Using Multiple FPGA Architecturesfor Real-time Processing of L ow-level
Machine Vision Functions

Thomas H. Drayer, William E. King IV,
Joeseph G. Tront, Richard W. Conners

Bradley Department of Electrical Engineering, Virginia Polytechnic

Ingtitute and State University,
340 Whittemore Hall, Blacksburg, VA 24061- USA;
fax (703) 231-3362; phone (703) 231-8657,;

e-mail: tdrayer@birch.ee.vt.edu, king@birch.ee.vt.edu,

jgtront@vtvml.cc.vt.edu, conners@birch.ee.vt.edu

Abstract - In this paper, we investigate the use of multiple Field
Programmable Gate Array (FPGA) architectures for real-time
machine vision processing. The use of FPGAs for low-level
processing represents an excellent tradeoff between software
and special purpose hardware implementations. A library of
modules that implement common low-level machine vision
operations is presented. These modules are designed with
gate-level hardware components that are compiled into the
functionality of the FPGA chips. A common input/output
interface is created for use in each of the modules, allowing the
interconnection of several image processing modules in a
parallel or pipelined manner. This new synchronous.
unidirectional interface establishes a protocol for the transfer
of image and result data between modules. This reduces the
design complexity and allows several different low-level
operations to be applied to the same input image. A method is
developed to partition and compile the design into the hardware
resources of multiple FPGA chips. Experimental results verify
the efficiency of using common multiple FPGA ar chitectures to
implement real-time machine vision processing.

[. INTRODUCTION

Real-time machine vision systems require not only
sophisticated heuristic algorithms custom-suited for a
particular application, but also a means of performing
mathematically trivial tasks on a massive quantity of input
image data. A real-time vision system may require severa
different low-level processes to be applied to an input image,
either simultaneously or sequentially. The low-level
processing tasks can require as much or more computational
power than high-level vision functions. Hence,
special-purpose hardware which is specifically designed to
perform early processing functions offers a substantial
performance increase. However, traditional approaches to
the development of special-purpose hardware are expensive
to create and of limited flexibility.

Philip A. Araman

United States Forest Service
Brooks Forest Products Center, Virginia
Polytechnic Ingtitute and State
University,

Blacksburg, VA 24060-0503 - USA,
phone (703) 231-5341

FPGA chips provide large arrays of programmable logic
resources that can be reprogrammed an unlimited number of
times. Within each chip is an array of Configurable Logic
Blocks (CLBs) used to implement sequential or
combinational logic. The Xilinx 4000 family of FPGA chips
istypical of the high-performance FPGA chips currently
available [1]. The CLBs of the Xilinx 4000 family chip
contain two flip-flops and two function generators. The
function generators create arbitrary logic functions of up to
four variables. The functionality of the CLB is established by
programming Static Random Access Memory (SRAM) bits
within the CLB that control multiplexer for signal routing
or look-up tables to define the function generators.
Individua FPGA chips have an array of CLBs that are
interconnected with programmable interconnection
resources. More complicated sequential or combinational
logic functions are created by programming the
interconnections and logic of the CLBs in the array.
Input/Output Blocks (I0Bs) allow connection to the pins of
the chip. Current FPGA chips have as many as 1024 CLBs,
256 10Bs, and 25,000 equivalent gates [1]. The
configuration of Xilinx chips is stored in SRAM residing on
the FPGA chip, allowing each chip to be reconfigured many
times after initiaization. These SRAM-based FPGAS
provide a large amount of reconfigurable logic resources.

Using multiple FPGASs to implement special -purpose
image processing hardware allows the processing functions
to be defined at the gate level, providing a very fast and
flexible hardware solution to the problem. Recently, many
types of multiple FPGA processing architectures have been
developed. Systems such as SPLASH |1 [2] and the Virtual
Computer [3] combine FPGAs and SRAM with switching
elements. Other system such as MORRPH [4] and BORG [5]
combine FPGAs with fixed interconnections to empty sockets
or a prototyping grid. All of these architectures are based on
the Xilinx 4000 series FPGA chips. An inexpensive multiple

1284

FPGA architecture provides an excellent resource for the
development of real-time machine vision hardware.

Some research has been done on implementing one
complex image processing function at a time using a
multiple FPGA architecture [6, 7]. However, a typical
machine vision task requires several simple low-level
operations to be performed on an input image.

Howeuver, it is not advantageous to devel op each new
image processing design from the gate level. This requires
the expertise of an experienced digital designer and has the
limitation of complicated and time-consuming development.
Instead, a library of general-purpose image processing
modules is developed. These modules are combined in an
arbitrary manner to create complicated image processing
designs. This also allows the creation of support tools which
decrease the development time for individual modules.

To create a system of flexible modules that can be
connected in an arbitrary manner, a common input/output
interface to the modules is defined. This provides a method
of transferring image and result data between modules. The
new protocol is called the Synchronous Unidirectional Image
Transfer (SUIT) bus. This interconnect bus is flexible
enough to alow a variety of image or result data formats.
The bus protocol has been created and refined using
knowledge obtained by studying other image bus standards
[8, 9, 10] and the creation of flexible image processing
modules.

Hence, this paper defines a method of creating image
processing designs by interconnecting severa low-level
image processing modules from an existing library. Several
modules are created using the Powerview schematic capture
program from Viewlogic Incorporated. Their functionality is
verified using simulation capabilities of the Powerview
software. Each module is compiled into the resources of a
single Xilinx 4010-4 FPGA chip using the Xilinx Design
Manager (XDM) software from Xilinx Incorporated. This
software provides timing information and FPGA resource
utilization used to determine the performance of the modules.

For more complete verification, two complicated image
processing designs containing several low-level modules
from the library are compiled into a new FPGA-based
Custom Computing Machine (CCM), called the MOdular
Reprogrammable Real-time Processing Hardware or
MORRPH [4]. This CCM contains a 3x2 array of Xilinx
4010-4 FPGA chipsin a mesh architecture. Image datais
generated by a 864-pixel color linescan camera, the TL-2600
RGB color linescan camera from Pulnix Incorporated [8].
This provides a real-time verification of the image processing
hardware development system proposed in this paper.

1. IMAGE PROCESSING HARDWARE DESIGN

Hierarchical techniques are typically used by design
engineers to create complex image processing designs. This

creates several levels of detail for each design. Experienced
digital hardware designers create gate-level schematics at the
lowest level. Commercially available schematic capture tools
or hardware descriptive languages are used for design entry
by these skilled designers.

However, it is desirable to create a devel opment system
that allows image processing designs to be created without
the specialized knowledge required for gate-level schematic
capture design or knowledge of a specialized language such
asVHDL. A library of modules with a common interface
allows complicated image processing designs to be created
without gate-level design. Many commercial image
processing hardware architectures provide a similar library of
low-level image processing operators. This allows
inexperienced designers to create complex designs using the
complicated modules created by others.

A. UIT BUS Format

The SUIT bus uses a global clock to synchronize the
transfer of information between image processing modules.
This eiminates the timing and circuitry overhead required to
generate the handshaking signals associated with
asynchronous data transfers. All signals of the bus must
meet setup and hold times for this clock signal. Required
setup and hold times are defined by the FPGA chips used in
the target architecture. For example, when an image
processing design is translated into the logic resources of any
-4 speed grade FPGA in the Xilinx 4000 family of FPGA
chips, the minimum setup and maximum hold times are 4.5
ns and O ns, respectively [1]. The XDM software from
Xilinx Incorporated allows these timing requirements to be
verified after a design is translated into the resources of an
FPGA.

Sixteen signals are defined for the SUIT bus, in addition
to the global clock. Eight of the signals are data lines
(DATA[7:Q]) and the other eight signals are control lines
(DV, CMD[2:0], CSEL[3:0]). The signal locations and
definitions are illustrated in Figure 1.

The channel select (CSEL[3:0]) lines define sixteen
independent channels for the time-multiplexed transmission
of image data. Different channels may correspond to
separate images, different spectral bands of the same image,
or result data.

The data valid signal (DV) determines the function of
the three command lines (CM D[2:0]). When DV is low,
data is not transmitted on the eight data lines and their
values are not defined. The values of the three command
lines define the following eight commands. The marking
command is a used when the bus is idle, denoting a clock
period when no information is transferred. The bus reset
command is used to reinitialize the modules, possibly in the
case of an error or system reset. The value of the channel

1285

select signals is not defined for the marking command, but is
required for all other commands.

Data on the SUIT bus may represent one, two, or three
dimensional data. The line start, frame start, and sequence
start commands indicate the start of a l-dimensional line of
values, 2-dimensional frame of lines, or a 3-dimensiona
sequence of frames, respectively. After the entire line,
frame, or sequence has been transmitted, line end, frame
end, and sequence end commands are transmitted. These
start and end commands are used to frame the data as it is
transmitted on the SUIT bus. The channel select signals
must be valid during the start and end commands to allow
the independent channels to represent data of different
dimensions and sizes. For a data structure of any dimension
to be transmitted, it must be framed by dl three types of start
and end commands.

Data values are transmitted on the bus when the DV
signal is high. The DV signal is permitted to be high for
only one clock cycle to transfer a single byte of data. During
this clock cycle, the three command lines are used to define
properties associated with the current data. The high
command bit (CMD[2]) defines whether the value is
contained within an arbitrary Region-Of-Interest (ROI). A
separate channel can be used if more than two regions are
required for a particular image processing function. The
lower two command bits (CMDJ[I:Q]) define the word size of
the data that is transmitted. Data word sizes of one, two,
four, or eight bytes are supported by the SUIT bus.
Additional bytes of larger data sizes are sequentially
transmitted, in order of least significant to the most
significant bytes.

Since dl data must be completely framed by al six start
and stop commands, the sequence of values required to
transmit an image on the SUIT bus is determined. However,
commands and data for other channels and marking
commands may be randomly inserted into this sequence.
The current definition of the SUIT bus provides a flexible
method for interfacing image processing modules,using a
minimum number of signals.

B. Image Processing Modules

The definition of a standard interface alows the
independent creation of many low-level image processing
modules that are easily interconnected. These low-level
image processing modules are combined to create complex
image processing designs. Design entry for the modules can
be accomplished using a number of commercially available
schematic capture programs or hardware descriptive
languages. Currently, modules are created using the
Powerview schematic capture software from Viewlogic
Incorporated.

Location _ Function
151 pv SUIT COMMANDS:
14 |cMD2 Itpv=0
000 - Marki
Q13 } CMD 1 010 - Line Start
012 | CMD O 001 - Bus Reset
011 - Line End
Q11 | CSEL 3 100 - Frame Start
010 | CSEL 2 101 - Frame End
110 - Sequence Start
Q9 }CSEL1 111 - Sequence End
08 CSEL 0
07 DATA 7 IfDV=1
Oxx - Ontside ROX
Q6 | DATA6 1xx - Within ROI
Q5 DATAS x00 - 1 Byte Data Size
x01 -2 Byte Data Size
4 DATA 4 x10 - 4 Byte Data Size
3 DATA 3 x11 - 8 Byte Data Size
DATA 2
Q1 DATA 1
Q0 | DATAO
Figure 1. SUIT bus signal locations and commands.

Three performance measures exist for the image
processing modules. First, the pixel processing rate of the
module must be greater than or equal to the input pixel rate
for real-time processing. The 16-bit SUIT bus can only
transmit one byte in each cycle of the global clock. To
process data from current 512x512 array cameras that
produce 30 frames/see, individual modules must operate at
clock frequencies above 7.9 MHz. Next, the number of clock
cycles required for data to propagate through a module,
defined as its latency, is important for some image
processing designs, but is not critical to the overall
performance of the module. Finally, the amount of FPGA
resources required by individual modules is important. The
MORRPH board available for module verification contains
six Xilinx 4010-4 chips. Each of these chips contains 800
function generators and 800 flip-flops. To reduce the
complexity of partitioning the logic of large designs between
several FPGA chips, it is required that ail the logic of an
individual module must be contained within a single FPGA
chip.

The current library of parts is limited, but growing.
These modules represent processes required by existing
projects at the Center for Automated Processing of
Hardwoods (CAPH) at Virginia Tech. The modules are
divided into three classes; SUIT bus control modules,
FPGA -specific image processing modules, and externa logic
image processing modules. The SUIT bus control modules
provide access to and control functions for the SUIT bus.
FPGA specific image processing modules process image data
on the bus using only the resources within available FPGA
chips. Finaly, the external logic image processing modules
process image data using the logic of support chips.

1286

1. UIT BUS Control Modules

The modules defined in this section do not modify the
data transmitted on the SUIT bus. Some of the modules
provide input or output data formatting to or from the bus.
Since the SUIT bus is a synchronous bus that uses a global
clock, the SUIT bus is only used to transfer data within
FPGAs and between FPGASs on a single printed circuit board.
External communication is accomplished using existing
image transmission formats such as the Pulnix [8] and Data
[/O [10] digital image data transmission formats.

The PULNIX2SUIT module trandlates the Pulnix
TL-2600 RGB camera format to the SUIT bus format. This
allows input of color image data at rates up to 2.5
Mbytes/sec. Similarly, the SUIT2PULNIX module
reformats SUIT bus data for output in the Pulnix format.
This allows the data to be output for collection by real-time
data collection devices. The SUIT2I SA module provides a
low-bandwidth interface to the Industry Standard
Architecture (ISA) computer bus, specifically for the
MORRPH board. This module uses ISA bus I/0 read cycles
to obtain up to 500 KBytes/sec of data from the MORRPH
board.

In complicated image processing designs that contain
multiple data paths or feedback, additional modules are often
required to control the flow of data on each SUIT bus. The
16 separate channels of information available on the bus
create the need for these control modules.

The MULTIPLEX module combines the data from two
separate SUIT busses into a single SUIT bus. Marking
cycles are removed from each bus as required to combine the
two data streams. The BLOCK_CHAN module removes all
data and control cycles from one of the sixteen channels and
replaces the information with a marking cycle. Information
from al other channels is transmitted on the output SUIT
bus. The INC_CHAN module receives data from all
channels on its input bus and transmits each on the next
channel of the output bus. Channel sixteen is output on
channel zero of the output bus.

The important attributes of these modules are shown in
Table 1. This data is obtained by using the Xilinx XDM
software to compile the schematic of each module into the
resources of a single Xilinx 4010PG191-4 FPGA chip. Table
1 lists the number of FPGA function generators and flip-flops
required to implement each module. Signal paths are
analyzed to determine the longest propagation path for each
module. This determines the maximum frequency of the
global clock signal used by each of these modules. The
latency of the modulesisincluded for completeness. These
attributes illustrate the approximate performance and amount
of FPGA resources required to implement these modules.

Table 1. SUIT Bus Control Module Characteristics.
Module Function Flip- Speed | Latenc
Name Generators Flops Hz) (Cycles{
SUIT2PULNIX 58 69 10.0 n/a
PULNIX2SUIT 52 51 16.5 n/a
SUIT2ISA 221 155 24.0 n/a
MULTIPLEX 46 101 22.5 2-5
BLOCK_CHAN 16 16 327 1
INC_CHAN 3 16 49.9 1

2. FPGA-Secific Image Processing Modules

The modules defined in this section process data of the
SUIT bus using only the resources of FPGA chips. These
modules perform common low-level image processing
functions found throughout image processing literature.

The THRESHOLD module uses an 8-bit threshold
value to process a single a channel of the SUIT bus. All
image values below the threshold are converted to a defined
output value. All other image values are not modified. The
COLOR2BW module creates a black-and-white image from
a 3-byte RGB color image on the input SUIT bus by
calculating the average of al three color values for each
pixel. The AVERAGE_3xlI module is a 3x1 window
operator with unity gain coefficients. This module
implements the following function:

y(ij) = [x() + x(i-1j) + x(1-2,)1/3 (1).

The AVERAGE_3xl module can simultaneously process up
to three separate image channels at the same time. A 256x8
RAM location is used to create a look-up table in the LUT
module. Each of the 256 possible grayscale values are
mapped to new values by the table. The HISTOGRAM
module calculates a 256 element array of count values. Each
count val ue represents the frequency of a pixel intensity
value in an image. Finaly, the LEAD_LAG module finds
the first rising edge and the last falling edge in a line of
image data. The characteristics of these modules are
summarized in Table 2.

The FPGA-specific image processing modules have a
wide variance in their performance and required amount of
logic resources. The THRESHOLD, LUT, and
LEAD _LAG modules al require a small amount of
resources and operate at a high clock frequency. However,
several of the image processing modules require a much
slower global clock frequency. Others require aimost al of
the resources of a large FPGA or were simplified in order to
be implemented by a single FPGA chip.

1287

Table 2. FPGA-Specific Image Processing Module Characteristics.
Module Function Flip- Speed | Latenc
Name Generators Flops Hz) | (Cycles
THRESHOLD 10 16 26.2 1
COLOR2BW 191 58 6.9 4
AVERAGE 3x1 182 109 6.8 4
LUT 170 16 203 1
HISTOGRAM 658 113 311 n/a
LEAD_LAG 12 39 64.9 1

The COLOR2BW and AVERAGE_3xl image
processing modules operate at a much slower clock frequency
than the control modules. This is a direct consequence of a
low-performance 10-bit binary multiply circuit used in these
modules.

The 3x1 window size used in the AVERAGE_3xI
module is significantly smaller than common 3x3, 5x5, or
7x7 window sizes, The amount of memory required for
intermediate storage of image data is dependent on the size
of the window operator and the size of the image. For typical
512x512 8-hit grayscale images, one Kilobyte of memory is
required for a 3x3 window operator. This requires over 700
function generators, consuming 88% of the available
resources of a Xilinx 4010 FPGA chip,

Similarly, a large amount of FPGA resources are used to
implement memory in the HISTOGRAM module. Over
530 of the 658 function generators required for the
HISTOGRAM module are used to create a large 256x24
(768 byte) memory subsystem.

Even though these modules may not represent the most
efficient designs, they do illustrate the problems associated
with using FPGAs for real-time image processing functions.
The excessive amount of FPGA resources required for
operand storage (memory) and the low performance addition
and multiply circuits are typical problems associated with
using FPGAs for low-level image processing.

3. External Logic Image Processing Modules

The problems of the previous section are solved by
coupling memory and arithmetic support chips with the
FPGAs. These external support chips implement logic not
efficiently realized by the FPGA chips. The FPGA chips
provide timing and state machine logic required to
implement the modules,

The last four modules of the previous section have been
modified by adding external logic to increase their
performance. New attributes for these modules after redesign
are shown in Table 3. The latency of these modules is
unaffected by the redesign, and is not included in Table 3.

The AVERAGE_3xl and COLOR2BW modules use
an external 16x16 Parallel CMOS multiply chip (IDT 7216L
from Integrated Device Technology). The 50 nanosecond
multiply time of the external multiply chip doubles the
operating clock frequency of both modules.

Similarly, externa SRAM chips are used to reduce the
amount of FPGA logic resources required to implement both
the LUT and HISTOGRAM modules. The use of asingle
256K x32 SRAM chip (MCM 32257 from Motorola) allows
the 3-byte RGB color images to be mapped into a 2,000
element color palette by the LUT module. The number of
function generators required to implement the
HISTOGRAM chip is reduced by over 80% by using a
single 8Kx8 SRAM chip (MCM 6264CP25 from Motorola).
At the same time, the size of the histogram is over 8 times
larger, creating a histogram for the new 2,000 element color
palette. Both of these modules are significantly more
complex than the modules presented in the previous section,
and cannot be implemented using FPGA resources alone.

A new module isintroduced in this section that also
uses two external 8Kx8 SRAM chips. The LITE_COMP
module compensates for irregularities in lighting when using
a linescan camera. Each pixel location is linearly
transformed using the equation:

y(i) = mx(i,j) + b,(2).

This function also cannot be implemented using a single
Xilinx 4010 FPGA chip, and therefore was not included in
the previous section. Storing all of the m, and b, variablesin
the external SRAM chip allows the design to fit within a
single FPGA chip. However, the MORRPH architecture does
not provide enough connectivity to allow the use of the
external multiplier chip and the two SRAM. The 10-hit
multiply circuit used by the LITE_COM P module reduces
the maximum clock frequency to 6.7 MHz.

The LITE_COMP module illustrates the drawback
associated with using external memory or arithmetic chips.
Instead of being constrained by available logic resources of
the FPGA's, the modules become constrained by the I/O
resources of the FPGAs. Careful consideration of the

Table 3. External Logic Image Processing Module Characteristics.
Module Function’ Flip- IOBs | Speed
Name ' Generators Flops Hz)
COLOR2BW 90 48 64 143
AVERAGE_3x1 86 83 64 144
HISTOGRAM 127 113 28 15.0
LUT 9 79 64 44.0
LITE_COMP 174 109 56 55

1288

performance requirements of each design is required when
making choices for image processing designs.

[1l. RESULTS

The modules defined in the sections above have been
combined to create two complicated image processing
designs. These designs are shown in Figures 2 and 3. The
image processing design of Fig. 2 creates both a grayscale
histogram and a histogram of the color image after it has
been mapped into a palette of 2,000 colors. The image
processing design of Fig. 3 performs three successive average
operations on an image, creating a 7 x 1 window operator.

Both designs have been compiled and verified on the
MORRPH architecture. The image processing design of
Fig. 3 is compiled into the resources of a single Xilinx 4010,
while the design of Fig. 2 requires six Xilinx 4010 chips.
Both designs have been verified at 16 MHz, faster than the
typically conservative estimates of 13-14 MHz generated by
the Xilinx XDM software.

IV. CONCLUSIONS

FPGA s have been shown to provide an excellent resource
for creating real-time image processing hardware. The
gate-level resources of FPGA chips alow arbitrary designs to
be created from a library of low-level image processing
modules. However, additional memory and/or arithmetic
support chips are often required to achieve the desired speed
and utilization performance for real-time operation of
complicated modules. FPGA-based custom computing
machines that allow arithmetic and memory chips to be
tightly coupled with each FPGA, such as the MORRPH
board, provide the most efficient and flexible architectures
for real-time image processing.

V. ACKNOWLEDGMENTS

This work has been funded in part by the Southeast
Forest Experiment Station of the United States Forest Service

Pulnix2suit Lite_comp Threshold Lead_lag

Suit2ISA Histogram LUT

output

Suit2ISA

Histogram Color2BW

Figure 2. Muliple-path image processing linear pipeline.

Inc_chan Block chan

Pulnix2snit Mulitplex Average_3x1 Suit2pulnix

Figure 3. Image processing design with feedback.

and the Bradley Department of Electrical Engineering of
Virginia Polytechnic Institute and State University. Thanks
also to Peter Athanas, Earl Kline, and Paul Lacasse,

V1. REFERENCES

[1] Xilinx Corporation, “The Programmable Logic Data
Book,” 1994.

[2] Arnold,J.M., Buell, D.A., and Davis, E.G. “Splash 2,”
in Proceedings of the 4th Annual ACM Symposium on
Parallel Algorithms and Architectures, 1992, pp. 316-322.

[3] Casselman,S., “Virtual Computing and the Virtual
Computer, " in Proceedings of IEEE Workshop on FPGAs
for Custom Computing Machines (FCCM '93), Napa CA,
April 1993, pp. 43-48.

[4] Drayer, T. H., Tront, J. G., King, W.E, et. a., “MORRPH:
A MOdular and Reprogrammable Real-time Processing
Hardware”, in Proc. of FCCM '95, Napa CA, April 1995.

[5] Chan, P. K., “A Field Programmable Prototyping Board:
XC4000 BORG User’'s Guide,” UCSRC-CRL-94-18, April
1994.

[6] Abbott, A. L., Athanas, P. M., Chen, L., and Elliot, R. L.,
“Finding Lines and Building Pyramids with Splash 2“, in
Proc. of FCCM '94, Napa CA, April 1994, pp. 155-161.

[7] Ratha, N. K., Jain, A.K, Rover,D.T., “Convolution on
Splash 2", Proc. of FCCM 95, Napa, CA. April 1995.

[8] Pulnix, Inc., “TL-2600 RGB Linescan Camera Operating
Instructions,” 1987.

[9] Datacube Inc. “MaxVideo MAXbus Specification,” Dec.
No. SP00-5, September, 1988.

[10] Data Trandation, Inc., “DT-Connect || Bus
Specification,” 1992.

1289

1995 IEEE 218t
International
Conference on
Industrial
Electronics,
Control, and
Instrumentation

Volume 2 of 2

SAernal Progepsinptet fontral
RoboticaWiElopiSEans ors
Fmerrlne Techoaloeis

|:||- '.-.: FI ..__ I_ Fl.i-ll| : -:. :i .h I .II

Novamber 6 - 10, 1995

Sponzored by

The Indhsstrial Eincimorics Sozaty {IE5) of e IEEE 5@"-
Tha Soesiaty of freskrumani and Conteel Enning e of 1eaes 1900

8

