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Abstract-Growth and yield data from a loblolly pine plantation in southeastern Louisiana were obtained yearly from 1993
to 1996 on numbered trees within two stands initially planted on a 1.22-  by 1.22-meter  spacing, and two stands planted on
a 2.44-  by 2.44-m&r spacing. Using allometric equations derived from a 1994 on-site destructive harvest, cited nitrogen
concentrations of various tree tissues, and accounting for foliar nitrogen retranslocation, stand growth and soil nitrogen
demands were determined.

Results showed that production of all aboveground tissues increased as stand density index (SDI) increased. Annual soil
nitrogen demand increased with SDI primarily as a result of an increase in nitrogen-rich foliage on the denser sites.
Belowground production, as estimated from minirhizotron censuses, SISO increased as SDI and aboveground nitrogen
demands increased. More fine-root production per unit aboveground nitrogen demand was observed on less fertile plots.
Stemwood  production per unit leaf biomass decreased with increasing SDI, and is assumed to be the result of a greater
percentage of total net primary production being partitioned to fine-root production in the denser plots.

The results of this study suggest that the density of forest stands may influence nutrient demands from the soil and subsequent
belowground productivity through differential aboveground biomass allocation patterns and tissue nitrogen concentrations.

INTRODUCTION
The under ly ing  mechan isms o f  p lan t  b iomass  par t i t i on ing
are of great importance to the study of forest productivity.
As ga ins  are  made in  unders tand ing the  fundamenta l
principles of photosynthate allocation to various tree
components, the potential exists to manipulate forest
stands to increase the production of merchantable wood
despite constant site productivity, thereby increasing
economic return for forest landowners.

The ultimate objective for production foresters is to
max im ize  a l loca t ion  o f  pho tosyn tha te  to  merchan tab le
stemwood. Strides have been made in improving yield
through various silvicultural practices. In many agricultural
crops, enhanced yields have resulted primarily from a shift
in carbon allocation to harvestable parts, rather than an
actual gain in total productivity (Evans 1976).

The  mechan isms fo r  aboveground  p roduc t i v i t y  and  t i ssue
carbon a l locat ion  are  becoming more read i ly  unders tood.
Knowledge o f  be lowground p roduc t i v i t y  pa t te rns ,  however ,
lags far behind that of aboveground productivity. If
enhanc ing  produc t iv i t y  o f  merchantab le  aboveground t ree
components  inc ludes  rea l loca t ion  o f  ava i lab le
pho tosyn tha te  f rom unharves tab le  be lowground s inks ,  then
the study of carbon allocation in the whole forest stand,
both above- and belowground, is necessary. The objective
of this preliminary study was to determine if there is
evidence that different aboveground stand structures
resulting from varying stand densities influence soil nutrient
demand and subsequent  be lowground produc t iv i t y .

CARBON ALLOCATION PAlTERNS
Stand density is a factor that has significant influence on
stand carbon allocation. Stand density is known to influence

tree crown morphology (Dean and Baldwin 1996a),  which
influences carbon allocation among stems, foliage, and
branches (Ford 1982). These relations are complicated
because both stand structure and productivity are
associated with differences in age and site quality
(Assmann 1970). However, Dean and Baldwin (1996b)  have
shown that stand density index (SDI), a measure of growing
stock that includes quadratic mean diameter and trees per
hectare (Reineke  1933)  may be predicted solely from
foliage density, mean live crown ratio, and canopy depth.

There is a positive relationship between stand density and
stand foliage production. For a stand of a given stand
density, the amount of foliage in a closed canopy stand is a
function of the site quality. However, an increase in stand
density has been shown to increase leaf area index (LAI) in
loblolly stands (Dean and Baldwin 1996a). Stand density
has also been shown to positively influence yearly needle
fall, a measure of foliage production, in other pine stands
(Gholz  and o thers  1985,  Gresham 1982) .

There is also a positive relationship between stand density
and stand stemwood  production that isrelated to changes
in canopy structure. Canopy structure is the result of many
s imul taneous processes  inc lud ing  l igh t  penet ra t ion ,  he igh t
growth, crown lifting, and intercrown abrasion (Dean and
Long 1992). After the onset of competition at crown
closure, foliage is driven to the top of the canopy as a
result of the natural pruning of lower branches (Mar:Mohler
1947). Wind action on the crown of a tree creates a
bending stress on the stem, and as the crown midpoint
becomes higher, coupled with an increase in the amount of
foliage associated with increasing stand density (Dean and
Baldwin 1996a),  there is an increased load placed on the
stem (Dean and Long 1986). Bending of the stem also
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increases the resistance to flow of water in the stem so that
more sapwood  is needed to transport the same amount of
water to the foliage (Dean 1991). Therefore, as stand
density and the subsequent physical load on the stem is
increased, the carbon sink strength of the stem increases.

The amount of stand branchwood produced, however, is
negatively related to stand density. Trees in sparser stands
have deeper and wider canopies than do those in denser
stands (Dean and Baldwin 1996a) and, therefore, must
allocate a greater percentage of total net primary
produc t ion  (TNPP)  toward  the  p roduc t ion  and  ma in tenance
of branches to support the equilibrium level of foliage. In
summary, then, as stand density increases, stand foliage
and stemwood  biomass production increase, while stand
branchwood produc t ion  decreases .

Another major sink for carbohydrates is production of the
fine-root system. Indeed fine root production has been
es t imated  to  consume 30-70  percen t  o f  TNPP (Santan ton io
1989) and has been shown to be inversely related to
nutrient and water availability (Gower and others 1992).

On sites of equal nutrition, the belowground proportion of
TNPP shou ld  cor re la te  w i th  the  aboveground demand fo r
nutrients and water according to the functional balance
equation (Davidson 1969),  which states that as
aboveground nut r ien t  demands increase,  f ine- root
production will increase to meet that demand. Nutrient
demands w i l l  vary  dur ing  on togeny ( Imsande and Toura ine
1994) with the greatest demands being placed on the
nutrient reserves of a site during the early stages of stand
deve lopment  when the  s tand is  approach ing  max imum lea f
area (Switzer and others 1968). All else being equal,
though,  s tands  w i th  a  h igher  aboveground nut r ien t  demand
should allocate more carbon to belowground productivity to
meet that demand and maintain a functional balance.

Switzer and others (1968) found that the nitrogen
concentration of foliar, branch, and stemwood  tissue to be
1.08 percent, 0.23 percent and 0.06 percent nitrogen,
respectively, in 18-year-old  loblolly pine trees, exhibiting
little change with stand age. Foliar nitrogen concentration
was 18 times greater than that of stemwood, representing
the greatest portion of a stands nutrient requirements,
averaging 80 percent for all nutrients (Switzer and Nelson
1972). Because stand density influences the proportion of
different aboveground tree tissues in a stand and those
tissues vary in nitrogen concentration, stand density should
a lso  a f fec t  nu t r ien t  up take  and subsequent  be lowground
biomass production if a functional balance exists. This
preliminary study investigated the above hypothesis to
determine if evidence existed to warrant a conclusive study.

METHODS
The study site was located on the Lee Memorial Forest in
southeast Louisiana. The site annually receives 1620 mm
precipitation, and has a mean low and high temperature of
12.5 “C  and 25.5 OC,  respectively. Soil there is a Ruston
series fine-loamy, siliceous, thermic typic paleudult.

Four 25x25-m plots were established after a 1981 clearcut
and planted with loblolly pine (Pinus  taeda  L.) seedlings,
two on a 1.22x1.22-m spacing, and two on a 2.44x2.44-m
spacing. Prior to data collection, understory vegetation on
the plots was felled and drug off-site. Then plots were
treated with the herbicide imazapyr to reduce variability
from interspecific competition. To minimize edge effects,
measurements were restricted to an inner 20x20-m plot.

Each tree in each plot was numbered and measured for
outside bark d.b.h.,  total height, and height to the base of
the live crown before the 1993, 1994, 1995, and 1996
growing seasons. Allometric equations were derived from
an onsite  destructive harvest in November 1994, when leaf
area consisted primarily of foliage produced in the previous
growing season, and served to give estimates of biomass
for each of the aboveground tissue types and leaf area.
Annua l  s tand- leve l ,  aboveground produc t ion  fo r  each t i ssue
type in each plot was calculated as the difference in
b iomass  (as  de te rmined  f rom the  a l lomet r i c  equa t ions)
between two measurement periods. Trees that died
be tween  measurement  pe r iods  were  assumed to  con t r ibu te
no growth to stand-level production.

Nitrogen concentrations of each of the aboveground tissue
types were taken from values cited by Switzer and others
(1968) in which the foliar, branch, and stem nitrogen
concentrations were 1.08 percent, 0.23 percent, and 0.06
percent nitrogen, respectively. Foliar retranslocated nitrogen
that was assumed to be available for a single growing
season was estimated to be 58 percent of the total nitrogen
located in foliage that senesced the previous fall (Birk and
Vitousek 1986). Stand-level nitrogen demand of the soil for
a growing season in each plot was then calculated as the
sum of the production of each tissue type for that growing
season, multiplied by the nitrogen concentration of each
tissue type, and then subtracting the estimate of nitrogen
re t rans locat ion .

Belowground root production was estimated by two
minirhizotron censuses taken in the summer of 1996. For
each of 10, clear PVC tubes placed randomly within each
plot, fine roots that intersected one of three transects were
counted and summed to give a total number of fine-root
intersections per tube.

Since differences in stand age and fertility affect relations
between production and leaf area (Gholz and others 1986,
Waring and Schlesinger 1985)  analysis was limited to plots
of identical age and similar site quality (Smith and Long
1989). However, data were blocked into two sites as a
result of a fertility gradient across the study area. Both sites
1 and 2 included a 1.22x1.22-m spacing plot and a
2.44x2.44-m spacing plot, but unpublished data show site 1
to have a greater nitrogen availability.

RESULTS AND DISCUSSION
Results, using a 3 year mean of the 1993, 1994, and 1995
growing seasons, showed that as SDI increased, total
aboveground production increased (fig. 1). As predicted, on
both sites, as SDI increased, foliage and stemwood
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Figure l-Total stand level aboveground biomass
production as a function of stand density index.

production increased while branchwood production
decreased. It was also found that the more fertile site 1
plots produced more aboveground biomass in all tissue
types than the less-fertile site 2 plots.

Figure 2-Stand level aboveground nitrogen demands a,s  a
function of stand density index.

As SDI increased, soil nitrogen demands also increased
(fig. 2),  primarily as a result of increased production of
nitrogen-rich foliage on the denser plots. Indeed, over 85
percent of the total annual nitrogen demand in each plot
was attributed to foliage. Again, the more fertile site 1 plots
had a greater aboveground nitrogen demand.

Belowground fine-root intersections increased as SDI and
aboveground nitrogen demands increased (fig. 3),  giving
support for a functional balance. Also, a greater number of
root intersections per unit of nitrogen demand were
recorded on the less-fertile site 2, suggesting that on these
plots, a greater percentage of TNPP was allocated to fine-
root production to meet aboveground demands.

Although total annual stemwood  production and stemwood
production per unit of leaf area increased with increasing
SDI, as has been shown in previous studies (Long and
Smith 1990, Smith and Long 1989), stemwood  production
per unit leaf biomass decreased with increasing SDI (fig. 4).
This is assumed to be the result of a greater percentage of
TNPP being partitioned to fine-root production in the denser
stands. Santantonio (1989) has shown that a strong,
negative relationship exists between fine-root and stemwood
production in closed canopy stands. Although there is a
greater amount of foliage biomass produced in the denser
plots, it appears that foliage there is less efficient at
producing photosynthate, perhaps as a result of an increase
in self-shading caused by increased foliar density, a
characteristic of denser stands (Dean and Baldwin 1996a).

Figure 3-Mean number of root intersections counted as a
function of aboveground nitrogen demand.
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Figure 4-Mean stemwood  produced per unit of leaf
biomass as a function of stand density index.

One means o f  rea l loca t ing  carbon f rom unharves tab le
be lowground s inks  to  harves tab le  aboveground s temwood,
then, may be by increasing foliar efficiency through various
silvicultural means. For example, foliage does not
contribute to stemwood  production until maintenance
resp i ra t ion  requ i rements  o f  suppor t ing  branches are  met
(Ford 1975). Foliage in the shaded lower crown, then,
would contribute little to production as a result of lowered
photosyn the t ic  ra tes  and inc reased branch ma in tenance,
yet would retain a carbon cost associated with production
of fine-root biomass to meet foliar nutrient requirements. By
pruning lower branches, a forester may lose little in
production, but gain significant amounts of carbon that
would have been allocated to fine-root production that
supported the low efficiency foliage, thereby gaining in net
carbon that could be used for stemwood  production.

CONCLUSIONS
Results showed that as stand density increases, changes
in  aboveground carbon a l locat ion  increases both  n i t rogen
demand and be lowground produc t iv i t y  to  meet  tha t
demand.  A lso ,  more be lowground product ion  is  needed on
less fertile sites to meet similar demands, decreasing
photosynthate that could potentially be used in
aboveground p roduc t ion .  There fo re ,  more  pho tosyn tha te
may be available to aboveground sinks as sites become
more fertile (through fertilization) or as foliage become
more efficient.

The lack of plots in this preliminary study limited statistical
analysis, but did provide insightful data. Therefore, a more
conclusive study is in progress that will have greater
statistical power and include analysis with additional stand
dens i t i es  and  spec ies .

The authors would like to thank Jess France,  Patty
Faulkner, Kevin Steiley, Steven Pecot,  and Mary Bowen  for
their assistance in field work.
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