 4A and 9A) indicates that G_S calculated from J_S in stems may be underestimated early in the morning and overestimated late in the afternoon. Phillips and Oren (1998) proposed a conditional sampling approach designed to select times when these errors are small.
Estimates of G_S suffer not only from errors in estimating J_S (Figure 2B) and stem recharge (Figures 4A and 9A) but also from errors in estimating the driving force for transpiration.

Errors in the driving force may originate from measurement errors of T_d, T_a, and R_H, and from systematic variation along the canopy profile. Castellvi et al. (1996) found that R_H estimated from mean daily dewpoint temperature, mean daily T_a, and diurnal pattern of T_a had an error of up to 9% compared with R_H measured with the more accurate but less automated dewpoint hygrometer. Given patterns in T_a and R_H found in this study (Figure 5A), the largest measurement errors in T_a translated to a maximum error in D of 3.9%. However, errors in measurement of R_H may cause large errors in D, exceeding 10% when $D < 0.6$ kPa (Figures 5B, 6A and 6B).

In well-coupled stands when wind speed is sufficiently high (Martin et al. 1999), T_d is often assumed to be similar to T_a, justifying the use of D as a proxy for δ_w for calculating G_S (Köstner et al. 1992, Granier et al. 1996, Martin et al. 1997, Oren et al. 1998). We did not evaluate the effect of errors in estimates of emissivity on the measurement of T_d with an infrared thermometer, but these errors can be large (Gay and Knoerr 1975). Provided that the emissivity used in this study is correct, T_d was indistinguishable from T_a (Figure 8A) justifying the use of D as a surrogate for δ_w (Figure 8B).

In most studies, D is calculated for one position within or above the canopy (Köstner et al. 1992, Granier et al. 1996, Martin et al. 1997, Oren et al. 1998, Putaki et al. 1998a, 1998b). This assumes that vertical gradients in T_a and R_H are small and their effects on G_S estimates are negligible. Temperature gradients may be as high as 5 °C in shrub canopies and 17 °C in pasture (Tappeiner and Cemusca 1996), both of which are less aerodynamically turbulent than many coniferous and some broadleaf forests. In coniferous and other forests with high canopy roughness, the air within the canopy is considered well mixed with the air above the canopy, at least during daytime when the mechanical production of turbulent kinetic energy is high (Oke 1995). This should result in a relatively weak gradient of D within the canopy.

In forests where aerodynamic turbulence is low, the simplification of Equation 2 cannot be used and a radiative term must be added (Monteith and Unsworth 1990). Furthermore, multiple measurements of D would be needed in a vertical array to measure the vertical gradients of D that result in forests of low aerodynamic conductance. Aerodynamic conductance in total canopy conductance (Ewers et al. 1999). This difference is reflected in the similarity observed between D in an opening and D inside stands differing twofold in L and the absence of a vertical gradient in D (Figure 7). This is similar to findings in a Pinus sylvestris L. stand ($L = 2.8$, height = 12 m), where D changed vertically only at an aerodynamic conductance of 0.001 kPa m$^{-1}$ (Joss and Graber 1996). At our study site, a gradient in D below the canopy was found only under conditions caused by irrigation or a nearby large opening (Figures 7E and 7F). Thus, the assumption that a single R_H-T_a sensor is sufficient to provide an estimate of D throughout the canopy is valid for P. taeda and similar forests.

Conditional sampling approaches for calculating G_S

Analysis of measurement errors indicated that, to estimate G_S within 10% of error-free values, data should be selected for $D > 0.6$ to 1.0 kPa (Figure 10A). Phillips and Oren (1998) employed a statistically based conditional sampling approach to reduce the errors in estimating G_S. This statistical approach removed from the analysis rain days, all values of G_S corresponding to times in which $D < 0.1$ kPa, and all days with less than 12 G_S values after applying the second criterion. Based on these selection criteria, an acceptable agreement was obtained between the mean of the remaining half-hour data and a mean daily G_S ($\langle G_S \rangle$) computed directly from the daily sum of J_S and the daily mean daytime D. Phillips and Oren (1998) anticipated that the mean of diurnal G_S values will be lower than $\langle G_S \rangle$ because, unlike $\langle G_S \rangle$, G_S does not incorporate the water that is transpired during the day but taken up during the night. Based on the criteria for conditional sampling obtained here (i.e., $D > 0.6$ kPa), mean diurnal G_S values were generally greater than $\langle G_S \rangle$, and there was no difference between use of $D > 0.6$ kPa or $D > 1.0$ kPa as a filter ($P > 0.5$). As a result, the G_S calculated as recommended here was higher than that calculated as suggested by Phillips and Oren (1998; Figure 10B); however, the means estimated by two approaches converged for days of high conductance.

The conditional sampling method proposed here does not exclude rain days and is not limited by a requisite minimum number of points for estimating G_S, unlike the statistically based approach proposed in Phillips and Oren (1998). However, the statistically based approach permits use of data when D is low (i.e., $D > 0.1$ kPa). Environmental conditions may dictate which approach is used to calculate G_S (e.g., the statistically based approach may be more suitable in moist environments where a large proportion of the data would be excluded at $D < 0.6$ kPa). Nevertheless, the approach developed here limits the data to the range in which estimates of G_S have a lower uncertainty (Figure 10A).

Acknowledgments

This research was funded by USDA Forest Service Grant and Westvaco Co., the National Science Foundation through Grant BIR-9512333, and the US Department of Energy through the Southeast Regional Center at the University of Alabama (Cooperative Agreement No. DE-FG03-90ER61010). The authors are grateful to Peter Anderson and Greg Burkeland for technical assistance. This work contributes to the Global Change and Terrestrial Ecosystem (GCTE) core project of the International Geosphere-Biosphere Program (IGBP).

References

