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ABSTRACT. Moran's I statistic measures the spatial autocorrelation in a random variable measured at 
discrete locations in space. Permutation procedures test the null hypothesis that the 
observed Moran's I value is no greater than that expected by chance. The spatial auto- 
correlation of gross basal area increment is analyzed for undisturbed, naturally regener- 
ated stands in three Georgia forest types: 1oblolly, shortleaf, and slash pine. The analysis 
uses 0.4-ha permanent sample plots from a forest inventory that included two remea- 
surement intervals (1961-1972 and 1972-1982). We present a new statistic for explor- 
atory spatial analyses, and this statistic revealed an anomalous cluster of unusually slow- 
growing shortleaf pine plots occurred in the mountains 100 km north of Atlanta. A 
regression model was used to predict gross basal area increment as a function of variables 
that describe local stand conditions, and no significant spatial autocorrelations existed in 
the regression residuals. This result suggests that the anomalous cluster of slow-growing 
plots can be explained by the spatial distribution of local stand conditions rather than 
spatial patterns of other possible causes such as air pollution, although alternative inter- 
pretations are possible. FOR. SCI. 40(2):314-328. 

B ECHTOLD ET AL. (1991) REPORTED DECREASES IN ADJUSTED MEAN GROWTH of naturally regenerated undisturbed pine plots in the State of Georgia 
(150,000 km 2) using forest inventory plots. Between the growth intervals 

1961-1972 and 1972-1982, the decreases in pine basal area increment per unit 
area were 19% for 1oblolly pine and 28% for slash and shortleaf pine after adjust- 
ments for local stand conditions. They were unable to resolve the role of exog- 
enous factors, such as climate or pollution, as possible causes of reduced growth. 
They suggest that "several factors are contributing to the reductions, probably 
varying in importance with species, location, and time." However, Hyink (1991) 
suspects that growth rates computed for 1961-1972 are unusually high, and the 
observed growth between 1972-1982 represents a return to normal conditions. 
Lucier and Barnard (1992) conclude that the reduction in growth of certain classes 
of natural pine stands is "an expected consequence of historical land use patterns, 
increases in stand age and competition, and other non-pollutant factors," and an 
abnormal "regional decline of southern pines has not been demonstrated." We 
conjectured that spatial analyses might reveal nonrandom patterns in the distri- 
bution of growth across Georgia that would be consistent or inconsistent with one 
or more of the many competing hypotheses. 
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Geographers divide spatial analyses into three categories (Legendre and Fortin 
1989). Point pattern analysis (e.g., Penttinen et al. 1992) considers the distribu- 
tion of discontinuous events over space, such as occurrence of individual trees in 
a stand or disturbances in a landscape; line pattern analysis considers the network 
of connections among points; and surface pattern analysis considers spatially 
continuous phenomena, where measurements are taken only at certain sites 
within the study area. Point and line pattern analyses use comprehensive maps of 
a study area, whereas surface pattern analysis is better suited for a sample of sites 
or plots. 

Surface pattern analyses of lattices, such as sample plots, frequently use tests 
for spatial autocorrehtion (Anselin 1992). Spatial autocorrelation exists when a 
variable has a regular pattern over space, such as clusters (Odland 1988). If there 
is positive spatial autocorrelation, then plots with large values tend to be sur- 
rounded by other plots with large values, and small values are surrounded by 
other small values (Reed and Burkhart 1985). 

Analysis of spatial autocorrelation is a common technique in statistical geogra- 
phy, with examples given in standard textbooks (e.g., Ebdon 1985, Griffith and 
Amrhein 1991) and specialized texts (e.g., Griffith 1987, Odland 1988). Upton and 
Fingleton (1985) and the seminal work of Cliff and Ord (1973, 1981) present the 
mathematical statistics of inference with Moran's I. Examples of spatial autocor- 
relation analyses in ecology and forestry include Matdrn (1960), Sokal and Oden 
(1978), Greig-Smith (1983), Taylor (1984), Reed and Burkhart (1985), Legendre 
and Fortin (1989), and Rossi et al. (1992). Matdrn (1993) reviews applications of 
spatial statistics in forestry, which include: Bitterlich's angle-count sampling, es- 
timating precision in systematic sampling, competition indices for growth and yield 
models, simulating structure of forest stands, and stereology in photo- 
interpretation. 

Spatial autocorrelation is quantified with a scalar statistic that is a function of the 
value observed at each plot and the values at neighboring plots. There are several 
such functions, which resemble a correlation, covariance, or difference between 
values at proximate locations (Anselin 1992). Numerical weights quantify the 
proximity of all pairs of observed plots. The weight might equal one if a pair of 
plots are within a specified lag spacing (e.g., 1-18 krn, or 36-54 krn) and zero 
otherwise; this is the weighting scheme used in variograms for k_riging (Isaaks and 
Srivastava 1989, p. 146). Or the weights might be a monotonically decreasing 
function of distance (d) between pairs of plots (e.g., d -•, d -2, or e-d). The null 
hypothesis is the absence of spatial autocorrelation, where each observation oc- 
curs with equal probability at all sample sites. The existence of spatial autocor- 
relation is accepted if the observed test statistic is extreme compared to the 
expectation under the null hypothesis. Cliff and Ord (1973, 1981) and Czaplewski 
and Reich (1993) derive permutation procedures to test such hypotheses. 

Legendre and Fortin (1989) list several methods to quantify spatial autocorre- 
lation. The two most common measures are the Moran's I and Geary's c statis- 
tics. The correlogram is a special case of Moran's I that uses 0-1 weights for a 
range of mutually exclusive lag spacings. With similar weights, the variogram 
equals Geary's c multiplied by a constant (i.e., the variance of the observed 
response variable). The variogram is used in k_riging to model spatial covariance 
and estimate a continuous spatial response surface. Moran's I provides more 
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powerful tests of hypothesis than Geary's c (Cliff and Ord 1981, p. 15), and 
Moran's I is more sensitive to extreme values (Legendre and Fortin 1989). 
Spectral analysis is an alternative to Moran's I or Geary's c; however, spectral 
analysis requires a large sample size and is insensitive to patterns that are not 
combinations of repeatable patterns (Legendre and Fortin 1989). 

Our first objective is to test the null hypothesis that there is no spatial auto- 
correlation in the data that Bechtold et al. (1991) used to detect reduced growth 
of undisturbed naturally regenerated southern pines. Our second objective is to 
demonstrate that spatial analyses can contribute to the formulation or tests of 
hypotheses regarding cause-effect relationships. Our third objective is to propose 
a new exploratory statistic that helps reveal more details regarding nonrandom 
spatial patterns, such as spatial clusters. 

DATA 

Our study uses data from Bechtold et al. (1991), which were gathered by the 
Forest Inventory and Analysis (FIA) Work Unit of the Southeastern Forest Ex- 
periment Station, USDA Forest Service. Analyses are conducted for lobloHy 
(Pinus taeda L.) and shortleaf (P. echinata Mill.) pine stands in the Piedmont and 
Mountain physiographic regions of Georgia, and slash pine (P. elliottii Engelm. 
var. elliotti•) stands in the Coastal Plain region. The data were screened to isolate 
similar sets of timber stands from each of the two remeasurement intervals; all 
plots were naturally regenerated and undisturbed, meaning there was no evidence 
of planting or artificial seeding, or visual evidence of serious treatment or distur- 
bance (such as timber cutting or pathogen, disease, or fire damage) within the 
measurement period for which the plot qualified (Bechtold et al. 1991). 

The approximate locations of the sample plots are given in Figure 1. The FIA 
sampling frame is based on a systematic sample from a regular grid; however, the 
screening criteria resulted in a small subsample of FIA plots that gives the ap- 
pearance of a random sample in Figure 1. 

Table 1 gives the number of FIA sample plots and the moments of the growth 
rate distributions. The number of selected plots is smaller in the 1972-1982 
interval than the 1961-1972 interval because disturbance rates were higher be- 
tween 1972 and 1982, and the conversion of natural lobloHy stands to planted 
stands was more prevalent. Also, a change in FIA plot configuration between 1961 
and 1972 produced a larger plot that had less chance of being in a homogeneous 
condition. 

The logarithmic transformation of gross pine basal area increment produced 
approximately symmetric distributions (Figure 1), which increased the power to 
detect spatial autocorrelation among slow-growing plots. However, the logarith- 
mic transformation is not normally distributed in half the cases (Table 1); there- 
fore, we used the moments of Moran's I that assume random permutations rather 
than normal distribution of observations (Cliff and Ord 1981, p. 42-46, Reed and 
Burkhart 1985, p. 577). Growth on undisturbed plots during the two remeasure- 
ment intervals (1961-1972 and 1972-1982) was analyzed separately because most 
plots occurred in only one of these two 10-yr time intervals; it was unlikely that 
a plot remained undisturbed over the entire 21-yr interval (1961-1982). 
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TABLE 1. 

Distribution of gross basal area increment. • 

Logarithm of 
Gross increment s increment • 

Number Probability 
Forest Time of Standard Standard of normal 

type interval plots Mean deviation Mean deviation distribution 4 

Loblolly 1961-1972 235 4.47 2.72 1.292 0.694 0.0002 
pine 1972-1982 97 3.21 1.65 1.015 0.601 0.0002 

Shortleaf 1961-1972 127 3.44 2.08 1.045 0.646 0.1628 

pine 1972-1982 40 2.72 1.82 0.768 0.742 0.2015 
Slash 1961-1972 84 3.74 2.75 1.089 0.697 0.3899 

pine 1972-1982 76 3.02 2.09 0.832 0.690 0.0068 

• See Bechtold et al. (1991, p. 708) for more detailed description. 
2 Units are ft2/ac/yr basal area increment. 
3 Units are logarithm of ft•/ac/yr basal area increment. See histograms in Figure I for more details 

on distribution. 
4 D'Agostino et al. (1990). 

METHODS 

Moran's I is analogous to a weighted correlation coefficient between all possible 
pairs of the n observations (zi and zj, i • j). This statistic was first proposed by 
Moran (1950) as: 

n n 

i=1 j=l 

I - (1) 
W Var(z) ' 

where wii is a weight that quantifies the hypothesized spatial association or prox- 
imity between observations (z i and z•.) at sites i and j (e.g., inverse distance 
between sites), and wii = 0; W is the sum of all n 2 values of wo; Var(z) is variance 
of the n observations (zi); and observations are transformed to center on zero 
(i.e., sum of all zi's equals zero). Moran's ! is a dimensionless statistic that usually 
ranges from -1 to 1, although in rare cases it can exceed these extremes 
depending on the weights (wo.). 

Under the null hypothesis, we may consider the set of all n! random permu- 
tations, in which each observation is equally likely at any observation site. No 
assumptions are made regarding the sample distribution that generated the ob- 
servations (z). Under the null hypothesis, Cliff and Ord (1981, p. 45-51) derive 
the exact mean and variance of Moran's I for the n! permutations using compu- 
tations of order n 2, and demonstrate that the permutation distribution of Moran's 
! is approximately normal for sample sizes n • 50 (see also Sen 1976). Therefore, 
the normal distribution and the exact permutation mean and variance are sufficient 
to estimate the probability of observing the realized value of Moran's ! assuming 
the null hypothesis is true. Reed and Burkhart (1985) provide more specific 
details. 
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Alternative weights wij are used to test different hypotheses regarding the 
degree of spatial association (Cliff and Ord 1981, p. 17). An example is a conta- 
gious disease, where z i might be the disease prevalence (centered on zero) in 
county i, and weight wii equals I if counties i and j are adjacent and 0 otherwise. 
Or the weights can be more complex, such as: the wavelet transformations 
described by Bradshaw and Spies (1992) for image pixels; and the tree compe- 
tition index of Hegyi (1974), where wij = (D/Di)/d O, D• is the diameter at breast 
height of tree j, and d O. is the distance between trees i and j. 

Since litfie is known about the spatial growth patterns of natural undisturbed 
southern pines across Georgia, our null hypothesis is that there is no spatial 
autocorrelation for a broad range of spatial scales. We simply formulated this 
hypothesis by choosing nine categories of lag spacings, which we defined as 1-18 
kin, 18-36 km ..... and 144-162 kin. The weights (wo.) equal 1 if sites i and j 
are within the same category of lag spacings, and 0 otherwise. Since there is a 
separate test of hypothesis for each of the nine lag categories, the null hypothesis 
was rejected only when the p-value for an individual hypothesis was less than 
0.05/9 = 0.0055 according to the Bonferroni method (Legendre and Fortin 1989, 
p. 112). This test was independently repeated six times, once for each of the 
three forest types (1oblolly, shortleaf, and slash pine) and two growth intervals 
(1961-1972 and 1972-1982). 

We computed the contribution of each sample plot to the overall Moran's I 
statistic to study the geographic distribution of spatial autocorrelation. We coined 
the term "partial Moran's I statistic," for this is a new exploratory analysis tool, 
the mathematics of which are presented in the Appendix. The sum of the n partial 
Moran's I statistics equals the overall scalar Moran's I statistic. Partial Moran's 
I statistics are related to the h-scatterplots and local relative ratiograms which 
Isaaks and Srivastava (1989, p. 154-166) use to explore spatial continuity. The 
partial Moran's I can help identify local areas of unusually high spatial autocorre- 
lation, which Haslett et al. (1991) describe as a spatial anomaly. This might 
mitigate one of the troubling assumptions in classical analyses of spatial autocor- 
relation, namely that a single dominant spatial structure exists over the entire 
study area (Legendre and Fortin 1989, p. 112). 

Outliers can affect spatial autocorrelation. All permutation tests were checked 
for individual outliers by deleting one observation at a time, and repeating the test 
of hypothesis (Cliff and Ord 1981, Christensen et al. 1992). H-scatterplots (Isaaks 
and Srivastava 1989) were used to informally inspect for multiple outliers. 

Growth of natural pine plots is affected by local stand conditions, such as site 
index, stand age, stem density, and hardwood competition (Zahner et al. 1989, 
Bechtold et al. 1991, Ruark et al. 1991, VanDeusen 1992). An underlaying spatial 
pattern in local stand conditions across Georgia could cause spatial autocorrelation 
in forest growth. To test this hypothesis, we studied the spatial autocorrelation in 
residuals from the regression model of Bechtold et al. (1991). This model predicts 
logarithm of gross pine basal area increment as a linear function of several de- 
scriptors of local stand conditions: site index; logarithm of stand age; logarithm of 
stem density; ratio of pine basal area to total basal area, which is used as an index 
of hardwood competition; and logarithm of basal area mortality per unit area. Like 
Bechtold et al. (1991), we used separate regression models for each of the three 
forest types; however, we fit separate regression models to each time interval 
(1961-1972 and 1972-1982) rather than using an indicator variable for time in- 
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terval in a single model. Regression coeffidents dosely resembled those of Bech- 
told et al. (1991, p. 710). Stem density was the dominant predictor of gross basal 
area growth; growth increased with density. Site index and stand age were the 
next most important predictors of growth; growth was positively correlated with 
site index and negatively correlated with stand age. Mortality was the least 
important predictor. However, the correlation between mortality and stem den- 
sity was consistently near 0.50, which was the highest among all predictor vari- 
ables. 

Regression residuals are not mutually independent, even in the absence of 
spatial autocorrelation. Cliff and Ord (1981, p. 200-203) derive the expected mean 
and variance of Moran's I that considers the autocorrelation among regression 
residuals in the absence of any spatial autocorrelation. We used their methods to 
estimate the probability of obtaining the realized Moran's I statistic under the null 
hypothesis of no spatial autocorrelation among the regression residuals. 

RESULTS 

We rejected the null hypothesis of random spatial autocorrelation in the logarithm 
of pine basal area increment in two of the six analyses (Figure 2). The shortleaf 
pine forest type exhibited strong positive spatial autocorrelation in the 0-18 km 
and 36-54 km lag spacings during 1972-1982. There was weak negative spatial 
autocorrelation for the slash pine forest type in the 72-90 km lag spacing during 
1961-1972. 

Figure 3 depicts a map of the partial Moran's I statistics [Equation (A4)] for 
shortleaf pine growth between 1972-1982 in the 0-54 km lag spacing, which 
includes the greatest overall spatial autocorrelation in Figure 2. The magnitude of 
spatial autocorrelation is not uniform across Georgia. Rather, there is a local 
spatial anomaly in the mountains approximately 100 km north of the city of Atlanta 
(Figure 3), where there is a cluster of plots with large values of the partial Moran's 
I statistic. These same plots are the slowest growing of the 40 shortleaf pine 
plots. This cluster is unlikely under the null hypothesis used in the permutation 
test. 

Growth of slash pine sample plots between 1961-1972 exhibited a weak but 
significant negative spatial autocorrelation in the 72-90 km lag category (Figure 
2). A map of the partial Moran's I statistics (similar to Figure 3) indicated a diffuse 
spatial pattern for slash pine that has no obvious interpretation. 

We tested for random spatial autocorrelation in the residual difference between 
the expected and observed growth on each sample plot using the regression 
model of Bechtold et al. (1991), which predicts growth as a function of local stand 
conditions. The null hypothesis of no spatial autocorrelation was accepted for all 
three forest types, two time intervals, and nine categories of lag spacing. The 
spatial distribution of different local stand conditions across Georgia might have 
caused the spatial autocorrelation in growth. 

All tests with Moran's I were checked for possible outliers that might affect 
each test of hypothesis. There are no obvious outliers apparent in the h-scatter- 
plots (Isaaks and Srivastava 1989), and there were no cases in which the deletion 
of a single observation changed the results of the Moran's I tests. 

Cliff and Ord (1981, p. 53) found that the permutation distribution of Moran's 
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• ß • • overall spatial autocorrelation 

• AA •, • large positive 
Atlanta • • ß small positive 

• •ug• ß small negative 
•a A • • large negative 

• • A Ma•n• 

FIGURE 3. Partial Moran's I is a tool to explore the continuity of spatial autocorrehtion across 
Georgia. The location of each selected shortleaf pine sample plot measured in both 1972 and 1982 
is denoted by a triangle, corresponding to Figure 1E. The size of the triangle is proportional to the 
contribution of that plot to the overall Moran's I statistic for the 0-54 km lag spacing [Equation 
(A4)]. Shaded symbols represent negative partial Moran's I statistics. A localized cluster of 6 
slow-growing slash pine sample plots (Figure 1E), located in the mountains 100 km north of Atlanta, 
provides most of the evidence for spatial autocorrehtion in Figure 2; this is likely a nonrandom 
spatial anomaly. We suggest the hypothesis that spatial patterns in local stand conditions caused this 
unusual cluster of slow-growing plots. 

I is approximately normal under the null hypothesis. We conducted Monte Carlo 
simulations of each permutation test (Upton and Fingleton 1985, p. 339-340), 
with 200,000 iterations in each simulation. There was little skewness in any of the 
simulated permutation distributions, including shortleaf pine during 1972-1982, 
for which only 40 sample plots were available (Table 1). In all cases, the p-values 
estimated from the Monte Carlo simulations agreed closely with those computed 
using the normal distribution with the exact mean and variance for the permutation 
test. 

DISCUSSION 

Analysis of spatial autocorrelation can test hypotheses regarding cause and effect 
relationships. We use the hypothesis that atmospheric pollution has caused a 
growth reduction as an example. Luder and Barnard (1992) identify ozone expo- 
sure as a justifiable concern regarding the health and productivity of southern pine 
forests. Pinkerton and Lefohn (1987) and Lefohn and Pinkerton (1988) reported 
that forested areas in the southeastern portion of the United States had relatively 
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high ozone exposures during 1978-1985. Based on a small set of rural monitoring 
sites in the southeast, they found lower concentrations in the coastal plains and 
higher concentrations near larger metropolitan areas and in the Piedmont/ 
Mountain/Ridge-Valley physiographic regions. 

Consider the hypothesis that growth rates should be lower near urban areas 
and at higher elevations because of higher exposure to atmospheric pollutants. We 
found an anomalous cluster of slow-growing shortleaf pine sample plots in the 
mountainous region of north Georgia, which is 100 km from the major metropol- 
itan area of Atlanta, and there is only a small probability that the spatial autocor- 
relation is a chance event. This result is consistent with the pollutant hypothesis. 
However, the loblolly pine plots do not exhibit a similar spatial autocorrelation in 
the same geographic region (Figures 1 and 3), and Elsik et al. (1992) found that 
the effects of ozone were greater for 1oblolly pine seedlings than shortleaf pine. 
Also, there was no anomalous cluster of unexpected slow-growing shortleaf pine 
plots after adjustment for local stand conditions with the regression model. There- 
fore, our overall results are inconsistent with the atmospheric pollutant hypoth- 
esis, although alternative interpretations are given in the next paragraph. Our 
results are based on observational data alone, which are insufficient to confidently 
establish cause and effect relationships (Schreuder and Thomas 1992). 

Lucier and Barnard (1992) state that abnormal growth reductions, tree mor- 
tality, poor site conditions, and insect and pathogen disturbances are associated 
with abnormal forest decline, although these same symptoms might also be 
caused by a variety of other natural and man-made factors. In our analysis, plots 
manifesting pollutant stress might have been eliminated by the screening criteria 
that were used to select plots, such as visual evidence of serious pathogen or 
disease disturbance. Or stress caused by atmospheric pollution might affect the 
spatial pattern of a predictor variable in the regression model, such as mortality, 
site index, or hardwood competition. Pollutant stress might be uniformly distrib- 
uted across Georgia, without any resulting spatial pattern in forest decline; how- 
ever, this hypothesis is difficult to test given the sparse spatial distribution of rural 
monitoring sites for airborne pollutants. The spatial distribution of 1oblolly pine 
plots differs somewhat from the shortleaf pine plots (Figures 1D and 1E), which 
might explain the differences in spatial autocorrelation and patterns between the 
two types of plots. Also, the correction in Moran's I for the autocorrelation among 
regression residuals might decrease the power to reject the null hypothesis when 
it is false. Birdsey and Schreuder (1992) and Lucier and Barnard (1992) note that 
some trends in inventory data can be artifacts caused by changes in inventory and 
sampling design, and Zeide (1992) feels that this is the primary reason for reduc- 
tions in growth estimates from FIA data. 

Validity of statistical tests of hypothesis, such as the t-test and analysis of 
variance, require independently distributed errors. Residual errors from regres- 
sion models must be independent before hypotheses regarding regression coef- 
ficients can be validly tested (e.g., Swindel 1991). We found no evidence for 
nonrandom spatial autocorrelation in residuals from the models that Bechtold et al. 
(1991) used in their analysis of covariance. However, the assumption of indepen- 
dence for certain t-tests would be suspect because of the spatial autocorrelation 
among plots (Figure 2). 

An analysis of spatial autocorrelation can contribute to geostatistical modeling of 
a spatial response surface. If we accept the hypothesis that the spatial autocor- 
relation is no greater than that expected by chance, then the spatial model for the 
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response should be a horizontal plane. Figure 3 suggests a random spatial distri- 
bution of growth except for the cluster of slow-growing sample plots north of 
Atlanta. Ross et al. (1992) suggest that both Moran's I and Geary's c (Figure 2) 
be used to help define the scale in models of a spatial surface; however, we found 
that Moran's I yields more interpretable trends and more powerful tests. Distri- 
bution of the sample data has more affect on the variance of Geary's c than Moran's 
I (Cliff and Ord 1981, p. 15), which explains the higher power of the latter statistic. 
Our results confirm the observation by Legendre and Fortin (1989) that Moran's I is 
more sensitive to extreme values, such as plots with unusually slow growth. 

An analysis of spatial autocorrelation is possible with new FIA data for Georgia, 
which have been collected since 1982 (Sheffield and Johnson 1993). However, 
Schreuder and Thomas (1992) recommend that testable hypotheses be specified 
before any analysis of cause and effect relationships. We chose not to analyze the 
most recent data until hypotheses regarding the spatial patterns of possible causal 
agents are more precisely formulated. Between 1982-1988, average net growth 
of FIA pine plots continued to decrease in public and nonindustrial private own- 
erships (Sheffield and Johnson 1993, p. 11); however, growth increased on forest 
industry lands, which is consistent with the results of Cleveland et al. (1992) for 
the mid-southern United States. 

There are numerous hypotheses for the causes of reduced forest growth, 
including Sheffield et al. (1985), Sheffield and Cost (1985), Hyink and Zedaker 
(1987), Prinz (1987), Lucier (1988), Zahner et al. (1989), Warren (1990), Bech- 
told et al. (1991), Ruark et al. (1991), Birdsey and Schreuder (1992), Lucier and 
Barnard (1992), VanDeusen (1992), and Zeide (1992). The effects of certain 
causal agents might be more severe in geographic areas that are under chronic 
ambient stress, such as high elevations, ecotones, or boundaries between broad- 
scale ecoregions (Gosz 1993, p. 372). Superimposed on these causes is weather, 
which can be a triggering or synchronizing factor in the short-term manifestation 
of forest damage (Prinz 1987). And there is regional variability in soil nutrients 
that affects the spatial expression of changes in forest ecosystems. Moisture 
stress and numerous abiotic and biotic factors might alter the response of trees to 
pollutants, such as ozone (Lefohn and Pinkerton 1988). 

These confounded factors affect the spatial distribution of regional changes in 
forest condition. Cumulative effects of multiple causes that have different spatial 
patterns can produce a response that has a complex spatial pattern, or no apparent 
spatial pattern relative to the overall variability. Spatial analyses offer the potential 
to provide evidence that is consistent or inconsistent with one or several hypoth- 
eses. However, the results of a spatial analysis might not often permit definitive 
conclusions regarding specific hypotheses. It is more likely that spatial analyses 
will provide weak conclusions that contribute to the weight of evidence for or 
against particular hypotheses. Considerable evidence from observational studies, 
controlled experiments, and/or process theory are required to confidently infer 
cause and effect relationships (Schreuder and Thomas 1992). 
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APPENDIX 

This section provides the computational formulae for a spatial analysis with Mo- 
ran's I. Matrix notation facilitates implementation with modem matrix languages 
for personal computers. Czaplewski and Reich (1993) give derivations. Equations 
(1) and (A1) give the Moran's I statistic: 

I = l'[(zz')©W]l/[W Vat(z)] = z'W z/[W Vat(z)], (A1) 

where 1 is a n x 1 vector in which all elements equal 1; z is a n x 1 vector of 
the n observations, in which the ith element equals zo transformed so that the 
vector sum is zero (i.e., the mean of z for the n observations is subtracted from 
each zi); z' is the matrix transpose of z; W is the n x n matrix in which the ijth 
element equals w o. [see Equation (1)]; matrix operator © denotes element by 
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element multiplication (i.e., the ijth element of A©B is equals aobo); W = l'Wl; 
and Vat(z) = (z'z)/(,' - 1). 

Cliff and Ord (1973, p. 32-33, 1981, p. 45-46) derive the exact expected mean, 
El/], and variance, Var(D, of the distribution of Moran's I under the null hypoth- 
esis over the ,'! permutations, conditional upon the ,' observations in space: 

El8 = 1/,, (A2) 

(,' - 1) (,' - 2) (,' - 3) W 2 

where m 4 = [(z©z)'(z©z)l/n, Sx = I'(W©W + W©W')I, and S2 = I'(W'W 
+ 2WW + WW')I (Czaplewski and Reich 1993). Reed and Burkhart (1985) give 
Equations (A1)-(A3), although without the formulations in matrix algebra. 

If all elements in the ith row and column of (zz')©W equal zero, then the ith 
observation is deleted, all matrix dimensions are reduced by 1, and n - 1 is used 
instead of n in Equations (A1)-(A3). This occurs when weights (w0.) are 0-1 
values that indicate observations i and j are within the same spatial lag spacing 
(e.g., 0-18 km), but none of the observations are within this range for the ith 
observation. 

Moran's I can be disaggregated into n values, which we term "partial Moran's 
I statistics." We propose this set of statistics as useful tools in exploratory 
analyses of spatial autocorrelation. These statistics are used in Figure 3 to identify 
local areas that have high spatial autocorrelation (i.e., spatial anomalies). Let i be 
the n x 1 vector that contains this set of statistics, where the jth element 
represents the contribution of the jth observation to the overall Moran's I sta- 
tistic: 

i = {[(zz')©W]l + [(zz')©W]'l}/[2W Vat(z)]. (A4) 

From Equations (A1) and (A4), it can be seen that the sum of the elements in 
vector i equals the overall scalar Moran's I. The ,' x ,' matrix (zz')©W in 
Equation (A4) is transposed and summed a second time because wii does not 
necessarily equal %. 

Spatial weights can be asymmetric, where %. • %i (e.g., the index of between- 
tree competition by Hegyi 1974). However, the weights are usually symmetric, 
where wii = wii and W = W'. In this special case, S• = 2 l'(W©W)l and Sz 
= 4 I'(WW)I in Equation (A3), and Equation (A4) simplifies to i = [(zz')©W]l/ 
[W Vat(z)]. 

The weight wij is often a fxmction of EuclidJan distance between sites. The ,' x 
,' matrix of EuclidJan distances (WE) between all possible pairs of sample plots 
was computed using the ,' x ,' matrix Csw, in which all elements of the ith row 
equal the east-west coordinate in kilometers of the site at which the ith obser- 
vation was made, and the n x n matrix CNS, in which all elements of the ith row 
equal the north-south coordinate of the ith observation: 

WE = X/[(CEw - C'Ew)©(CEw -- C'Ew) + (C•s - C'•s)©(C•s - C'•s)]. 
(A5) 
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The matrix operator X/in Equation (A5) denotes the element by element square 
root (i.e., if aij is the ijth element of the n x n matrix A, then the ijth element of 
X/A equals the square root of aij). Using the Pythagorean theorem, the ijth 
element of WE is the Euclidian distance between sites i and j. 
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