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               Introduction 

 Quantifying and reporting the extent of forest 
resources is one of the primary objectives of for-
est resource assessments across geopolitical scales 
(e.g. local, regional, national and international). 
While there has been a substantial increase in 
the amount of environmental data, estimates for 
national and international assessments are often 
compiled from surveys conducted at fi ner geo-
political scales; therefore, defi nitional and meth-
odological consistency are important ( Mather, 
2005 ). Inconsistency can result in poor baselines 
and unreliable trend information ( Grainger, 
2008 ). For example, anecdotal evidence suggests 

that the global forestland base has been shrink-
ing. However, according to United Nations Food 
and Agriculture Organization (FAO) estimates, 
the forestland base increased from 3442 billion 
ha in 1990 to 3869 billion ha in 2000 ( FAO, 
1995 ,  2001 ). This point is further illustrated by 
forest area estimates for Australia which were 40 
million ha and 155 million ha in 1990 and 2000, 
respectively ( Mather, 2005 ). The large increase of 
forest area in Australia was attributed to a defi ni-
tional change used in the 2000 assessment. After 
accounting for changed defi nitions, improved 
data and revised national classifi cations, the 1990 
worldwide forest area estimate was revised from 
3442 billion ha to 3963 billion ha. Consistency 
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among estimates or calibration of estimates is 
critical for creating a time series of comparable 
forestland area estimates at the national and in-
ternational geopolitical scales. 

 As required by the Forest and Rangeland Re-
newable Resources Planning Act of 1974, the 
US produces an assessment of its renewable re-
sources on a 10-year cycle. One aspect of the 
Resource Planning Act assessment is estimating 
the amount of forestland within the US. These 
data serve as the basis for upward reporting for 
international assessments. Defi nitional and meth-
odological changes or inconsistencies infl uence 
the compatibility of estimates over time and are 
a major concern to the US Forest Service Forest 
Inventory and Analysis (FIA) programme. While 
the US has been conducting forest surveys in 
some states since 1930 and all states have been 
inventoried, certain marginal or diffi cult to access 
areas were excluded. For example, the western 

part of Texas and the interior of Alaska have not 
been completely inventoried with  in situ  observa-
tions. However, the extent of west Texas and in-
terior Alaska forests has been estimated based on 
remotely sensed data; a deviation in observation 
scale compared with fi eld measurements. 

 West Texas is a 60.5 million ha area that has 
undergone signifi cant vegetative changes since the 
1870s ( Van Auken, 2000 ) but, as noted above, has 
not been completely inventoried using  in situ  mea-
surements. The major ecoregion provinces in this 
area are the Chihuahuan Semi-Desert Province and 
the Southwest Plateau and Plains Dry Steppe and 
Shrub province ( Bailey, 1995 ) ( Figure 1 ). Based on 
the 1953 forest statistics of the US ( USDA, 1958 ), 
there were 10.5 million ha of forestland in west 
Texas. Based on the 1997 forest statistics, there 
were  ~ 2.8 million ha of forestland in west Texas. 
The 1953 estimate was based on interpretation 
of aerial photographs ( Smith  et al. , 2003 ) and 

  

 Figure 1.      Delineation of west Texas and ecoregion provinces   .    
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the 1997 estimate was partially based on classi-
fi ed Advanced Very High Resolution Radiom-
eter (AVHRR) satellite imagery ( Zhu and Evans, 
1994 ). Each of these estimates was made from a 
different scale of observation. Therefore, they are 
not directly comparable and do not provide an 
adequate baseline of the amount of forestland in 
west Texas. The goal of this research is to pro-
vide an estimate of forestland area in west Texas 
based on FIA permanent fi eld plot network that is 
in compliance with the Federal Geographic Data 
Committee (FGDC) Subcommittee on Vegetation 
Classifi cation standards and the FAO forestland 
defi nition.     

 The FAO defi nition of forestland is  ‘ Land span-
ning more than 0.5 hectares with trees higher than 
5 meters and a canopy cover of more than 10 per 
cent, or trees able to reach these thresholds  in situ . 
It does not include land that is predominantly 
under agricultural or urban land use ’ . The FAO 
defi nition of forest coincides with the FGDC defi -
nition. The defi nition of forestland used by FIA in 
woodland areas is similar; however, forests have 
been sampled based on a 5 per cent canopy cover 
threshold rather than 10 per cent canopy cover 
threshold in some regions ( USDA, 2006 ). There 
is also a departure in forestland defi nitions when 
considering areas comprised of seedlings. Seed-
lings are defi ned as tree species less than 1 inch 
in diameter. The FIA defi nition for woodland 
areas requires 99 seedlings ha  � 1  to meet stocking 
thresholds, and FIA considers these areas to have 
the ability to become forest. In the eastern US, 
most forested areas have the potential to become 
stocked forest based on all mentioned forest defi -
nitions. However, in areas of sparse woody veg-
etation, such as the semi-arid areas of west Texas, 
using a 5 per cent canopy cover threshold and 99 
seedlings ha  � 1  to defi ne forestland may produce 
substantially different forestland area estimates 
than required for compliance with the FGDC for-
est defi nition established for all federal agencies 
in the US. 

 Forestland area estimates based on different 
scales of observation can vary substantially. The 
scale of observation is the scale at which the world 
is translated into data ( Li and Reynolds, 1995 ). 
Defi ning the scale of observation is an important, 
yet often overlooked, step in providing estimates 
of forest extent. The spatial pattern that can be 
resolved from an  in situ  inventory is substantially 

different from the pattern that can be resolved 
from most remote sensing approaches to inven-
tory. Simply, in sparsely vegetated heterogeneous 
landscapes, the amount of forestland in a given 
area depends on the ability to resolve pattern. 
Therefore, even when using the same defi nition 
of forestland, without calibration we would not 
expect the estimate of the amount of forestland 
based on AVHRR (1 km 2  resolution) to equal the 
estimate based on 1 � : � 15 � 840 scale aerial photogra-
phy or  in situ  fi eld-based measurements ( Baccini 
 et al. , 2007 ). In fact, unaccounted for changes in 
the scale of observation can lead to discrepancies 
among estimates ( Achard  et al. , 2002 ;  DeFries 
 et al. , 2002 ;  Inger  et al. , 2008 ). 

 Based on data from 40 per cent of the rotating 
panel survey and the FIA forestland defi nition (5 
per cent canopy cover), there were  ~ 23.09 million 
ha of forestland in west Texas. This estimate was 
substantially different than the previous estimates 
described above. The main objective of this re-
search was to provide an estimate of forest area 
in west Texas based on 10 per cent canopy cover 
threshold rather than FIA’s forestland defi nition. 
To accomplish this, we developed and compared 
three classifi cation models to discriminate between 
FIA plots with 5 – 10 per cent canopy cover and 
those with greater or equal to 10 per cent cover. 
For convenience, we refer to the 5 – 10 per cent 
canopy cover class as less than 10 per cent cover.  

  Materials and methods 

 Data from the FIA programme as well as data 
from the National Land Cover Database (NLCD; 
 Huang  et al. , 2001 ;  Homer  et al. , 2004 ) were used 
to develop canopy cover models. The FIA pro-
gramme uses a fi xed plot rotating panel survey 
design ( Bechtold and Patterson, 2005 ). In 2004, 
a 10-panel annual inventory was implemented in 
west Texas. In 2008, fi eld-based observations from 
4 of 10 panels (40 per cent) have been completed. 
Each panel is a systematic sample which enables 
the FIA programme to provide population esti-
mates before all panels are measured. In the fi rst 
four panels, there were 10 � 062 (forest and non-
forest) inventory plots with a denied access rate of 
14.4 per cent. Each plot consisted of four 168 m 2  
subplots and four 13.5 m 2  microplots ( Figure 2 ). 
Each tree larger than 12.7 cm (diameter at breast 
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height (d.b.h.) or root collar diameter (d.r.c.)) was 
mapped and numbered on the subplot. Trees less 
than 12.7 cm but at least 2.54 cm (d.b.h. or d.r.c.) 
were mapped on the microplot. The number of 
seedlings was also counted on each microplot. At-
tributes such as species, d.b.h. and crown ratio, 
for example, were recorded for each tree ( USDA, 
2006 ). Condition variables, such as forest type 
and physiographic class (PC), were recorded for 
each condition on the inventory plot ( USDA, 
2006 .). Field-observed canopy cover estimates 
were recorded for 308 plots based on estimated 
crown area in a 0.47 ha plot ( Figure 2 ). The can-
opy cover estimates from these plots served as the 
response data for model development. Explana-
tory variables were derived from modelled canopy 
cover of the plot, other plot-level variables and the 
NLCD satellite-derived canopy cover estimates.     

  Explanatory variables 

 Six potential explanatory variables were con-
sidered. Total plot-level seedling count ( n  s ), the 
dominant plot-level forest-type group (FTG) 

  

 Figure 2.      FIA plot design for west Texas. Subplots 
are denoted by the light grey shading and microp-
lots are denoted by the dark grey shading. Subplot 
centres are 36.6 m apart. The circle connecting the 
centres of subplot 2, 3 and 4 denotes the area used 
to estimate canopy cover in the fi eld.    

( USDA, 2006 ) and the dominant plot-level PC, 
were taken directly from the inventory data. Re-
motely sensed canopy cover (cc rs ) was attached 
to each inventory plot using spatial overlay. The 
proportion canopy cover based on the subplots 
(cc s ) and the proportion canopy cover based on 
the microplots (cc m ) were modelled using spatial 
reconstruction. 

 Spatial reconstruction of the inventory plots re-
fers to applying crown diameter models to each 
tree on a plot in a spatially explicit manner using 
the stem-mapped tree locations and crown diam-
eter models. The primary source of crown diame-
ter models was  Bechtold (2003 ,  2004) . The crown 
diameter model for  Prosopis  spp. was obtained 
from  Shaw (2005) . When a species-specifi c model 
was not available, either a model from the same 
genus was used or the general models presented 
by  Wiedinmyer  et al.  (2000)     were used. These gen-
eral models estimated crown diameter based on 
d.b.h. However, woodland species are generally 
measured at the root collar. In a few situations, 
d.b.h. was estimated from d.r.c. using the models 
presented by  Chojnacky and Rogers (1999)  and 
then the generalized crown models were used. The 
Cartesian coordinate of each tree and the mod-
elled crown diameters were then transferred to a 
geographic information system (GIS). Once in a 
GIS, the centre of each tree was buffered based on 
the radius of the crown and clipped by the subplot 
boundary and microplot boundary. This tech-
nique accounted for overlap in tree crown area 
such that the result was a depiction of the subplot 
and microplot when looking straight down on the 
plot. While this technique does not directly ac-
count for crown competition, crown competition 
is accounted for as part of the crown diameter 
models because the models were developed from 
fi eld inventory data ( Bechtold, 2003 ,  2004 ). The 
estimate of proportion canopy cover based on the 
spatial reconstruction of the subplots was then 
the total crown area across subplots divided by 
the total area of the subplots. In cases where the 
plot was less than 100 per cent forested, the total 
area of the plots was adjusted by proportion of 
the plot in a forest condition. This same technique 
was used at the microplot level. The result of this 
reconstruction was two potential explanatory 
variables: (1) proportion canopy cover based on 
the subplots (cc s ) and (2) the proportion canopy 
cover based on the microplots (cc m ).  
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  Model development and comparison 

 Three modelling techniques were examined. Non-
linear regression was used to develop a model 
that estimates the proportion canopy cover for 
each plot using cc s , cc m , cc rs  and  n  s  as potential 
explanatory variables. Classifi cation and regres-
sion trees (CART) was used to develop a model 
classifying each plot as less than 10 per cent can-
opy cover or at least 10 per cent canopy cover 
using all variables as potential explanatory vari-
ables. Logistic regression was used to develop a 
model that estimated the probability that each 
plot had less than 10 per cent canopy cover using 
all variables as potential explanatory variables. 
For the non-linear regression approach and the 
logistic regression approach, quadratic terms and 
interactions were also examined. We optimized 
each model to minimize classifi cation bias in the 
canopy cover greater than or equal to 10 per cent 
category. Bias was defi ned as

  10% 10%

10% 10%

,
C e
C e

cc cc

cc cc

Bias  (1) 

  where,  C  cc  ≥  10%  = the number of plots where both 
the observed category and predicted category 
were canopy cover greater than or equal to 10 per 
cent (cc  ≥  10%);  e  cc  ≥  10%  = the number of plots 
where the predicted category was canopy cover 
greater than or equal to 10 per cent and the ob-
served was canopy cover less than 10 per cent (cc 
< 10%);  e  cc < 10%  = the number of plots where the 
predicted category was canopy cover less than 10 
per cent and the observed category was canopy 
cover greater than or equal to 10 per cent. 

 The range of  equation (1)  was zero to infi nity 
where a score of one denotes no bias. Our goal 
was to minimize bias (i.e. bias from  equation 
(1)  = 1). For the CART model, the complexity 
parameter (used to prune the model and reduce 
over fi tting) was optimized and we selected the 
complexity parameter that minimized the classi-
fi cation bias. For the logistic model, we selected 
the probability of a plot having less than 10 per 
cent cover that minimized classifi cation bias. For 
the non-linear regression model, we selected the 
plot-level estimate of proportion canopy cover 
that minimized the bias. 

 We used  ‘ leave one out ’  cross-validation to 
assess the accuracy of each technique. One ob-
servation was withheld from the dataset, each 

model was then fi t, thresholds were determined 
as described above and the withheld observation 
was then classifi ed based on each model. Both 
the fi eld-observed classifi cation and the predicted 
classifi cation for the plot were recorded. This was 
done sequentially for each of the 308 observations 
in the dataset and a 2 × 2 agreement matrix was 
constructed. We compared the models based on 
the Khat statistic ( Congalton and Mead, 1983 ), 
equitable threat source (ETS) (see  Cartwright and 
Krishnamurti, 2007 , for example), producer’s ac-
curacy, user’s accuracy and overall agreement. 
The Khat statistic  (equation 2)  was used to de-
termine the overall agreement after adjusting for 
agreement due to random chance. ETS ( equa-
tion 3 ) was used to determine how well the pre-
dicted canopy cover greater than or equal to 10 
per cent events corresponded with the observed 
canopy cover greater than or equal to 10 per cent 
events after accounting for agreement by random 
chance. The range of ETS was  − 1/3 to 1 with 0 
representing the expected agreement based on 
random chance within the canopy cover greater 
than or equal to 10 per cent category and 1 repre-
senting a perfect score. The producer’s accuracy 
( equation 4 ) was the probability that an observa-
tion was classifi ed correctly. The user’s accuracy 
( equation 5 ) was the probability the classifi ed ob-
servation represented the correct category on the 
ground. The overall agreement ( equation 6 ) was 
the proportion of plots correctly classifi ed. For 
example, consider the agreement matrix

  10% 10%

10% 10%

,
C e

A
e C

cc cc

cc cc

 

  where,  C  cc < 10%  = the number of plots where both 
the observed category and predicted category 
were canopy cover less than 10 per cent and  C  cc  ≥  

10% ,  e  cc  ≥  10%  and  e  cc < 10%  are previously defi ned. 
Based on  A , the following statistics were calcu-
lated to compare the classifi cation models:

  
2 2

1 1
22

1

( )
,

( )

ii i ii i

i ii

N A A A

N A A
Khat  (2) 

  where,  N  = 308;  A i   +  = row sum of the  i th row; 
 A  + i   = column sum of the  i th column.

  11 11

1 12 11

( )
,

( )

A E A
A A E A

ETS  (3) 
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  where,  E ( A  11 ) =  (A  1 +   A  +1 )/ N ; the expected value 
of  C  cc  ≥  10% by random chance.

  / ,ii iA AUser's accuracy=  (4) 

  / ,ii iA AProducers's accuracy=  (5) 

  
2

1Overall agreement= .iii
A

N
 (6) 

      Estimating total forestland area based on per 
cent canopy cover 

 In 2000, the FIA programme implemented a na-
tionally consistent annualized survey design. The 
design is assumed to produce random equal prob-
ability samples ( McRoberts and Hansen, 1999 ). 
We used the procedures described by  Bechtold 
and Patterson (2005)  to estimate total forest 
area with canopy cover of at least 10 per cent. 
As described by  Bechtold and Patterson (2005) , 
post-stratifi cation ( Cochran, 1977 ) was used to 
increase precision. The estimate of the total was

  
1

ˆ ,
H

f t h h
h

A A W P  (7) 

  where,   ˆ fA   = estimate of total forest area with 
canopy cover greater than or equal to 10 per 
cent;  A t   = the total area of interest (hectares); 
 W h   = the weight of stratum  h  (the proportion 
of  A t   occupied by stratum  h ). These weights 
were determined using the NLCD ( Homer  et al. , 
2004 ) based on four strata (forest, forest-edge, 
non-forest and non-forest-edge).   hP   = the mean 
plot-level proportion forest with canopy cover 
greater than or equal to 10 per cent across  i  plots 
in stratum  h.  

 The population variance was adapted from 
 Cochran (1977)  and described by  Bechtold and 
Patterson (2005) . Ignoring the fi nite population 
correction factor, the population variance was

  
2

1 1

ˆ( ) ( ) (1 ) ( ) ,
H H

t h
f h h h h h

h h

A n
v A W n v P W v P

n n
 (8) 

  where,  n  = the total number of FIA plots;  n h   = the 
total number of FIA plots in stratum  h . 

  

2 2

1( )
( 1)

hn

hi h h
i

h
h h

P n P
v P

n n
 ; the within stratum variance. 

 The SE of the estimate was   ˆ( )fv A  .  Equations 
(7)  and  (8)  were also used to estimate total area 
and SE of the estimate of each FTG. In this case, 
however,   hP   was the mean plot-level proportion 
forest with canopy cover greater than or equal to 
10 per cent and the FTG of interest, across  i  plots 
in stratum  h.    

  Results 

  Model development and comparison 

 Three models were developed and fi t using the R 
statistical package ( R Development Core Team, 
2006 ). The CART model was developed using 
the rpart package ( Therneau  et al. , 2008 ). The 
verifi cation package ( NCAR, 2008 ) was used to 
produce the statistics used to compare each clas-
sifi cation (e.g. Khat, ETS). Our implementation 
of CART was strictly categorical. Based on the 
recursive partitioning of the explanatory vari-
ables, each forested (FIA defi nition) fi eld plot 
was placed in a category: (1) less than 10 per cent 
canopy cover or (2) at least 10 per cent canopy 
cover. The fi nal classifi cation model was based 
on cc s ,  n  s  and cc m  ( Figure 3 ). Based on the cross-
validation, the overall agreement (accuracy) of 
the CART model was 90.3 per cent and Khat was 
0.517 ( Table 1 ). The value of ETS, which quanti-
fi es how well the at least 10 per cent canopy cover 
class was classifi ed, was 0.47. As noted earlier, 
the complexity parameter was optimized to mini-
mize bias; however, based on the cross-validation 
results, the model was slightly bias towards the 
canopy cover greater than or equal to 10 per cent 
category.         

 We also developed a logistic regression model 
to estimate the probability that each plot had less 
than 10 per cent canopy cover. The signifi cant 
explanatory variables used were cc s  and  n  s . The 
fi nal model was

  
s s0.319 36.594cc 0.14

1
(cc 0.1) ,

1 e n
P  (9) 

  where,  P (cc < 0.1) = the probability that the 
canopy cover proportion was less than 0.1 or 10 
per cent. The value of  P (cc < 0.1) that minimized 
 equation (1)  was 0.411 and when the modelled 
probability of a fi eld plot with less than 10 per 
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 Table 1 :       Cross-validation summary statistics for each 
modelling approach  

  Modelling approach 

 CART
Logistic 

regression
Non-linear 
regression  

  Producer’s accuracy  
   �  cc  ≥  10% 95.2% 94.1% 94.1% 
   �  cc < 10% 54.1% 59.5% 56.8% 
 User’s accuracy  
   �  cc  ≥  10% 93.8% 94.4% 94.1% 
  cc < 10% 60.6% 57.9% 56.8% 
 Agreement 90.3% 89.9% 89.6% 
   �  Bias 1.015 0.996 1.000 
   �  ETS 0.470 0.458 0.450 
  �  Khat 0.517 0.529 0.509  

  

 Figure 3.      Decision model, based on CART analysis, used to classify each inventory plot as less than 10% 
cover (cc < 0.1) or at least 10% cover (cc  ≥  0.1). The tree structure is read from top to bottom, and at each 
level the inequality is evaluation. When the inequality is true, readers are directed to the left of the inequal-
ity. When the inequality is false, readers are directed to the right of the inequality. The fi nal classifi cation is 
denoted at the terminal node (boxes with grey border).    

was 0.529 ( Table 1 ). This technique was slightly 
bias based towards canopy cover less than 10 per 
cent. 

 An exponential model was developed, using 
non-linear least squares regression, to estimate 
the proportion canopy cover of each fi eld plot 
based on the signifi cant explanatory variables cc s , 
cc rs  and  n  s . The fi nal model was

  s rs s2.93cc 0.42cc 0.007cc 1 e ,n  (10) 

  where, cc = proportion canopy cover. 
 When using equation (10) as a classifi cation 

model, bias was minimized when the threshold 
cc  ≥  0.071 was used to discriminate between 
fi eld plots with less than 10 per cent cover and 
those with at least 10 per cent cover. Based on 
cross-validation results, the model had an overall 
accuracy of 89.6 per cent and the Khat statistic 
was 0.509 ( Table 1 ). 

 The three classifi cation models all had simi-
lar accuracies with the CART model having the 
highest Khat statistic. The non-linear regression 

cent canopy cover was greater than or equal to 
0.411; we considered this suffi cient information 
to place the corresponding plot in the less than 10 
per cent category. Based on cross-validation re-
sults, the logistic regression model had an overall 
accuracy of 89.9 per cent and the Khat statistic 
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approach was the only method that produced an 
unbiased classifi cation based on the cross-vali-
dation. However with respect to ETS, which in 
this case quantifi es how well the at least 10 per 
cent canopy cover class was classifi ed, the CART 
model and logistic regression model were margin-
ally better than the non-linear regression model. 
Because of the similar results observed with each 
modelling technique, we applied all three mod-
els to the west Texas data to estimate forestland 
area.  

  Estimating forestland area based on per cent 
canopy cover 

 Each of the fi eld inventory plots that met FIA’s 
forest defi nition was classifi ed using each of the 
three models. The estimate of forest area based on 
FIA’s current defi nition was 23.09 million ha (SE 
0.25 million ha) ( Table 2 ). The estimate of forest-
land with canopy cover greater than or equal to 
10 per cent was 19.97 million ha (SE 0.25 million 
ha) based on the logistic region model ( Table 2 ). 
This was the highest estimate. The estimate based 
on the non-linear regression classifi cation was 
19.17 million ha (SE 0.24 million ha) which was 
the lowest estimate for forest area with at least 
10 per cent canopy cover. The estimate based on 
the CART model was 19.52 million ha (SE 0.25 

million ha). Based on the modelling results, be-
tween 3.1 and 3.9 million ha of forestland was in 
the less than 10 per cent canopy cover category. 
However, as expected, this area was not evenly 
spread across FTGs.     

 Most (over 64 per cent) of the forest classi-
fi ed as having less than 10 per cent canopy cover 
was in the non-stocked category. Based on FIA 
defi nitions, an area was considered non-stocked 
forestland if the area was less than 10 per cent 
stocked by trees of any size. An additional 18 – 27 
per cent (depending on classifi cation method) of 
the forest classifi ed as having less than 10 per cent 
canopy cover was classifi ed as Mesquite wood-
land, which is part of the other western hard-
woods groups listed in  Table 2 . Notably, all the 
loblolly shortleaf group and the oak pine group 
were classifi ed in the less than 10 per cent canopy 
cover category.   

  Discussion 

 There are several techniques available to estimate 
per cent canopy cover based on stand and tree 
attributes.  Crookston and Stage (1999) , for ex-
ample, use tree characteristics such as height, di-
ameter and measured or modelled crown width 
and assume a random spatial arrangement of 
stems to estimate per cent canopy cover. As  Shaw 

 Table 2 :       Forest area estimates for each FTG and modelling technique  

  cc  ≥  10% cc < 10%  

 FTG CART
Logistic 

regression
Non-linear 
regression CART

Logistic 
regression

Non-linear 
regression FIA total  

  Elm/ash/cottonwood 1 � 036 � 956 1 � 042 � 995 1 � 034 � 387 43 � 989 37 � 949 46 � 558 1 � 080 � 945 
 Loblolly/shortleaf pine 32 � 412 32 � 412 32 � 412 0 0 0 32 � 412 
 Non-stocked 2 � 565 � 184 2 � 602 � 210 2 � 367 � 438 2 � 309 � 519 2 � 272 � 493 2 � 507 � 265 4 � 874 � 703 
 Oak/gum/cypress 291 � 913 297 � 243 299 � 304 17 � 741 12 � 411 10 � 350 309 � 654 
 Oak/hickory 4 � 757 � 385 4 � 890 � 977 4 � 841 � 871 295 � 131 161 � 538 210 � 644 5 � 052 � 515 
 Oak/pine 82 � 146 83 � 230 83 � 230 1084 0 0 83 � 230 
 Other western 
   hardwoods

7 � 021 � 370 7 � 289 � 903 6 � 811 � 453 838 � 032 569 � 498 1 � 047 � 948 7 � 859 � 401 

 Pinyon/juniper 3 � 665 � 059 3 � 661 � 687 3 � 625 � 404 53 � 856 57 � 228 93 � 511 3 � 718 � 915 
 Western oak 65 � 290 74 � 088 74 � 088 10 � 716 1917 1917 76 � 006 
 Total 19 � 517 � 715 19 � 974 � 746 19 � 169 � 586 3 � 570 � 066 3 � 113 � 034 3 � 918 � 194 23 � 087 � 781 
 SE 248 � 109 247 � 083 243 � 673  –  –  – 253 � 237  

  Non-stocked is defi ned as forested area that was less than 10% stocked by trees of any size. FIA total refers to 
the estimate based on current forestland defi nitions ( USDA, 2006 ).   
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(2005)  points out, trees may be arranged in sev-
eral ways including random, clumped or uniform 
and assuming a random arrangement may not 
be adequate in all situations.  Law  et al.  (1994)  
developed a per cent crown cover chart for oak 
savannahs expressed as a function of mean stem 
diameter, basal area per acre and number of trees 
per acre. However, the sample size used in  Law 
 et al.  (1994)  study was small and the results were 
not applicable to most west Texas systems.  Toney 
 et al.  (2009)  developed a technique to spatially 
reconstruct the stem-mapped trees on FIA fi eld 
plots. Their technique was similar to the technique 
presented here except their goal was to estimate 
canopy cover as a continuous variable and as such 
they allowed for tree crown that fell outside of the 
subplot boundary to contribute to the estimate 
of cover. Given the heterogeneous landscape of 
west Texas and the potential importance of mois-
ture, past land use and fi re frequency as limiting 
factors in the pattern of vegetation, we chose to 
use a relatively simple approach to discriminate 
between plots with less than 10 per cent canopy 
cover and those with at least 10 per cent canopy 
cover. Our method of reconstructing each plot 
relied on clipping crowns by the subplot bound-
ary; therefore, portions of crowns that extended 
past the subplot boundary were not considered 
as contributing to the per cent canopy cover. This 
method of spatial reconstruction of the plot is 
consistent with the defi nition of canopy cover and 
given that our goal was to discriminate between 
plots with less than 10 per cent canopy cover and 
those with at least 10 per cent canopy cover, it 
makes sense not to include the crown area that 
extends past the subplot boundary. However, if 
our goal was strictly to model proportion canopy 
cover, including the crown area that extends past 
the subplot boundary, as suggested by  Toney  et 
al.  (2009) , to compensate for unmeasured trees 
would likely be more appropriate. 

 We used fi eld-observed per cent canopy cover 
estimates to form the categorical response vari-
able which led to two potential issues. First, the 
fi eld-based estimates were derived by examin-
ing a larger support area than four subplots on 
which tree and condition-level attributes were re-
corded ( Figure 2 ). This caused situations where, 
for example, the fi eld-observed canopy cover was 
greater than 10 per cent but no trees or saplings 
were tallied on the four subplots. Using different 

support areas for our modelling effort likely con-
tributed to the fair to moderate accuracies of the 
classifi cation models. Second, the fi eld-observed 
estimates suffer from similar boundary issues as 
described in the previous paragraph. For exam-
ple, only trees whose stems originate from within 
the 0.47 ha plot were considered when estimat-
ing canopy cover in the fi eld. As  Williams  et al.  
(2002)  points out, an unbiased estimate of per 
cent canopy cover cannot be made without in-
cluding trees whose stems originate from outside 
the fi xed area plot. Clearly, this is an issue when 
estimating canopy cover as a continuous variable. 
However, in areas with sparse vegetation such as 
west Texas, it is unclear how much bias this led 
to in the response variable. 

 We used three different classifi cation techniques 
to classify each measured forest inventory plot as 
having at least 10 per cent canopy cover or less 
than 10 per cent crown cover. While measures of 
accuracies among classifi cation techniques were 
very similar, substantially different forest area 
estimates were produced. For example, the for-
est area estimate based on the non-linear regres-
sion model was  ~ 3.3 SEs away from the estimate 
based on the logistic regression model. The esti-
mate based on the CART model was  ~ 1.8 and 1.4 
SEs away from the estimate based on the logistic 
regression model and the non-linear regression 
model, respectively. As a practical matter though, 
only one model can be used to produce the es-
timate of forest area with at least 10 per cent 
crown cover for reporting purposes. In this case, 
we adopted the estimate based on the non-linear 
regression model which was  ~ 3.9 million ha (17 
per cent) less than the estimate based on the FIA 
defi nition of forest. The primary reason was that 
all models were optimized to minimize bias and 
the non-linear regression model was the only 
model that was unbiased based on cross-valida-
tion results. However, we acknowledge that for 
all practical purposes, the models are equivalent 
and that further research is needed to correctly 
account for both modelling error and sampling 
error in population estimates. Additionally, the 
model selection process could be improved and 
Bayesian model averaging ( Hoeting  et al. , 1999 ) 
may offer another avenue for future research. 

 Both the FAO forestland defi nition and the 
FIA forestland defi nition combined the concepts 
of cover, use and potential. For example, under 
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both defi nitions, areas predominantly in agricul-
tural use were classifi ed as non-forest regardless 
of whether the 10 per cent canopy cover threshold 
was met. Predominantly urban areas were treated 
similarly. While the distinction between cover 
and use was relatively clear in this case study, 
the concept of potential was more diffi cult to 
apply in marginal forestlands. Traditionally, the 
concept of potential in forestland defi nitions was 
used to ensure that areas comprised of seedlings 
that would soon become forest were included in 
the forestland area estimate. Based on the current 
(2008) methods used by FIA, an area may be con-
sidered forestland based on the seedling count. In 
western woodland forest types, 99 seedlings ha  � 1  
are required to consider the condition as forest. 
However,  Van Auken  et al.  (2004)  examined the 
growth and survival of  Juniperus ashei  seedling 
in  Juniperus  woodlands in west Texas and found 
high rates of mortality ( ~ 8 per cent per year) 
over a 9-year period. The seedlings had very low 
height and diameter growth rates, and these rates 
differed depending on whether the seedlings were 
under a canopy or at the forest edge.  Van Auken 
 et al.  (2004)  also noted that the observed mortal-
ity rates generally lead to complete mortality of 
a cohort within 15 years. It is debatable whether 
sparsely vegetated areas in perpetual seedling 
states should qualify as forest regardless of the 
number of seedlings observed. To address issues 
like those noted by  Van Auken  et al.  (2004) , addi-
tional research is needed to determine the appro-
priate threshold for classifying areas comprised 
of seedlings as having the potential to meet the 
defi nition of forest based on a per cent cover defi -
nition. Also, the temporal characteristics of the 
vegetation should be included when determin-
ing whether an area has the potential to become 
forest. 

 One primary goal of environmental assessments 
is to quantify baseline conditions, and forestland 
area estimates are a principle measure for envi-
ronmental assessments across geopolitical scales. 
As the geopolitical scale broadens, the complex-
ity of using consistent defi nitions and a consistent 
scale of observation increases. The west Texas 
case presented here illustrates the diffi culties as-
sociated with establishing a baseline when the 
scale of observation has changed and when mod-
elling approaches are used to implement defi ni-
tions. Clearly, signifi cant changes in forest area 

occurred in west Texas since 1953 when the for-
est area estimate was 10.5 million ha. The results 
presented here indicate an approximate doubling 
of forest area since the 1953 estimate. It was 
unlikely the change in scale of observation com-
pletely explains these changes and the scenarios 
that  Van Auken (2000)  described were not cap-
tured because an annual forest inventory was not 
in place. Furthermore   , the broad-scale land cover 
and used dynamics that were the potential driv-
ers of the likely changes are diffi cult to elucidate 
because of the lack of an annual monitoring sys-
tem in west Texas. We recommend that the FIA 
programme be proactive and collect the variables 
necessary for international reporting in order 
to minimize the reliance on modelling. We also 
note that the scale of observation can infl uence 
estimates and suggest that, to the extent possible, 
the scale of observation remain static. Finally, we 
suggest that the defi nition of forestland include a 
temporal dimension in order to succinctly defi ne 
forestland and reduce variability in status and 
trend information.  
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