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Invasive forest pest surveillance: survey
development and reliability

John W. Coulston, Frank H. Koch, William D. Smith, and Frank J. Sapio

Abstract: Worldwide, a large number of potential pest species are introduced to locations outside their native ranges;
under the best possible prevention scheme, some are likely to establish one or more localized populations. A comprehen-
sive early detection and rapid-response protocol calls for surveillance to determine if a pest has invaded additional loca-
tions outside its original area of introduction. In this manuscript, we adapt and spatially extend a two-stage sampling
technique to determine the required sample size to substantiate freedom from an invasive pest with a known level of cer-
tainty. The technique, derived from methods for sampling livestock herds for disease presence, accounts for the fact that
pest activity may be low at a coarse spatial scale (i.e., among forested landscapes) but high at a fine scale (i.e., within a
given forested landscape). We illustrate the utility of the approach by generating a national-scale survey based on a risk
map for a hypothetical forest pest species threatening the United States. These techniques provide a repeatable, cost-
effective, practical framework for developing broad-scale surveys to substantiate freedom from non-native invasive forest
pests with known statistical power.

Résumé : A travers le monde, un grand nombre d’especes de ravageurs potentiels sont introduites dans des endroits situés
en dehors de leur aire de répartition naturelle. Malgré la meilleure stratégie possible de prévention, certains de ces rava-
geurs ont des chances d’établir une ou plusieurs populations localisées. Un protocole complet de détection précoce et de
réaction rapide demande une surveillance pour déterminer si un ravageur a envahi d’autres endroits a ’extérieur de sa
zone d’introduction originelle. Dans cet article, nous adaptons une méthode d’échantillonnage en deux temps et lui ajou-
tons une dimension spatiale afin de déterminer la taille de 1’échantillon nécessaire pour confirmer I’absence d’un ravageur
invasif avec un degré de certitude connu. La méthode est dérivée des méthodes d’échantillonnage des troupeaux de bétail
pour détecter la présence de maladies et tient compte du fait que 1’activité des ravageurs peut étre faible a une échelle spa-
tiale grossiere (c.-a-d. parmi des paysages forestiers) mais élevée a une échelle plus fine (c.-a-d. a I’intérieur d’un paysage
forestier). Nous illustrons 1’utilité de I’approche en générant un inventaire a I’échelle nationale basé sur une carte de ris-
ques pour une espece de ravageur forestier hypothétique qui menacerait les Etats-Unis. Ces techniques offrent un cadre
pratique, reproductible et peu coliteux pour élaborer des inventaires a grande échelle afin de confirmer 1’absence de rava-
geurs forestiers exotiques et invasifs avec une puissance statistique connue.

[Traduit par la Rédaction]

Introduction

Non-native invasive species pose a significant threat to
natural resources worldwide. Resource losses, environmental
damages, and control costs in the United States due to inva-
sive species have been recently estimated to exceed US$120
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billion/year (Pimentel et al. 2005). In particular, non-native
insects and diseases affecting US forests have an estimated
impact of greater than US$4.3 billion annually in damages
and control expenditures (Pimentel et al. 2005). Annual con-
trol costs for individual invasive species can exceed several
million US dollars, although forgoing control efforts may ul-
timately cost much more; without active management, inva-
sives that are currently limited in geographic distribution can
rapidly become established over large areas and, sub-
sequently, cause extensive environmental degradation
(Chornesky et al. 2005; Lodge et al. 2006). Historically, in-
vasives have been responsible for severe impacts to forest
foundation species such as jarrah (Eucalyptus marginata
Donn ex Sm.) in Western Australia or the American chest-
nut (Castanea dentata (Marsh.) Borkh.), which has been
nearly eliminated from US forests (Ellison et al. 2005;
McDougall et al. 2002). These impacts result in major com-
positional changes that affect wildlife and overall ecosystem
processes (Chornesky et al. 2005; Ellison et al. 2005). Fur-
thermore, invasives place added pressure on many critically
imperiled animal and plant species through competition or
predation (Wilcove et al. 1998).

In the United States, Executive Order 13112 established a
National Invasive Species Council and mandated that federal

© 2008 NRC Canada



Coulston et al.

agencies whose activities influence the status of invasive
species will “detect and respond rapidly to and control pop-
ulations of such species in a cost-effective and environ-
mentally sound manner” and “monitor invasive species
populations accurately and reliably” (Clinton 1999,
p. 6184). Similarly, a 2006 report from the Ecological Soci-
ety of America (ESA) highlighted potential impacts of
invasive species and provided several key policy recommen-
dations, including coordinated efforts to detect invasions
while they are still localized, better enabling eradication of
species before they become established (Lodge et al. 2006).
The report acknowledged the high costs of surveying for
rare individuals and, therefore, emphasized the cost-
effectiveness of surveillance techniques that focus on loca-
tions with high invasion risks. Demonstrating the truly
global scope of the invasive pest problem, both Executive
Order 13112 and the ESA report echo procedures and poli-
cies outlined in the International Standards for Phytosanitary
Measures (ISPM) produced under the International Plant
Protection Convention. In addition to general surveillance
guidelines, ISPM publications address requirements for the
determination of an area’s pest status as well as conditions
for establishing pest-free or low-pest-prevalence areas (FAO
1995, 1997, 1998, 2005).

Pest surveillance is a complex task, particularly at a na-
tional or similarly broad spatial scale. This is especially true
for forest pests, which can travel, often cryptically, along a
wide variety of pathways. Every year, a large number of
non-native insects and diseases affecting forest tree species
are intercepted at international ports of entry from commer-
cial shipments of live plants, logs and raw wood products,
and other commodities, as well as in packing materials and
even in airline passenger baggage (see Brockerhoff et al.
2006; Haack 2003; Liebhold et al. 2006; McCullough et al.
2006; Tkacz 2002; Work et al. 2005). Pests that evade the
inspection process may be accidentally introduced into for-
ested areas. Potentially serious non-native pests that have re-
cently made inroads into US forests include sudden oak
death (caused by Phytophthora ramorum Werres et al.), first
detected in 1995; the emerald ash borer (Agrilus planipennis
Fairmaire), first detected in 2002; and the sirex woodwasp
(Sirex noctilio F.), which was first detected in the United
States in 2005 (Hoebeke et al. 2005; Ivors et al. 2006;
McCullough and Katovich 2004). Internationally, note-
worthy examples include the pine wood nematode (Bursa-
phelenchus xylophilus (Steiner & Buhrer) Nickle), native to
North America but now established in eastern Asia and also
reported in Portugal in 1999, as well as the red turpentine
beetle (Dendroctonus valens LeConte), a secondary pest of
pines in its native North American range that has caused
widespread tree mortality in China since it was first detected
in 1998 (Brockerhoff et al. 2006; Mota et al. 1999; Schrader
and Unger 2003; Yan et al. 2005).

Typically, invasive pests like those just mentioned are in-
troduced to a new country or region at one or no more than
a few specific points. However, through both natural and
human-mediated pathways (e.g., interstate transportation
corridors), they may be subsequently dispersed at multiple
spatial scales. In particular, human-mediated pathways may
facilitate the rapid spread of a pest species to previously re-
mote locations (NRC 2002; Chornesky et al. 2005). This
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multiple-scale dispersal pattern results in a clustered geo-
graphic distribution of the pest among landscapes (where a
landscape is simply an area of some specified size that can
serve as a sampling unit for a broad-scale spatial survey).
Generally, the proportion of all landscapes that are invaded
is low with a newly introduced pest, yet within an invaded
landscape, the density within the area actually occupied or
affected by the pest can be high. Given that conducting a
complete census is cost-prohibitive, a probabilistic approach
may instead be used to substantiate freedom from a pest
species at an acceptable level of certainty. Such a probabil-
istic approach is consistent with ISPM guidelines for tar-
geted surveys of recently introduced pests (FAO 1997).

Scientifically sound surveillance techniques are prerequi-
site to any broad-scale efforts to combat invasive species
(Lodge et al. 2006; Rajan 2006). A well-developed surveil-
lance system facilitates early detection, increasing the win-
dow of opportunity to initiate management measures (Rajan
2006; Venette et al. 2002). A primary objective of this paper
is to document techniques that can be used to estimate the
required sample size of surveys to substantiate freedom
from non-native forest pests with known reliability. To ac-
complish this, we extend the one-dimensional methods of
Cameron and Baldock (1998) to the spatial domain with
vector data; chiefly, we develop a model to calculate the
parameters necessary to estimate sample size. We provide
an example to illustrate surveillance methodology by (i) de-
fining the population of interest and sample frame, (ii) set-
ting standards of statistical confidence and certainty, (iii)
determining the optimal sample size, and (iv) using the sam-
ple size to create the detection survey scheme.

Methods

Our methodology is intended for cases where a recently
introduced forest pest has been found in only a small portion
of its estimated potential range. In general, invasions are un-
predictable, making it difficult to accurately model their
progress or ultimate extents (Kareiva et al. 1996). Nonethe-
less, analyses that focus on the simpler task of identifying
areas with heightened invasion risk may inform the design
of cost-effective survey programs for early detection
(Andersen et al. 2004, FAO 1997; Kareiva et al. 1996). For-
est pest risk maps (e.g., Downing et al. 2005; Kelly et al.
2007; Koch et al. 2006; Poland and McCullough 2006) are
analytical combinations of spatial data from three categories
that represent where a pest is most likely to be introduced
and (or) established: host species distribution, climatic or
other environmental constraints, and pathways of pest move-
ment (Bartell and Nair 2004). Because of a lack of quality
data, some risk maps omit one or more of these categories,
but all serve the same basic purpose: to provide a relative
risk rating for all locations within the geographic area of in-
terest, thus indicating where resources for monitoring or
other measures should be prioritized.

Risk maps have several applications, but here we use a
risk map to define the population of interest (i.e., the at-risk
forest area) and to construct the sampling frame based on a
global sampling grid (White et al. 1992). However, we must
also decide upon the appropriate sampling technique and re-
quired level of certainty before determining the required
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sample size (Cochran 1977). When considering the surveil-
lance of invasive forest pests, two-stage samples are attrac-
tive because we expect the species of interest to cluster
within the primary sampling units. That is, we expect the
likelihood of species occurrence within primary sampling
units to be more similar than the likelihood among primary
sampling units. Therefore, to take advantage of this cluster-
ing, it makes sense economically to use a two-stage sample
(Reilly 1996). Our aim is to use the global sampling ap-
proach developed by White et al. (1992) to construct our
primary sampling units and develop appropriate techniques
to determine the stage-two (within primary sampling unit)
sample when the stage-two sample unit is a pheromone trap
or similar device.

Two-stage sample size formula

Cameron and Baldock (1998) developed a probability for-
mula to estimate the necessary sample size for two-stage
sampling where the purpose of the survey is to substantiate
freedom from disease at given levels of sensitivity and con-
fidence. They developed their formula under the scenario of
sampling animal herds over large areas where diseased ani-
mals are considered to cluster within a herd. Such clustering
within a herd often occurs because the distribution of dis-
ease agents is unbalanced across the population. This is es-
pecially true with rare diseases, where the among-herd
infection rate may be low, but within a diseased herd, the
infection rate can be quite high. Their equation for the prob-
ability of observing at least one event (e.g., diseased animal)
is

1] P=1-[6(P(SyIS))" + (1= ¢)]"

where P is the probability of observing at least one event, or
the level of certainty; ¢, is the stage-one prevalence, or pro-
portion of stage-one sampling units in which the event oc-
curs, which is also the probability of selecting a stage-one
sampling unit with the event; P(S,|S|) is the conditional
probability of failing to observe the event based on the sec-
ond stage sample (S, ) given that the event does occur in the
selected stage-one sampling unit (S}); n, is the number of
samples within each primary sampling unit; (1 — ¢;) is the
probability of selecting a stage-one sampling unit where the
event does not occur; and n; is the number of stage-one
sampling units. Equation 1 can be rearranged to solve for
the sample size required to stipulate freedom from an event

B In(1-P)
In[oy (P(S31ST)™) + (1= ¢))]

where P is the level of certainty specified a priori and ¢; is
specified a priori.

Cameron and Baldock (1998) developed eq. 2 to calculate
the required sample size to substantiate freedom from dis-
ease in large animal herds. The approximation of P(S; |S])
for large herd sizes was provided by Cannon and Roe
(1982):

3l P<sz|sf>—< —%)

where ¢, is the stage-two prevalence or, in this case, the
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Fig. 1. The additional area (z) that should be accounted for when
estimating P(S, |S|) given the infected area (¢,) and the trap area
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number of diseased animals in a herd (set a priori); N, is
the mean number of animals in a herd; and n, is the number
of samples within each primary sampling unit; in this case,
the number of animals sampled within the herd.

There are many combinations of n; and n, that will pro-
duce the required level of certainty, and there are often dif-
ferent costs associated with the stage-one sample and the
stage-two sample (Clark and Steel 2000; Waters and Chester
1987). Cameron and Baldock (1998) suggested using
Cochran’s (1977) cost function to select the values of n;
and n, that minimize the overall cost of the survey. The
cost function takes the following form:

(4] Ciotal = C1 X np + Cy Xy X my

where Cy, is the total cost of the survey; C; the cost of ob-
taining each stage-one sample; and C, is the cost of obtain-
ing each stage-two sample. The combination of n; and n,
that minimizes Ciyy is the optimal solution.

The formulations provided by Cameron and Baldock
(1998) and Cannon and Roe (1982) are based on discrete
counts and assume samples are drawn from an infinite pop-
ulation. In the case of invasive pest surveillance, changes
must be made to adequately estimate the conditional proba-
bility P(S5|S; )outlined in eqgs. 1, 2, and 3; this is due to the
spatial nature of the sampling problem. Also, depending on
how the stage-one sample is defined, the sampling fraction
may be so large that assuming an infinite population is inad-
equate.

Adjustment to the stage-two probability

Rather than sampling individuals, a detection mechanism
(e.g., a pheromone trap or similar device; hereafter, we use
the term “trap”) is typically used for pest surveillance, with
the purpose of determining whether a pest is present in an
area of interest. When traps are employed, the sampling
problem becomes spatial in character, and subsequently, we

© 2008 NRC Canada



Coulston et al.

2425

Fig. 2. Examples of the relationship between spatial pattern of risk and sampling fraction when tessellations are used to construct primary
sampling units. In each case (Figs 2a, 2b, and 2c), we must draw n; = 100 primary sampling units with risk from N, primary sampling units
with risk. The shading denotes risk, and each case has 10% of the total area at risk. In Fig. 2a, there are N; = 100 primary sampling units
with risk; therefore, the sampling fraction is n,/N, = 100/100 = 1. In Fig. 2b, there are N; = 795 primary sampling units with risk; therefore,
the sampling fraction is 100/795 = 0.126. In Fig. 2c, there are N; = 1000 primary sampling units with risk; therefore, the sampling fraction
is 100/1000 = 0.10.

| e,

must develop a new approach to estimate P(S5|S)). In the
two-dimensional case, the value of P(S;|S]) is related to
multiple parameters: the size and shape of the stage-one
sample unit (A;), the size and shape of the pest activity
(i.e., the infested area) within the stage-one sample unit
(¢), and the effective area of the trap (A,). When the effec-
tive area of the trap is zero (i.e., a point) then
P(S71S7) = 1 = (¢a/A).

If we consider the simple case, where A, A,, and ¢, are
forced to be circles rather than arbitrary shapes, such that A,
and ¢, are completely contained by a sufficiently larger Aj,
then

_m(r+ re,)?

S P(sIsH=1-T20

where r, is the radius of A, and ry, is the radius of ¢,. The
logic behind eq. 5 is that, because the trap represents an ef-
fective area rather than a point, we must account for this ad-
ditional area when estimating the probability of the trap
being negative for presence of the pest when the stage-one
sampling unit has actually been infested (Fig. 1). Function-
ally, eq. 5 extends the radius of the infested area by the ra-
dius of the trap’s effective area, such that the trap can still
be treated as a point for the probability calculation. In eq. 1,
the stage-two sample is assumed to be drawn from an infin-
ite population. We consider this assumption to be appro-
priate for eq. 5 given that A; will generally be substantially
larger than A,.

To confirm the validity of eq. 5, we used spatial simula-
tion to estimate the distribution of P(S;|S}). We performed
simulations in which we varied the ratio of stage-one sample
unit size to effective trap area (A;/A, = 50, 100, ..., 5000)
and the ratio of the infested area to the stage-one sample
unit size (¢,/A; = 0.025, 0.05, ..., 0.5). Our simulations en-
compassed 2000 combinations of A;/A,, and ¢,/A,. For ex-
ample, to estimate P(S;|S{) when A; = 250 km? (a circular
stage-one sample unit with radius r; = 8.92 km), A, = 1 km?
(a circular trap area, or stage-two sample, with radius r, =

(c)

0.564 km), and ¢,/A; = 0.05 (¢ = 12.5 km?2, an area with
radius ry, = 1.99 km), we generated two random points.
The first random point served as the centroid of a circle for
A,, and the second random point served as the centroid of a
circle for ¢,. The circles for both A, and ¢, were con-
strained to remain completely within A; and occurred with
equal probability in A;. When the distance between the cen-
ter points of A, and ¢, was less than or equal to the radius
of the trap area (r,) plus the radius of the infested area (r,),
i.e., the two circles intersected, then the trial was considered
a success. When the two circles did not intersect, the trial
was considered a failure. In our simulation, there were 1000
trials and 200 replicates for each combination of A;/A; and
®/A;. For each replicate, we estimated P(S,|S{) as the
number of failures divided by the number of trials. For each
combination of A/A,, and ¢,/A,, we adopted the mean of
the 200 replicates as the simulated estimate of P(S;|S}).
For comparison, we also calculated P(S, |S]) using eq. 5.

Adjustment to the stage-one probability

Cochran (1977) suggested that a finite population
correction factor should be used when the sampling fraction
(n1/Ny) is >5%, where in this case N; is the total number of
possible units from which the stage-one sample is drawn.
Our goal is to use a global sampling grid (White et al.
1992) to construct our sample. This global sampling grid is
a tessellation; when tessellations are used to define the
stage-one sampling unit, the sampling fraction is related to
the spatial pattern observed in the underlying risk map that
defines the population of interest, i.e., the area at risk for in-
festation by a pest (Fig. 2). When the risk map displays a
random pattern and <5% of the total area is at risk, then a
finite correction may not be needed. However, if the pattern
of risk has a high degree of clumping, or if >5% of the total
area is at risk, then eq. 1 may be adjusted for sampling from
a finite population without replacement.

When the sampling fraction is one (i.e., n; = N;), eq. 1
simplifies to
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Fig. 3. The difference between P(S; |S]) estimated using eq. 5 and the corresponding simulated value (estimated — simulated), by ¢,/A, and
A /A, in nine categories: (a) difference of <0.005; (b) difference of >0.005 and <0.01; (c) difference of >0.01 and <0.015; (d) the difference
of >0.015 and <0.02; (e) difference of >0.02 and <0.025; (f) difference of >0.025 and <0.03; (g) difference of >0.03 and <0.035; (k) differ-

ence of >0.035 and <0.04; (i) difference of >0.04.
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6] P=1-[(P(s;]s)" "

However, in most situations, the sampling fraction will be
less than one, and the hypergeometric distribution can be
used to extend eq. 6 to a finite population framework. The
hypergeometric distribution is a discrete distribution that is
used to estimate the probability of observing a set number
of successes and failures in a sample from a finite popula-
tion without replacement. Based on the hypergeometric dis-
tribution, the probability of selecting x infested (and n; — x
uninfested) stage one sampling units is

Nigy \ (N1 — Nig,
X ny—Xx
Ny
ni
The probability of failing to detect the infestation (i.e., all
traps are negative) in x infested stage-one sampling units is

(P(S5|ST)™)*. The probability that all traps are negative in
the N; — x uninfested units is 1" ™. Subsequently, the prob-

ability of selecting x infested stage one sampling units (and
n; — x uninfested units) and all traps being negative is

<N1¢1 > (Nl —Ni¢, >
X n—x — np\* ny—x
= [(P(Sy151)")" > 17
1
(™)
The value of x is then restricted to possible values within the
population between a lower bound, [ = max(0,n; + Ni¢ — Ny),
and an upper bound, u = min(N,¢,, n;). The probability that

all traps are negative for all possible outcomes in the stage-
one sample is

Ni¢, Ny — Ni¢,
Z ( i )<<N) )[<P<s;|sr>"2>"x1"'-ﬂ

and the probability of observing at least one positive trap is
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Fig. 4. The difference between eq. 1 and eq. 7 in the probability of observing at least one positive trap, by P(S,|S{) and sampling fraction,

for five different values of ¢,n,

. Bach row in the matrix is a different value of ¢,n, and is labeled to the left of each row. Each column

represents a separate grouping of the difference, with the range for each group listed at the top of each column.
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We examined the difference between eq. 1 and eq. 7
when calculating the probability of observing at least one
positive trap. To accomplish this, we set n; = 1000 and
used sequences of values for P(S5|S{)™ (0.025, 0.05, ...,
0975), QZS]YZ] (5, 10, ..., 25), and N1¢1 (QZS]I’Z], QZS]I’Z] +1, ...,
500). We calculated the sampling fraction for each combina-
tion as ¢ny/ Ni¢;. We computed N; as n; divided by the
sampling fraction and rounded to the nearest integer. The

reason for calculating the variables as described was to force
rounding to the nearest integer to occur only on Nj.

Results

Overall, estimates of P(S; |S]) computed using eq. 5 were
larger than simulated estimates (Fig. 3). The mean differ-
ence between the simulated and equation-based estimates

was 0.0166 with a root mean square error of 0.025. The
largest difference, 0.19, was observed when A/A, = 50 and
the proportion of the stage-one sampling unit with the pest
present was 0.5. The smallest difference, 0.000 05, was ob-
served when A/A, = 4450 and the proportion of the stage-
one sampling unit with the pest present was 0.025.
Generally, the bias was larger when the trap was large com-
pared with the area of the stage-one sampling unit (A;/A,)
and when a large proportion of the stage-one sampling unit
was infested (¢,/A;) (Fig. 3). When considering only those
situations that are likely to occur when designing surveys at
broad spatial scales, the bias is <0.005 (Fig. 3a).

We examined differences in estimates of P between eq. 1
and eq. 7 for several combinations of sampling fraction,
P(S;|S7), and ¢n;. Generally, the difference between the
two estimates of P was <0.005 (Fig. 4). However, when the
sampling fraction was, for instance, >0.3, P(S5|S]) was set
to a moderate value (e.g., 0.3-0.8), and ¢ n; was small (e.g.,
5), the difference between the estimates of P was >0.02
(Fig. 4). Although the difference between the estimates of P
was often small, these differences in P can have a substan-
tial influence on n; when the target precision of the survey
is high.
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Fig. 5. The North American hexagon from the EMAP sampling grid and areas of risk (shaded) for a hypothetical forest pest.
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Surveillance methodology example

White et al. (1992) developed a global Environmental
Monitoring and Assessment (EMAP) sampling grid that
serves as the basis for the US Forest Service Forest Inven-
tory and Analysis Phase 2 (forest mensuration) and Phase 3
(forest health) surveys (Reams et al. 2005). The EMAP sam-
pling grid was developed from a truncated icosahedron
made up of 20 hexagons and 12 pentagons covering the
planet, with one hexagon advantageously placed to cover
North America (Fig. 5). A noteworthy aspect of the EMAP
grid’s configuration is that this hexagon can be systemati-
cally intensified, yielding a wide range of potential sample
frames. This provides a straightforward framework for creat-
ing a systematic, hexagonal survey lattice. In this case, each
hexagon created through intensification represents a stage-
one sample unit that may be chosen.

Figure 5 displays a US risk map for a hypothetical non-
native pest that attacks oaks (Quercus spp.). Suppose we
wanted to design a survey to substantiate freedom from our
hypothetical pest outside its currently limited introduction

gl f
%

area. More specifically, we want to determine whether the
pest exists in >5% of the stage-one sample units (¢; =
0.05) at a within-unit prevalence (¢,) of >50 km?, with
90% certainty (P = 0.9). The effective area of our traps is
1 km?2 (A,); based on the risk map, there are approximately
920 975 km? of forest area at risk (R,). In practice, we use
eq. 7 and vary n; and n, until the desired P is obtained.
However, we must also have an estimate of Ny and A; to
apply eq. 7. For this example, we estimated these two vari-
ables using an iterative approach applied to the risk map in
Fig. 5. The risk map was a raster spatial data layer where
each cell was coded as either O = no risk or 1 = risk (out-
side of the US boundary = null), and each cell was
2.5 km x 2.5 km. We read the risk map into the R statisti-
cal package (R Development Core Team 2006) as a matrix
with the same values and dimension as the geospatial data.
R, was the product of the number of cells at risk and the
cell size (6.25 km?2). The total area (T,) was the product of
the number of cells (disregarding null values) and the cell
size. For any value of n;, the total number of stage-one
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Table 1. Results from hypothetical

example.

n n P Crotal ($)
859 1 0.900 515400
588 2 0.908 499 800
484 3 0.900 532400
421 4 0.906 568350
381 5 0.911 609 600
346 6 0.908 640100
317 7 0.900 665 700
303 8 0.900 712050
290 9 0.915 754 000
271 10 0.900 772350

Note: Power is based on eq. 7 and
using eq. 5 to estimate P(S; [S]) with
n, primary sampling units and 7,
traps per primary sampling unit.
Total cost (C,) was minimized
with n, = 588 and n, = 2.

sample units that would cover the United States (Nt) was cal-
culated as Ty X n/R4. For simplicity, we considered each pri-
mary sampling unit to be a square where the length of each
side (L), in units of number of cells from the original risk
map, was the number of rows in the original risk map divided
by N(T)'S. Ay, in square kilometres, was then L2 x 6.25 km? and
N, was the number of stage-one sampling units of size A that
contained risk from the original map. We solved eq. 7 for n| =
100 to 1000 and n, = 1 to 10, estimating N, and A, for each
value of n, and selected the first n; which achieved our goal
of P =0.9 for each value of n,.

To determine the optimal solution with respect to cost, we
used a slightly modified version of eq. 3. The cost of travel-
ing to a single stage-one sample unit to place (and eventu-
ally retrieve) a trap was US$400 (C,). The cost of the trap
itself and of hiring an entomologist to examine its contents
was $200 (Cr). The cost of adding a second trap to an
already-sampled stage-one unit was $50 (Ct,). The resulting
cost function was

Ciotl = C4 X 11 + Cr X ny X ny + Cra(ny — 1)ny

The optimal solution was the values of n; and n, where the
total cost was minimized. Based on our hypothetical costs,
the optimal solution was n; = 588 and n, = 2, which had a
total cost of approximately US$499 800 (Table 1).

We followed the procedures outlined in Coulston et al.
(2008) to develop a survey grid based on sampling n; stage-
one units. The first step was to estimate the intensification
factor for the North American hexagon required to meet our
objective of surveying 588 (hexagonal) units. We used the
equation given by Coulston et al. (2008):

8] X = 5783883 (Z‘

) = 5783883 x 588 x 9209757!
A

=3693

where X is the estimated intensification factor for the North
American hexagon and 5783833 is the coefficient from a
nonlinear regression model that relates the estimated sample
unit size to intensification factor.
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The geometric properties of the North American hexa-
gon and its underlying triangular grid permit it to be
systematically intensified by three, four, seven, or any fac-
tor sequence combining these numbers (White et al. 1992).
Therefore, for computational purposes, the estimated
intensification factor X must be rounded to the closest
product of an eligible factor sequence. The closest possible
product (and sequence) to our target X = 3693 was 3888
(3 x 3 x3 x3x3 x4 x 4). Because risk maps gen-
erally have moderate to low spatial and thematic accuracy,
we considered each hexagon that contains any risk to be
completely at risk. Selecting all hexagons at risk yielded
N; = 1820 total stage one sampling units. From this set,
n; = 588 sampling units were selected randomly (Fig. 6).
The value of A; was 1536.8 km2. We verified the power
of our sample design using eq. 7; the probability of detect-
ing at least one positive trap was 0.916.

Discussion

Our chief objective was to develop a practical method for
determining an appropriate sample size to substantiate free-
dom, at a specified level of confidence, from an invasive
forest pest using a global sampling grid. Depending on the
pattern of risk observed from a risk map, it may be appro-
priate to treat the stage-one sample as being drawn from an
infinite population. However, we suggest that, if the stage-
one sampling fraction is high or the desired precision is
high, then eq. 7 should be used. Regarding the stage-two
portion of the sample size equation, the equations presented
by Cameron and Baldock (1998) for sampling animals in
livestock herds may be straightforwardly translated to sam-
pling trees in forested landscapes for forest diseases and
some insect pests (see also Hall et al. 2005, 2007; Venette
et al. 2002). However, in the case of certain mobile pests, a
sampling approach based on discrete, count-based variables
does not translate directly because the sample is an area
(e.g., the effective area of a trap) rather than a number of
individuals. As a result, it is necessary to extend the existing
approaches to two dimensions. We have shown an analytical
method (eq. 5) that applies for most broad spatial scale sce-
narios in which these techniques would be relevant; how-
ever, there are two scenarios where eq. 5 is not appropriate.
This occurs when the ratio of the stage-one sample unit area
to trap effective area (i.e., the stage-two sample unit area) is
very low and when the infested proportion of a stage-one
sample unit is high (Fig. 3). Regarding the second scenario,
it is unlikely that one would still be trying to establish free-
dom from a pest if a large proportion of forested land has
already been invaded by the pest. Anecdotal evidence of the
pest’s presence is likely to be substantial at that point. Re-
garding the first scenario, for most broad-scale surveys, the
stage-one sample unit area will be much larger than the trap
effective area so this situation is not particularly relevant for
national-scale surveys. However, if either of the scenarios
described above are applicable, a simulation approach
should be used to estimate P(S, |ST).

We have described a two-stage sampling approach that
uses the relationship between (i) the number and area of
stage-one sample units and (ii) the effective trap area to de-
termine the optimum sample size for a given spatial domain,
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Fig. 6. Final set of n; = 588 stage-one sample units (shaded). The sampling hexagons that were not selected are not shaded. N; = 1820 and

the sampling fraction was 0.323.
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provided that the statistical confidence and pest prevalence
are specified a priori. As illustrated by our example, a typi-
cal population of interest might be the total forest area con-
sidered high risk for invasion by a forest pest. It is
straightforward to extend this to a multistage sample by ap-
plying it to one or more additional risk strata. For instance,
an analyst might want to determine appropriate sample sizes
for each of three risk levels (high, moderate, or low) in a
pest risk map; in such a case, the analyst could adopt differ-
ent levels of confidence and (or) different levels of pest
prevalence to reflect reduced risk in the moderate and low
risk strata. As the precision of risk maps increases the use
of multistage sampling framework will also likely increase.
Increased precision of risk maps will allow for more precise
delineation of the population of interest.

Issues of sensitivity and specificity are worth considering
for any sampling protocol. As currently formulated, our ap-
proach assumes perfect testing; briefly, if the area infested
by a pest falls within a trap’s effective area, then we assume
the pest is always detected, and by extension, that the stage-
one sample unit in which the trap falls is positive for pres-
ence of the pest. More realistically, any detection process is
imperfect, and so, there are possibilities of false positive and
false negative results (Hughes 1999; Morrison et al. 2007;

Venette et al. 2002). In the case of detecting a forest pest
using traps, sensitivity is a more manageable concern, not
least because it is likely impossible to calculate the prob-
ability of false positives and thus the specificity of a trap-
level test. Cameron and Baldock (1998) addressed the issues
of sensitivity and specificity by modifying the hyper-
geometric formula to account for probabilities of false posi-
tives and negatives in individual-animal disease screens and
showed how these probabilities can be translated to herd-
level sensitivity and specificity when calculating sample
size. One avenue of further research is exploring an altera-
tion of our analytical formula that would represent effective
trap area not as a discrete area but as a circular continuum
of confidence, such that confidence is 100% at the center of
the circle and decays to zero at a specified distance from the
center. Our reasoning is that, regardless of other environ-
mental factors that might affect whether a pest ends up in a
trap, the effectiveness of the pheromone or other attractant
used in the trap will certainly decline with distance (Byers
et al. 1989; Helland et al. 1984). Lure point transect sam-
pling methods, which are intended to estimate the prob-
ability of an organism’s capture based on distance from a
lure, may be informative in this regard (Buckland et al.
2006).
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The approach presented here adopts a key simplifying as-
sumption with respect to spatial pattern: that the infested
area in a given stage-one unit can be appropriately repre-
sented as a single circle. A circle is the most compact of all
polygons in terms of perimeter/area ratio, but a pest is likely
to infest a potentially complex and irregularly shaped patch
of the stage-one unit or, perhaps, multiple disconnected
patches. As pattern complexity increases, the perimeter/area
ratio also increases. When the perimeter/area ratio increases,
the amount of additional area that must be accounted for
bcecause of the trap area also increases, and the probability
of failing to detect the pest’s presence decreases. In other
words, the more complex is the pattern (and, thus, the higher
the perimeter/area ratio) exhibited by an infestation in a
given landscape, the more likely that a trap randomly placed
on that landscape will intersect the infested area. Our circle-
based approach gives a conservative estimate for the number
of samples necessary to demonstrate freedom from a forest
pest. However, a second avenue of future research is to ex-
tend our analytical formula to incorporate more complex in-
festation patterns and thus improve both realism and
performance.

Our explanation operates largely from the perspective that
a user, when calculating sample size, is focused on achiev-
ing a desired level of confidence given certain pest preva-
lence levels within and among forested landscapes.
Nonetheless, as Cameron and Baldock (1998) suggest, if
prevalence levels are low but the desired confidence is
high, a large sample size and potentially expensive survey
may result. This emphasizes the utility of a cost function
that incorporates expenses such as trap placement as well as
analysis of the trap contents through time in determining an
optimal solution. However in some situations, the budget
will be the limiting factor, i.e., the user will know how
many samples or traps he or she can afford to place and
analyze. In such cases, it is possible to back-calculate using
our formulae to establish the detection power given the af-
fordable sample size.

An overall aim of this research was development of meth-
ods, including optimum sample size determination, to gener-
ate broad spatial scale (e.g., national-scale) survey schemes
for substantiating freedom for invasive forest pests. Our pro-
posed approach is consistent with ISPM guidelines for tar-
geted pest surveys (Food and Agriculture Organization
1995, 1998) and also addresses the recommendation of
Lodge et al. (2006) to “use new technology to improve ac-
tive surveillance of invasive species to increase the success
of rapid response and eradication efforts” (p. 2045). Indeed,
the techniques we employ provide tools for pest managers to
construct surveys rapidly once a risk map has been created.
Although other probabilistic methodologies for determining
pest-free status have been proposed (e.g., Barclay and
Hargrove 2005), our risk map based approach has the further
advantage of translating directly into a spatially referenced,
cost-effective pest surveillance strategy (Regan et al. 2006).
Lodge et al. (2006) also recommended the development of
more quantitative approaches to risk analysis. We support
their recommendation and expect the cost-efficiency of sur-
vey grids to substantiate freedom from an invasive pest to
increase with improvement in risk analysis and risk map-
ping. Our hypothetical pest example demonstrates how,
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once the sample size is determined, it is possible to use this
number to intensify the EMAP hexagon for North America
and generate a wall-to-wall tessellation of sampling poly-
gons for the conterminous United States (see also Coulston
et al. 2008). With respect to sampling other countries or re-
gions, any of the 19 other hexagonal faces in the EMAP
sampling grid may be intensified in a similar manner; some
regularity would be lost when intensifying one of the 12
pentagonal faces, but it is relatively straightforward to shift
the grid and optimally place a hexagon over any target area
of interest (White et al. 1992).

Finally, the USDA Forest Service, in cooperation with
other agencies, has recently produced national-scale risk
maps for non-native forest pests that have been regularly de-
tected at ports of entry yet never found to be introduced be-
yond port facilities. This sort of “preemptive’ risk analysis
has also been completed for pests threatening Europe, New
Zealand, and other parts of the globe (e.g., MacLeod et al.
2002; Pitt et al. 2007). Such risk maps may also function as
inputs for our sampling method, giving forest health manag-
ers a simple way to allocate resources for best determining
the current status of these pests within their country or re-
gion of interest.
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