
Ecology, 88(12), 2007, pp. 3144–3152
� 2007 by the Ecological Society of America

HIERARCHICAL ANALYSIS OF SPECIES DISTRIBUTIONS AND
ABUNDANCE ACROSS ENVIRONMENTAL GRADIENTS

JEFFREY M. DIEZ
1

AND H. RONALD PULLIAM

Institute of Ecology, University of Georgia, Athens, Georgia 30602 USA

Abstract. Abiotic and biotic processes operate at multiple spatial and temporal scales to
shape many ecological processes, including species distributions and demography. Current
debate about the relative roles of niche-based and stochastic processes in shaping species
distributions and community composition reflects, in part, the challenge of understanding how
these processes interact across scales. Traditional statistical models that ignore autocorrelation
and spatial hierarchies can result in misidentification of important ecological covariates. Here,
we demonstrate the utility of a hierarchical modeling framework for testing hypotheses about
the importance of abiotic factors at different spatial scales and local spatial autocorrelation for
shaping species distributions and abundances. For the two orchid species studied, understory
light availability and soil moisture helped to explain patterns of presence and abundance at a
microsite scale (,4 m2), while soil organic content was important at a population scale (,400
m2). The inclusion of spatial autocorrelation is shown to alter the magnitude and certainty of
estimated relationships between abundance and abiotic variables, and we suggest that such
analysis be used more often to explore the relationships between species life histories and
distributions. The hierarchical modeling framework is shown to have great potential for
elucidating ecological relationships involving abiotic and biotic processes simultaneously at
multiple scales.
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INTRODUCTION

Explaining patterns of species distributions has been a

focus of ecological work for many years (Andrewartha

and Birch 1954), but many important, unanswered

questions remain about the relative roles of abiotic

and biotic constraints and stochastic events. The interest

in understanding how these processes interact spans

theoretical and applied studies. Much current debate has

focused on the relative importance of niche partitioning

and stochastic processes in shaping community structure

(Hubbell 2006, Leibold and McPeek 2006), and efforts

to use niche theory and biogeographical concepts for

conservation goals depend on proper quantification of

abiotic drivers while accommodating stochastic effects

(Whittaker et al. 2005). For both theoretical and applied

efforts, an explicit consideration of spatial scale may

prove critical for understanding the relative roles of

these processes for shaping species distributions and

community assembly (Pearson and Dawson 2003,

Leibold et al. 2004, Holyoak and Loreau 2006).

Species-specific physiological constraints provide a

logical first expectation for how species may be

distributed in relation to abiotic variables, such as

precipitation and temperature, and form the basis for

many ideas about the niche (Chase and Leibold 2003).

However, there is wide recognition that numerous biotic

processes, such as competition, predation, mutualisms,

and disease, as well as stochastic dispersal and

disturbance events, can keep species out of equilibrium

with a physiologically optimal distribution. These

complexities have led to the incorporation of stochas-

ticity and nonequilibrium concepts into niche theory

(Pulliam 2000, Tilman 2004).

Efforts to use observed climate–abundance relation-

ships to build predictive models of how species may

respond to future climatic scenarios (e.g., Skov and

Svenning 2004, reviewed by Guisan and Thuiller 2005)

have been criticized for failing to incorporate biotic

interactions, dispersal limitation, and evolutionary

change (Pearson and Dawson 2003, Hampe 2004).

Although species occurrence and abundance can be

limited measures for describing species dynamics, these

are often the only feasible data to collect, necessitating

approaches to inference that minimize the limitations.

One improvement to these models has been the

introduction of spatial autocorrelation, which can help

to differentiate between responses to measurable abiotic

gradients and other unmeasured (or unmeasurable)

abiotic and biotic processes that generate spatial

structure in species distributions (Gelfand et al. 2003,

Hooten et al. 2003, Latimer et al. 2006). Even when the
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effects of measured covariates (e.g., temperature or

precipitation) are of primary interest, including spatial

structure in such models helps to improve prediction and

reduce the risk of spurious correlations with abiotic

variables due to spatial autocorrelation (Lichstein et al.

2002). The work thus far that incorporates spatial effects

into distribution models has typically focused on large

spatial scales on the order of kilometers, but such spatial

dynamics may also be relevant to understanding species

life histories, abiotic relationships, and stochastic events

at smaller within-population scales.

Despite the recognized importance of scale and

hierarchical structure for understanding many ecological

processes (Levin 1992, Keitt and Urban 2005), including

species’ niches and distributions (Maurer and Taper

2002, Parmesan et al. 2005), there has been little use of

explicitly hierarchical regression models for exploring

these relationships. Having undergone more significant

development in some social sciences (Raudenbush and

Bryk 2002), hierarchical models are only very recently

becoming more widely used by ecologists for under-

standing complex relationships at different scales (Wikle

2003a, b, Clark 2005, McMahon and Diez 2007).

In this study, we use hierarchical generalized linear

models (HGLM), within a Bayesian framework, to test

hypotheses about presence and abundance patterns of

two terrestrial orchids of eastern North America,

Goodyera pubescens and Tipularia discolor, across

multiple spatial scales. The two study species have

significant differences in key life history characteristics,

including requirements for different groups of fungi in

order to germinate, which lead to different expectations

for patterns of recruitment. Goodyera pubescens and

Tipularia discolor are terrestrial orchids distributed

throughout deciduous and mixed forests of eastern

North America (see Plate 1). While each may reproduce

both clonally and sexually, clonal reproduction of G.

pubescens occurs via branching growth of rhizomes at

the soil surface and appears to be more prolific than that

of T. discolor, which depends on breakage of below-

ground corms (Whigham and O’Neill 1991). Like other

orchids, seeds of these species lack significant nutrient

reserves and are therefore dependent on colonization by

the appropriate fungi for germination.

G. pubescens associates with one or two species of

saprotrophic basidiomycetes from the genus Tulasnella,

whereas T. discolor is found associated with a more

diverse group of tulasnelloid fungi (McCormick et al.

2004, 2006). Although both species remain heavily

colonized by fungi as adults, the seeds of G. pubescens

are able to germinate with the same fungi as used by

adult plants, whereas the fungi found associated with T.

discolor seeds are distinct from those used by adults

(McCormick et al. 2004). Symbiotic germination success

has been found to increase sharply in close proximity

(,1 m) to adult G. pubescens and in patches of higher

soil moisture and organic content (Diez 2007), whereas

the germination of T. discolor, and hence its fungi,

appears to be strictly associated with decaying logs

(Rasmussen and Whigham 1998; R. Geffen and J. M.
Diez, unpublished data). These differences in life histories

suggest that G. pubescens is more capable of spreading
laterally from established patches due to positive

density-dependent sexual and clonal recruitment, and
may therefore exhibit greater spatial autocorrelation.

We integrate plant surveys and intensive abiotic
monitoring within hierarchical models to test the
hypothesis that the influences of different key abiotic

variables on the distributions and abundances of these
two orchid species are scale dependent. Further, we test

the hypothesis that key life history differences between
the species, namely the greater clonality and differences

in fungal relationships, will lead to more spatial
autocorrelation for G. pubescens than for T. discolor.

A more general goal of this paper is to provide an
example of some of the underutilized possibilities for

hierarchical models to more thoroughly and explicitly
investigate multi-scale controls on ecological processes.

MATERIALS AND METHODS

Study design and sampling regime

A hierarchical study design was used to capture a

range of environmental conditions across a geographic
gradient of ;120 km from the Piedmont of Georgia to

the southern Appalachian Mountains, USA. As part of
a larger study of understory plant demography, 16 study

grids were established across three landscapes, each grid
between 250 m2 and 480 m2 in size. The size of the study

grids was chosen to capture population-level processes
of understory plants, and each grid was divided into 4-

m2 cells, within which plants were individually marked
with flags. This paper uses ‘‘population scale’’ to refer to

inference at the level of study grids and ‘‘microsite scale’’
for inference at the level of 2 3 2 m cells (Fig. 1). The

sampling scales were chosen to reflect levels of variabil-
ity in the abiotic environment in this system and the

likely range of relevant plant processes and interactions
(e.g., clonal growth, dispersal, and so forth). Overall,
1105 G. pubescens individually marked ramets on 10 of

the grids and 540 T. discolor ramets on nine of the grids
were used for analyses. Further detail on the study

design can be found in Diez (2005) and in Appendix A.

Abiotic measurements

The abiotic variables considered particularly impor-

tant to understory plants across this gradient were soil
moisture, understory light availability, pH, soil texture,

and soil organic content. Fine-scale spatial variability in
soil moisture and light availability was assessed through

intensive 80-point sampling of each of the grids several
times throughout the year for four years, allowing

assessment of spatial and temporal patterns in the
abiotic environment (Diez 2005). Plant surveys and
abiotic monitoring from 2003 are used in this study. The

handheld Soil Water Content Measurement System
CS620 from Hydrosense (Decagon, Pullman, Washing-
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ton, USA) was used to measure volumetric soil moisture

in the top 12 cm of soil and two AccuPAR ceptometers

(Decagon, Pullman, Washington, USA) were used to

measure percentage transmittance of incident canopy

PAR (photosynthetically active radiation) to the forest

floor, with one placed in a nearby clearing as a full

sunlight reference. In order to account for differences in

timing of moisture measurements in different landscapes

relative to rainfall events, soil moisture readings were

used as relative wetness values within a landscape and

were then scaled according to total precipitation at the

landscape scale over the 12 months preceding the survey

(Appendix A). Geostatistical methods were used to

make predictions at each of the 120 cells within each

grid, using exponential variograms and linear detrending

to account for directional trends in a few highly sloped

grids (Rossi et al. 1992, Goovaerts 2001).

As elaborated in the statistical methods and discus-

sion, the ability to incorporate uncertainty at different

levels of a model is very important and increasingly

possible. Uncertainty in abiotic measurements, however,

was not included in this study (in accordance with other

recent studies such as Gelfand et al. 2003, Latimer et al.

2006), but that will be an obvious and potentially

important extension in future studies, particularly as the

use of distributed abiotic sensors is expanded. The

relative abiotic patterns on our grids were consistent at

within- and among-grid scales (Diez 2005), adding

confidence that a more static depiction of the abiotic

environment was justified. Computational limits also

restricted the incorporation of abiotic geostatistical

routines directly within the distribution models, as

may be preferable in the future.

Soil measurements were taken at a lower sampling

intensity than moisture and light, designed to capture

grid-level means and variation. Three 12-cm soil cores

were taken from the center of each of 16 ‘‘intensive’’ cells

distributed evenly in each of the 16 study grids and

bulked within cells for a total of 256 samples. A pH

meter was used to determine pH of a 1:1 suspension of
fresh soil to deionized water; organic content was

determined by percentage loss of mass after combustion
in a muffle oven; and soil texture was determined using

the hydrometer method (Gee and Bauder 1986). Further
detail on all sampling methods can be found in
Appendix A.

Statistical analysis: hierarchical Bayesian GLMMs

In order to simultaneously consider the influence of
key abiotic variables on species distributions at multiple

spatial scales, and the influence of local spatial
autocorrelation, hierarchical generalized linear models

(HGLMs) were implemented within a Bayesian frame-
work. Several recent, detailed descriptions of building

hierarchical linear models can be found (Raudenbush
and Bryk 2002, Gelman and Hill 2007, McMahon and

Diez 2007), including for spatial data (Banerjee et al.
2004), and similar models in the context of analyzing

species distributions can be found in Latimer et al.
(2006). These models may be considered one implemen-

tation of a larger class of spatial models that, in a variety
of ways, deal with the ‘‘change of support’’ problem

associated with data collected from multiple scales (e.g.,
Gotway and Young 2002, Banerjee et al. 2004, Wikle

and Berliner 2005).
The basic structure of the model is as follows. The

occurrence of a species in each cell is modeled as a
binary Bernoulli process, Yig ; Bernoulli(/ig), where Yig

is the binary occurrence data for each cell i and grid g,
and /ig are the estimated probabilities of occurrence in

those cells. These probabilities of occurrence are related
to linear predictors via the logit-link function as

log
/ig

1� /ig

 !
¼ ag þ

XM

m¼1

bmXmi þ qi

where ag is a grid-level intercept term, bm are M

FIG. 1. A hierarchical model structure reflects the sampling design capturing species processes at different scales. Model
structure allows prediction of the probability of occurrence, /ig in cell i and grid g, and abundance based on covariates measured at
both levels, as well as the effect of neighboring cells via spatial random effects (represented as arrows in the lower left).
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regression coefficients, and Xmi are soil moisture and

light availability covariate data at the cell (microsite)

level, including their squared terms to allow for

unimodal responses. The random effects for each cell,

qi, are allowed to be spatially dependent via a

conditional autoregressive (CAR) specification of the

prior, as defined by Besag (1974) and recently used by

Gelfand et al. (2003) and Latimer et al. (2006) for similar

applications. Thus, the distribution of random effects

for cell i is made conditional on values from cells j, as

follows:

qijqj ; Normal

X
i 6¼j

aijqj

ni
;
r2

g

ni

0
BB@

1
CCA

where aij ¼ 1 if cells i and j are neighbors, and 0

otherwise. The ni are the total number of neighbors of

cell i, as defined by the neighborhood structure of

choice. Neighbors here are defined as those cells directly

adjacent, including those diagonal. Although a variety

of spatial covariance structures are possible (for

examples, see Banerjee et al. 2004), the CAR structure

in this case was justified by the localized spread patterns

of these plants and the areal form of data (23 2 m cells,

vs. point locations).

The grid-level intercepts ag provide the link between

the cell and higher levels. They are modeled as random

effects drawn from a global distribution with a grid-

specific mean determined by a global intercept and grid-

level covariates as follows:

ag ¼ lþ
XK

k¼1

pkZkg þ eg:

Here, Zkg are K covariates at the grid level (pH, soil

texture, organic content, and soil moisture), and there

are K regression coefficients, pk, describing those

relationships. As for soil moisture in this case, the same

abiotic covariates can be modeled at the level at which

the data are collected and at higher levels, which allows

one to test the importance of variables at multiple scales

and avoids bias due to correlated covariates and group-

level intercepts (J. Bafumi and A. Gelman, unpublished

manuscript). The error terms at this level are normally

distributed eg ; Normal(0, r2
g), with the variation

attributable to the grid level given a noninformative

prior, allowing the data to drive their estimation. The

intercept (l) and regression coefficients (pk) of the grid-

level model are given noninformative prior distributions

(Appendix B).

To allow for covariance among the light and moisture

coefficients (bm) in the cell-level model (e.g., more

moisture may be required in high light environments),

these coefficients were modeled with a multivariate

normal distribution b ; MVN(l, R) with a Wishart (X,

q) prior for the precision matrix R. The Wishart is a

multivariate generalization of the gamma distribution

and forms a natural prior for the precision matrix of the

multivariate normal (Gelman et al. 2004). To represent

vague prior knowledge, we chose the degrees of freedom

q to be 4, the smallest value allowed (because the rank of

the precision matrix is also 4), and low parameter values

(0.1 along the diagonal and 0.01 elsewhere) for the scale

matrix X. Implementing the model, we found that the

covariance terms were not significantly different from

zero, and the final model was simplified to exclude

covariance among coefficients.

The models of abundance use a similar specification

of hierarchical structure and spatial random effects, with

the replacement of the Bernoulli sampling distribution

and logit-link function with a Poisson distribution and

log-link function. Unconditional models were initially fit

to determine the basic variance partitioning of presence

and abundance between the microsite and population

scales via calculation of interclass correlation coeffi-

cients (Raudenbush and Bryk 2002; Appendix B). As a

Bayesian model, all parameters are considered random

variables and are assigned prior distributions. All

models were fit using WinBugs 1.4, which uses Markov

chain Monte Carlo (MCMC) sampling methods to

characterize the posterior distributions of model param-

eters (Gilks et al. 1996, Spiegelhalter et al. 2000).

Covariate data were standardized by subtracting the

overall mean and dividing by the standard deviation in

order to improve model convergence and aid interpre-

tation of coefficient estimates. Further model details,

including choice of priors and approach to modeling

covariance, can be found in Appendix B and the

WinBugs code in the Supplement.

Prediction of species responses (occurrence or abun-

dance) across a range of abiotic conditions is achieved

within the same model framework as that used to

estimate abiotic coefficients. Referred to as ‘‘posterior

prediction’’ in statistical literature, prediction of new

responses is conditional on the observed responses and

estimated parameters. At each iteration of the MCMC,

parameter estimates, including regression coefficients at

each level of the model, bm and pk, and intercepts ag and

l are used to predict occurrence or abundance at a range

of abiotic conditions. Inclusion of this step within the

MCMC allows propagation of uncertainty associated

with all parameters to influence prediction.

RESULTS

Variance partitioning using unconditional models

revealed that 63% of the variation of Goodyera presence

was distributed among cells compared to 37% among

grids, and similarly for Tipularia, with 69% among cells

and 31% among grids. The patterns were nearly reversed

for abundance, with 32% of the variation in Goodyera

abundance among cells and 68% among grids, and 25%

and 75% distributed among cells and grids, respectively,

for Tipularia. The two species exhibited different

relationships with abiotic variables in the full hierarchi-

cal models. Both the presence and abundance of G.
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pubescens showed a significant unimodal response to

winter light at the microsite scale and a positive

relationship with organic content of the soil at the

population level (Fig. 2). T. discolor presence showed no

significant responses to abiotic variables at either scale,

but abundance was significantly correlated with both

moisture and light (Fig. 2). Reflecting the hierarchical

structure of the model, greater uncertainty was associ-

ated with grid-level effects than with the cell-level effects,

as judged by the width of the 95% credible intervals (Fig.

2).

Each iteration of the MCMC yields an estimate of the

probability of occurrence or abundance and of the

spatial random effect for each cell, which yield posterior

densities for each cell (displayed as means of those

densities in Appendix B: Fig. B1). The significance of

spatial effects was judged by summing the number of

spatial error terms, qi, whose 95% credible interval did

not overlap zero. G. pubescens exhibited significant

spatial error terms for both presence and abundance (87

and 163 cells, respectively, out of a total of 1020 cells;

8.5% and 16.0% of all cells). T. discolor, on the other

hand, had no significant spatial effects in the presence

model and 156 in the abundance model (out of total

possible of 734; 21.2% of all cells).

To understand the impact of including spatial effects,

it is informative to compare models with and without

spatial error terms, qi (Fig. 2, solid and dotted lines,

respectively). The effect of including spatial autocorre-

lation varies across models and parameters. In most

cases there is a movement of parameter estimates toward

greater uncertainty when spatial effects are included.

The notable exception is for T. discolor presence models,

in which estimates are nearly the same, matching the

result that no spatial effects were estimated to be

different from zero for T. discolor presence models. In

addition to the greater uncertainty with spatial effects,

some factors (e.g., moisture) lost apparent significance in

the spatial models, suggesting that lack of spatial effects

could lead to the wrong conclusion about abiotic driving

variables. This is especially important regarding fore-

casts of the impact of climate change.

Prediction performed within the same model frame-

work as the model used to estimate abiotic coefficients

produced volumes of the likelihood of occurrence and

abundance as a function of the abiotic environment

(Fig. 3). The uncertainty associated with these predic-

tions is large, reflecting the variability across the study

region and the complexity of factors that contribute to

shaping species distribution patterns.

FIG. 2. Parameter estimates of the hierarchical model are represented by 95% credible intervals: literally the interval over which
95% of the density of a posterior probability distribution falls. The models consider presence and abundance of the orchids
Goodyera pubescens and Tipularia discolor. Those variables with intervals that do not overlap the vertical zero line may be
considered significantly different from zero at the 95% level. For each model, the top portion of the graph shows those explanatory
variables considered at the population (grid) level, pn, whereas the bottom moisture and light are at the microsite (cell) level, bm.
Second-order moisture and light are included in models to allow for unimodal or saturating responses to abiotic variables. Dotted
lines represent estimates from nonspatial models; solid lines are from models including spatial effects.
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DISCUSSION

An important, general effort in ecology is to

understand how deterministic and stochastic forces

combine to shape ecological processes across spatial

and temporal scales. This may be addressed through

experimental designs that can capture both kinds of

processes, and also by using statistical methods that can

accommodate both. This study used one such approach,

within a hierarchical Bayesian framework, to evaluate

the responses of two terrestrial orchids to environmental

gradients while estimating additional, unexplained local

processes that mediate these responses. We found

support for the idea that species distributions can be

linked to key abiotic variables at multiple scales, but the

data also suggest that additional biotic or abiotic

processes lead to local autocorrelation in patterns of

presence and abundance. Importantly, it was shown that

inclusion of spatial autocorrelation can change the

magnitude and the certainty of estimated effects of the

abiotic environment.

Other studies have used spatially correlated errors to

investigate autocorrelation at landscape scales (e.g.,

Gelfand et al. 2003, Hooten et al. 2003, Latimer et al.

2006), and inclusion of spatial autocorrelation is known

to allow more robust prediction of responses to abiotic

gradients (Lichstein et al. 2002), but this study suggests

their potential for understanding spatial processes at a

local, within-population scale. The finding in this study

of significant spatial effects for G. pubescens presence

and not for T. discolor presence is consistent with the

hypothesis that life history traits may contribute to

detectable patterns of spatial autocorrelation in species

distributions. The substrate specificity of the fungi

needed by T. discolor, an apparently strict association

with decaying logs (Rasmussen and Whigham 1998; R.

Geffen and J. M. Diez, unpublished data), and the

different identities of fungi associated with adults and

protocorms, suggest a more limited potential for lateral

spread of T. discolor. Likely due to the ability of G.

pubescens to germinate with the same fungi associated

with adults, probabilities of germination have been

FIG. 3. Posterior parameter estimates can be used to reconstruct predictions of a response variable across a range of the
explanatory variables with associated uncertainty. Shown here are three slices of a probability volume predicting the probability of
occurrence for G. pubescens. The middle surface represents the mean posterior probability prediction (the best guess, given the
current data), and the upper and lower surfaces represent the bounds within which we are 95% sure that the probability of
occurrence will fall for a given combination of abiotic variables. PPFD is photosynthetic photon flux density (measured as the
percentage of incident light transmitted through the canopy to the ground level).
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shown to increase dramatically close to adult plants

(Diez 2007). Together with the greater proficiency for

clonal spread of G. pubescens via creeping rhizomes,

there is good reason to believe that these life history

differences are at least partly responsible for the

differences in estimated spatial structure in the presence

models.

The fact that both species showed stronger spatial

autocorrelation and responses to abiotic variables

suggests somewhat different dynamics for abundance

than for simple occurrence. T. discolor, in fact, showed

no spatial autocorrelation for presence but a significant

amount for abundance. It is plausible that the highly

clumped recruitment of the species based on locations of

decaying logs is enough to drive the pattern of spatial

dependence in abundance, but the limited ability to

clonally spread or recruit off the log using the fungi

associated with adults prevents the type of lateral spread

that leads to spatial autocorrelation in presence.

Studies investigating the relationship between patterns

of species’ occupancy (presence–absence) and abun-

dance predominately find positive relationships between

species’ distributions and local abundance, but this

relationship appears to vary across taxa and habitats

(Blackburn et al. 2006). Although the mechanisms

underlying this pattern are not well understood, it is

likely that heterogeneity of habitat suitability and scale

of measurement influence observed abundance–occu-

pancy patterns and the interpreted process (He and

Gaston 2000, Freckleton et al. 2006). Although our

focus in this study was not the direct relationship

between abundance and occupancy, a few observations

derived from our study may be relevant to that area of

research. In particular, the degree to which habitat

suitability influences patterns of site occupancy and

abundance may now be examined more explicitly, while

accounting for spatial autocorrelation. Further, it may

be useful to more explicitly incorporate differences in

species life histories for predicting the relative concor-

dance of abundance and occupancy patterns.

Species distributions, scale, and prediction

Recent reviews of species distribution modeling have

appropriately called for increased attention to scale

(Pearson and Dawson 2003, Guisan and Thuiller 2005)

because it is generally understood that different pro-

cesses are likely to influence species at multiple spatial

scales (Maurer and Taper 2002). This can make

identification of driving variables difficult in the field,

and challenging to estimate and interpret within models.

Recent developments easing the implementation of

hierarchical generalized linear models (HGLM) are

establishing these approaches as very useful for simul-

taneously evaluating information from different scales

(Raudenbush and Bryk 2002, Gelman and Hill 2007,

McMahon and Diez 2007). Although various methods

exist for identifying scales of variability in continuous

response variables (e.g., Borcard et al. 2004, Keitt and

Urban 2005), the ecological data are often structured

hierarchically, due both to inherent structure (e.g.,

streams within watersheds) or imposed by sampling

designs (e.g., plots within grids), and tools are increas-

ingly available to identify and quantify key relationships

at different scales using such data.

Relatively simple hierarchical models, as shown in this

study, can be used to explicitly estimate the effects of

different factors at multiple spatial scales. The finding

that soil organic content helps to explain G. pubescens

abundances at the grid level is far more informative than

simply finding a ‘‘grid effect,’’ as might be done with

standard mixed models. The likely ecological explana-

tion for such a pattern is related to the tight

relationships with saprotrophic fungi. Moreover, models

that ignore the hierarchical structure in processes and in

data risk the ‘‘ecological fallacy’’ of applying group-level

attributes to individuals (Gelman et al. 2001) and the

PLATE 1. The two study species, terrestrial orchids found in forests of eastern North America: (left) adult and juvenile (perhaps
a clonal offspring) Goodyera pubescens; (right) a juvenile Tipularia discolor emerging from the underside of a decaying log (this is
often where their symbiotic fungi are found). Photo credits: Robert Warren (Goodyera) and Scott Eustis (Tipularia).
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related problem of pseudoreplication (Hurlbert 1984), or

must lose information by averaging over lower levels.

An additional opportunity afforded by Bayesian

models is the relatively straightforward transition

between parameter estimation and prediction with

estimates of uncertainty (Gelman et al. 2004, Clark

2005). As shown here, estimated relationships with

abiotic variables can be used to make predictions about

likely responses to gradients with associated estimates of

uncertainty. The full posterior distributions of estimated

effects are well suited for such predictions, and could

facilitate placement of such predictions within a

dynamic model incorporating dispersal processes. The

explicitly multilevel structure of the models importantly

allows prediction at any scale to be fully conditional on

uncertainties across other scales (Gelman et al. 2004).

The uncertainty in the predictions in this study is large,

probably reflecting the importance of other variables,

potentially both biotic and abiotic, that may influence

the species’ distributions at the measured scales. It is

critical that such uncertainty be estimated, however, in

order to assess the degree to which reliable predictions

can be made using key driving variables (Clark et al.

2001).

In summary, the ongoing debate about the relative

importance of niche partitioning and stochastic process-

es for shaping species distributions and community

composition suggests a great utility in approaches to

inference that can incorporate and estimate both kinds

of processes. Both niche theory and efforts to predict

species and community responses to environmental

change are increasingly incorporating both niche-based

and stochastic, nonequilibrium processes. Extending this

discussion to include scale-explicit responses to abiotic

variables and the role of local spatial interactions will

greatly aid the effort to understand species dynamics.
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