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True versus perturbed forest inventory plot
locations for modeling: a simulation study

John W. Coulston, Kurt H. Riitters, Ronald E. McRoberts, Greg A. Reams, and
William D. Smith

Abstract: USDA Forest Service Forest Inventory and Analysis plot information is widely used for timber inventories,
forest health assessments, and environmental risk analyses. With few exceptions, true plot locations are not revealed;
the plot coordinates are manipulated to obscure the location of field plots and thereby preserve plot integrity. The influ-
ence of perturbed plot locations on the development and accuracy of statistical models is unknown. We tested the hy-
pothesis that the influence is related to the spatial structure of the data used in the models. For ordinary kriging we
examined the difference in mean square error based on true and perturbed plot locations across a range of spatial
autocorrelations. We also examined the difference in mean square error for regression models developed with true and
perturbed plot locations across a range of spatial autocorrelations and spatial resolutions. Perturbing plot locations did
not significantly influence the accuracy of kriging estimates, but in some situations linear regression model develop-
ment and accuracy were significantly influenced. Unless the independent variable has high spatial autocorrelation, only
coarse spatial resolution data should be used to develop linear regression models.

Résumé : Les données des placettes du programme d’analyse et d’inventaire forestier du service des forêts du départe-
ment de l’agriculture des États-Unis sont largement utilisées pour inventorier les ressources ligneuses, évaluer la santé
des forêts et analyser les risques environnementaux. À quelques exceptions près, l’emplacement réel de ces placettes
n’est pas révélé; leurs coordonnées sont manipulées pour cacher leur localisation sur le terrain et ainsi préserver leur
intégrité. De ce fait, l’influence de la modification de l’emplacement des placettes sur le développement et la précision
des modèles statistiques est inconnue. Nous avons testé l’hypothèse que cette influence est reliée à la structure spatiale
des données utilisées dans les modèles. Pour le krigeage ordinaire, nous avons examiné la différence entre l’erreur qua-
dratique moyenne obtenue avec l’emplacement réel et celle obtenue avec l’emplacement modifié pour une gamme
d’autocorrélations spatiales. Nous avons aussi examiné la différence entre l’erreur quadratique moyenne des modèles de
régression basés sur l’emplacement réel et l’emplacement modifié pour une gamme d’autocorrélations spatiales et de
résolutions spatiales. La modification de l’emplacement des placettes n’a pas influencé significativement la précision
des estimations du krigeage mais, dans certaines situations, le développement et la précision du modèle de régression
linéaire ont significativement été influencés. Ainsi, à moins que la variable indépendante ait une autocorrélation spatiale
élevée, seules les données à faible résolution spatiale devraient être utilisées pour développer les modèles de régression
linéai

[Traduit par la Rédaction] Coulston et al. 807

Introduction

The USDA Forest Service Forest Inventory and Analysis
Program (FIA) collects data on tree and forest attributes us-
ing a design assumed to produce a random equal-probability
sample. These data are used for many purposes, including
timber inventories, forest health assessments, risk assess-
ments, and predictive modeling of forest attributes. To pre-
serve landowner privacy and field-plot integrity, true plot
locations are not available to the general public. To enable
data access while preserving privacy, FIA has proposed sev-
eral methods of manipulating plot coordinates. This paper
examines the effects of these manipulations on the develop-
ment and accuracy of two types of statistical models.

FIA field plots are part of a three-part sample of forests in
the United States. The base FIA sample is a 27× intensification
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of the Environmental Monitoring and Assessment Program
(EMAP) isotropic sampling grid (White et al. 1992). The
nominal sampling intensity is one plot per 2403 ha (Brand
2004). The sampling grid is triangular and each sample point
is represented by a hexagonal Thiessen polygon. Each hexa-
gon contains one randomly located FIA field plot (Reams et
al. 2005).

Because plots are located on both public and private prop-
erties, private owners’ awareness of the inventory and grant-
ing access for measurements are essential. For that reason,
the true plot locations have always been confidential. Prior
to 2002, field-plot locations were revealed within approxi-
mately 1.6 km of the true location. New methods of perturb-
ing plot locations are needed because of recent legislation
designed to improve data access while protecting landowner
privacy (Smith 2002).

There is no national standard for perturbing plot locations,
but there are guidelines that may be satisfied at the regional
level using different techniques. One method currently used
is to perturb plot locations by manipulating plot coordinates
and “swapping” (i.e., exchanging) data among plots. Plot co-
ordinates are manipulated by randomly shifting the x and y
coordinates of the true locations for all plots. Swapping plot
attributes involves the exchange of observations among some
plots. Plot coordinates are usually only shifted within a sin-
gle county, and plot attributes are only swapped if the plots
are sufficiently similar (Lister et al. 2005). This ensures that
county-level estimates are not influenced. However, perturb-
ing plot locations influences the spatial characteristics of the
data and therefore can influence the development and accu-
racy of spatially explicit predictive models.

Many spatial statistical models have been developed with
FIA data. For example, Jenkins et al. (2001) developed mod-
els to predict biomass and net primary production for 0.5°
cells tiling the mid-Atlantic region of the United States.
Moisen and Frescino (2002) compared five predictive mod-
eling techniques using FIA data as response variables, with
explanatory variables derived from satellite imagery. Coulston
et al. (2003) used ordinary kriging to predict potential ozone
injury and assess ozone injury risk to ozone-sensitive north-
eastern tree species. Morin et al. (2003) used FIA field plot
data and median indicator kriging to interpolate a surface of
percent forest basal area of species susceptible to Phytoph-
thora ramorum (a fungus-like organism that causes sudden
oak death). The interpolated surface was then intersected
with other spatial data and used to assess the potential sus-
ceptibility of eastern forests to P. ramorum.

An earlier case study (Coulston et al. 2006) examined the
influence of perturbed plot locations on the accuracy of ordi-
nary kriging and residual kriging estimates of forest biomass.
For residual kriging, a regression model was developed to
predict forest biomass using percent forest cover and leaf
area index (LAI; estimated from MODIS satellite imagery)
on a per-plot basis. The model residuals were then kriged,
and the final biomass estimate was the sum of the regression
model estimate plus the predicted residual from kriging. For
both models, there were no statistically significant differ-
ences (α = 0.05) between the accuracy of the models devel-
oped with the true FIA plot locations and the accuracy of the
models developed with the perturbed FIA plot locations.
However, it was noted that the influence of perturbed plot

locations on the accuracy of ordinary kriging estimates is re-
lated to the spatial autocorrelation of the data. Furthermore,
because the explanatory variable in the regression model
was obtained by intersecting continuous raster data with dis-
crete plot locations, the influence on model development and
accuracy was related to the spatial resolution and autocorre-
lation of the explanatory data.

The general objective of this study was to develop practi-
cal guidelines for developing spatial models using FIA plot
data with perturbed locations. We systematically address key
modeling issues through simulations to evaluate (1) the in-
fluence of perturbing FIA plot locations on the accuracy of
ordinary kriging estimates across a range of spatial auto-
correlation and (2) the influence on the development and ac-
curacy of linear regression models across a range of spatial
resolutions and spatial autocorrelations of the explanatory
variable.

Methods

Database development
True and perturbed plot locations, along with plot mea-

surements, were obtained for 12 730 FIA plots in Minnesota.
Plot locations were perturbed according to procedures used
by the regional FIA program. Here the term “perturbed” is
used to indicate both plot coordinate manipulation and the
exchange of plot attributes. We randomly extracted 100 test
plots for model comparisons. Models were developed with-
out the test plots, and predictions were made for each test
plot. This allowed us to compare the accuracy of the models
based on true locations with that of models based on per-
turbed locations.

There are many continuous forestry variables of interest in
modeling exercises (e.g., forest biomass, percent forest cover).
For example, Coulston et al. (2006) examined the influence
of using perturbed plot locations on predictive models of
forest biomass. However, in this case rather than arbitrarily
selecting one particular forestry variable, we used data sam-
pled from simulated maps that were normally distributed
with mean zero and unit variance (N(0,1)). Several forestry
variables can be approximately normally distributed (e.g.,
basal area, growth) or can be normalized, and all variables
can be standardized to mean zero and variance one by sub-
tracting the mean from each observation and then dividing
that value by the standard deviation. Also, using normally
distributed data ensured that we did not violate the statistical
assumptions about linear regression errors.

The simulated maps were created at spatial resolutions ap-
proximating satellite imagery (30–1000 m) and climate-model
output (2000 m). We used the R statistical package GaussRF
function (Schlather 1999) to simulate Gaussian random fields
with known spatial characteristics. A random field is the
two-dimensional equivalent to the one-dimensional stochas-
tic process (Schlather 2001) and can be described by its
variogram (see Isaaks and Srivastava 1989). In variogram
models, the “nugget” refers to the y intercept (a function of
microscale variation or measurement error), the “sill” refers
to the maximum value of semivariance (i.e., the total varia-
tion in the data), the “scale” refers to the portion of
semivariance explained by distance, and the “range” is the
distance at which the semivariance reaches 95% of the sill.
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The strength of the spatial autocorrelation can be quantified
by a measure similar to the nugget-to-sill ratio proposed by
Kravchenko (2003):

[1] c
v

v v
=

+
1

0 1

where, c is the spatial autocorrelation, v0 is the nugget, v1 is
the scale, and v0 + v1 is the sill.

We used a spherical variogram model to generate raster
maps for Minnesota with mean zero and variance one for
five spatial resolutions r = (30, 250, 500, 1000, 2000 m) and
eight spatial autocorrelations c = (0.01, 0.05, 0.15, 0.35,
0.55, 0.75, 0.95, 0.99). To generate the eight levels of spatial
autocorrelation v0 and v1 were allowed to change but the sill
(v0 + v1) and range remained constant. The range was con-
stant at 20 km, and the sill was constant at one. The final set
of simulations included 40 raster maps of continuous data
ranging from 30 to 2000 m in spatial resolution and with
spatial autocorrelation c = 0.01 to c = 0.99. All maps, except
the 30 m resolution maps, encompassed Minnesota (Fig. 1).
(Because of computer limitations, raster maps with more
than 6000 cells per side could not be generated.) Random
sampling of these maps produced an N(0,1) variable for each
map. Figure 2 shows an example of the simulated 500 m res-
olution data for three levels of spatial autocorrelation and the
histograms based on sampling these maps using the FIA plot
locations.

Ordinary kriging
Ordinary kriging (see Isaaks and Srivastava 1989) is a

standard interpolation technique used to estimate values at
unmeasured locations. We used the r = 250 m spatial resolu-
tion maps with spatial autocorrelations of c = (0.15, 0.35,

0.55, 0.75, 0.75, 0.99) to examine the influence perturbed
plot locations have on the accuracy of kriging estimates. We
did not use maps with spatial autocorrelation of c = (0.01,
0.05) because it is unlikely that kriging will be used if the
spatial autocorrelation is that low. Each of the six maps were
intersected with the true FIA plot locations to create a data
set where each record had the true plot location, the per-
turbed plot location, and a value extracted from each of the
six simulated maps. After removing the 100 randomly se-
lected test plots, empirical semivariograms were calculated
for each level of spatial autocorrelation based on the true
plot locations and the perturbed plot locations. The empirical
variograms based on the true plot locations were then mod-
eled using a spherical model (Isaaks and Srivastava 1989)
and nonlinear regression. For the perturbed plot locations,
the empirical variograms were modeled using spherical,
Gaussian, and exponential models. Multiple models were
used to account for possible differences in model selection
as a result of not knowing the real model a priori. The re-
sulting parameter estimates were applied in ordinary kriging
to estimate values at each true location of the test plots. Next
we calculated the mean squared error (MSE) of prediction:

[2] MSE p p
in

k k= −
=
∑1 2

1

100

( � )

where p = 0 denotes true locations, p = 1 denotes perturbed
locations, k is the actual value from intersection, and �k p is
the estimate from kriging for the n = 100 test plots. We used
an analysis of variance (ANOVA) to test the null hypothesis
that MSE0 = MSE1 for each level of spatial autocorrelation
and variogram model.

Linear regression
In a regression model, the dependent variable may come

from field-plot observations and the independent variable
may come from a raster map. The objective of this analysis
is to examine the influence of perturbed plot locations on re-
gression model development and accuracy, for different lev-
els of spatial resolution and spatial autocorrelation. We also
tested whether the influence is related to the correlation be-
tween dependent and independent variables. For this purpose,
we constructed several data sets such that the dependent
variables had known correlations with the independent vari-
ables.

The following procedures were used to construct data sets
of dependent variables representing the field-plot observa-
tions. Let D be a field-plot observation (dependent variable),
and let I be a value for that location from a raster map (inde-
pendent variable). We simulated D values from the I values
by adding a controlled amount of variance to the I values as
follows. Note that for the case of perfect correlation (ρ = 1.0),
D is a linear function of I. For the case of less than perfect
correlation (ρ < 1.0), D can be derived from I by the follow-
ing equation:

[3] D a
Z
L

Im
m

= +
⎛

⎝
⎜

⎞

⎠
⎟

where a is an arbitrary constant, Z is a normally distributed
random variable with mean zero and variance one, and Lm is
a factor used to control the resulting correlation between I

© 2006 NRC Canada

Coulston et al. 803

95°W

50°N

90°W

45°N

Ontario
Manitoba

Iowa

Minnesota

Nebraska

South
Dakota

Wisconsin

North
Dakota

0 200 400 km

N

Fig. 1. Location and relative areal extent of simulated raster
maps. The solid line represents the 30 m spatial resolution maps,
and the broken line represents all other maps.



and D. Note that when Lm = 3, the correlation between I and
D is approximately 0.95. For Lm = 2.0, 1.5, and 1.21, the re-
sulting correlations are approximately 0.89, 0.84, and 0.77,
respectively. These correlations, in turn, represent linear re-
gression models for which the R2 values are 0.9, 0.8, 0.7,
and 0.6, respectively. We use the subscript m to denote these
four “true R2’s”.

For each of the simulated maps representing different lev-
els of spatial resolution and spatial autocorrelation (described
earlier), eq. 3 was applied to generate four simulated plot-
level dependent variables. After intersection with maps of
true and perturbed plot locations, each record in the resulting
data set had values from the four dependent variables (corre-
sponding to different levels of m), the value of the “true” in-
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Fig. 2. Examples of the simulated r = 500 m resolution data for spatial autocorrelations (a) c = 0.95, (b) c = 0.55, and (c) c = 0.15.
The white box shows a 4× zoom for (d) c = 0.95, (e) c = 0.55, and (f) c = 0.15. Note that as c decreases, the spatial pattern approaches
randomness and the maps have a “salt and pepper” appearance. The histograms were created by sampling each map with the FIA plot
locations for (g) c = 0.95, (h) c = 0.55, and (i) c = 0.15.



dependent variable (based on the true plot location) and the
value of the “perturbed” independent variable (based on the
perturbed plot location) for each level of spatial resolution
and spatial autocorrelation.

After removing the 100 randomly selected test plots from
the data sets, regression models were developed using ordi-
nary least squares and the linear model

[4] D a b Ircmp rcmp rcmp rcp= + + ε

where arcmp is the intercept for spatial resolution r, spatial
autocorrelation c, true R2 m, and for p = 0 (true locations)
and p = 1 (perturbed locations); brcmp is the slope for spatial
resolution r, spatial autocorrelation c, true R2 m, and for p =
0 and p = 1; Ircp is the value of the independent variable
based on intersection for spatial resolution r and spatial auto-
correlation c using p = 0 and p = 1; and � is the uncorrelated
error ~N(0,σ2).

A total of 320 regression models were developed. The re-
gression models were then applied to the 100 test plots to
calculate �Drcmp. We calculated the mean square error of pre-
diction as

[5] MSE p rcm rcmp
in

D D= −
=
∑1 2

1

100

( � )

and tested the null hypothesis that MSE0 = MSE1 for each
level of r, c, and m.

Results

Ordinary kriging
Perturbed plot locations did not influence the accuracy of

kriging estimates for any level of spatial autocorrelation re-
gardless of the variogram model used for the perturbed loca-
tions. While it did cause a 1%–4% increase in the nugget
(increase in local-scale variation), the null hypothesis that
MSEtrue locations = MSEperturbed locations was not rejected (α =
0.05) (Table 1). The largest difference between MSEs was at
the c = 0.95 spatial autocorrelation level when the exponen-
tial variogram model was used; however, this difference was
not statistically significant.

Linear regression
Perturbing plot locations influenced both the development

and accuracy of linear regression models. For comparisons,
we arbitrarily identified the circumstances where perturbed

locations reduced the model R2 to less than 0.40. The effects
of perturbed locations were most evident for regression
models developed from explanatory data with relatively fine
resolution (e.g., r = 30 m) and low spatial autocorrelation
(e.g., c = 0.01) (Table 2). However, the effect of perturbed
locations on each combination of spatial resolution and spa-
tial autocorrelation was also influenced by the strength of
the relationship (i.e., the true R2). In general, as the true R2

decreased, statistically significant differences (α = 0.05) in
MSE were less likely to occur and model R2’s < 0.40 were
more likely to occur.

For the true R2 = 0.90 scenario, model R2’s fell below
0.40 when the spatial autocorrelation was c ≥ 0.55 except for
spatial resolutions of r = (1000, 2000 m) (Table 2). Models
were more likely to have R2’s ≥ 0.40 for this scenario. How-
ever because this scenario was based on a relatively strong
relationship between the dependent and independent vari-
ables, significant differences (α = 0.05) in MSE between es-
timates based on true plot locations and estimates based on
perturbed plot locations were more likely to occur. This point
was illustrated by the r = (30, 250 m) resolutions where sig-
nificant differences (α = 0.05) in MSE were found for all
levels of spatial autocorrelation except for c = (0.95, 0.99).

When the true R2 = 0.80, model R2’s below 0.40 and sta-
tistically significant difference (α = 0.05) in MSE occurred
under similar levels of r and c (Table 2). This overlap in-
cluded all simulations where r = 30 m and the spatial auto-
correlation was c ≤ 0.75. Simulations where r = (250, 500 m)
and spatial autocorrelation was c ≤ 0.55 were also included
in this overlap. Conversely, when the spatial resolution was
2000 m, the only case where the R2 < 0.40 was for the c =
0.05 spatial autocorrelation level. However, there was no sta-
tistical difference (α = 0.05) in MSE under this situation.

For the true R2 = 0.70 and true R2 = 0.60 scenarios with
spatial resolutions r < 1000 m the results were the same.
Only data with a very high spatial autocorrelation c > 0.75
produced models with an R2 ≥ 0.40 for the r = (30, 250,
500 m) resolutions. However, for these resolutions statisti-
cally significant differences (α = 0.05) in MSE were only
found when the spatial autocorrelation was c ≤ 0.35.

Discussion

Our results suggest that perturbing plot locations does not
significantly influence the accuracy of kriging estimates, but
the development and accuracy of simple linear regression
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True locations Perturbed locations

Spherical Spherical Gaussian Exponential

c MSE MSE P >F MSE P >F MSE P >F

0.15 0.747 0.748 0.993 0.747 0.999 0.751 0.972
0.35 0.739 0.731 0.956 0.749 0.953 0741 0.990
0.55 0.436 0.425 0.882 0.441 0.954 0419 0.819
0.75 0.446 0.450 0.966 0.459 0.886 0.458 0.895
0.95 0.258 0.289 0.559 0.287 0.519 0.296 0.487
0.99 0.205 0.217 0.808 0.239 0.547 0.221 0.737

Table 1. Mean square errors (MSE) from kriging estimates and probability of a greater F
statistic under the null hypothesis MSEtrue locations = MSEperturbed locations for each level of
spatial autocorrelation c and each variogram model (spherical, Gaussian, and exponential).



models is significantly influenced in some situations. We
can suggest some general guidelines for simple linear re-
gression with an FIA plot attribute as the dependent variable
and an independent variable obtained by intersecting contin-
uous raster data with perturbed plot locations. First, coarse
spatial resolution (e.g., 1000–2000 m) data should be used
when the spatial autocorrelation of the explanatory variable
is less than 0.75; finer resolution raster data (e.g., 30–500 m)
should only be used if the spatial autocorrelation is greater
than 0.75. Second, if fine-resolution models to predict plot
attributes are to be developed from maps exhibiting low spatial
autocorrelation, then it is necessary to have true plot loca-
tions or to use one of the FIA Spatial Data Services Centers
(http://www.fs.fed.us/ne/fia/spatial/index_ss.html) to perform
the intersection using true plot locations.

Lister et al. (2005) described how to exchange plot attrib-
utes using a similarity value based on Euclidean distance be-
tween plots, forest-type group, and productivity class. This
ensures that only plots with some degree of similarity have
their attributes swapped. In general, only a small percentage
of plots have their attributes swapped (McRoberts et al. 2005).
However, for forest characteristics such as biomass that are
related to forest-type group and productivity class, the effect
of exchanging data is probably less than our analysis would
indicate. For other variables such as tree damage and lichen
communities that are not strongly related to forest type and

productivity class, our results represent a worse-case sce-
nario because there is no relationship between the dependent
variables and the variables used to determine swapping.

Our approach could be extended to consider other spatial
data types such as categorical raster data, continuous vector
data, and categorical vector data. Our findings should apply
to predictive models (e.g., Moisen and Frescino 2002), where
FIA plot data are the dependent variables and the independent
variables are derived from spatial intersection of ancillary
data. The two most important characteristics of the ancillary
data are the spatial resolution and the spatial autocorrelation.
In the case of vector data, the minimum mapping unit corre-
sponds to the spatial resolution. In the case of categorical
data, “contagion” is analogous to spatial autocorrelation. Plots
with perturbed locations have a higher probability of being
assigned a “correct” value or similar value during intersec-
tion when the ancillary data have a relatively coarse spatial
resolution, or a large minimum mapping unit (vector maps),
or a high degree of contagion (categorical raster maps).

In summary, FIA plot data are valuable for examining a
wide range of environmental topics. Plot confidentiality is
required by law and is necessary to ensure long-term data
collection on private land. The perturbed plot locations that
are available should be used with caution. In some cases
(e.g., ordinary kriging) using perturbed plot locations does
not significantly affect accuracy. In other cases (e.g., linear
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c

0.01 0.05 0.15 0.35 0.55 0.75 0.95

r (m)
Model
R2 P >F

Model
R2 P >F

Model
R2 P >F

Model
R2 P >F

Model
R2 P >F

Model
R2 P >F

Model
R2 P >F

True R2 = 0.60
30 0.00 0.000* 0.00 0.000* 0.01 0.001* 0.07 0.003* 0.20 0.659 0.26 0.854 0.48 0.810
250 0.00 0.000* 0.00 0.000* 0.02 0.004* 0.08 0.009* 0.18 0.226 0.31 0.827 0.48 0.861
500 0.02 0.002* 0.03 0.035* 0.05 0.045* 0.12 0.036* 0.22 0.244 0.34 0.709 0.51 0.939
1000 0.14 0.102 0.15 0.129 0.17 0.137 0.24 0.543 0.32 0.652 0.42 0.844 0.51 0.952
2000 0.30 0.749 0.29 0.792 0.31 0.810 0.38 0.908 0.43 0.837 0.47 0.906 0.52 0.948

True R2 = 0.70
30 0.00 0.000* 0.00 0.000* 0.01 0.000* 0.08 0.000* 0.23 0.326 0.31 0.625 0.56 0.794
250 0.00 0.000* 0.00 0.000* 0.02 0.000* 0.10 0.001* 0.21 0.087 0.36 0.656 0.56 0.808
500 0.02 0.000* 0.03 0.003* 0.05 0.008* 0.14 0.004* 0.25 0.107 0.40 0.574 0.59 0.912
1000 0.17 0.023* 0.17 0.030* 0.20 0.030* 0.28 0.314 0.37 0.462 0.49 0.762 0.60 0.930
2000 0.35 0.564 0.34 0.624 0.37 0.656 0.44 0.790 0.50 0.767 0.54 0.861 0.61 0.925

True R2 = 0.80
30 0.00 0.000* 0.01 0.000* 0.02 0.000* 0.09 0.000* 0.27 0.038* 0.37 0.259 0.65 0.783
250 0.00 0.000* 0.01 0.000* 0.02 0.000* 0.11 0.000* 0.24 0.009* 0.42 0.339 0.65 0.704
500 0.02 0.000* 0.03 0.000* 0.06 0.001* 0.16 0.000* 0.29 0.019* 0.46 0.344 0.68 0.854
1000 0.19 0.001* 0.20 0.001* 0.23 0.001* 0.32 0.071 0.43 0.185 0.56 0.596 0.69 0.884
2000 0.41 0.258 0.40 0.330 0.43 0.369 0.51 0.532 0.57 0.630 0.63 0.766 0.70 0.879

True R2 = 0.90
30 0.00 0.000* 0.01 0.000* 0.02 0.000* 0.09 0.000* 0.30 0.000* 0.42 0.013* 0.73 0.824
250 0.00 0.000* 0.01 0.000* 0.03 0.000* 0.12 0.000* 0.57 0.000* 0.47 0.027* 0.73 0.469
500 0.03 0.000* 0.04 0.000* 0.07 0.000* 0.18 0.000* 0.32 0.000* 0.52 0.070 0.76 0.706
1000 0.22 0.000* 0.22 0.000* 0.26 0.000* 0.36 0.001* 0.49 0.009* 0.63 0.269 0.77 0.766
2000 0.45 0.014* 0.45 0.036* 0.49 0.042* 0.57 0.101 0.64 0.349 0.71 0.533 0.79 0.758

*Rejection of the null hypothesis at or below the α = 0.05 level.

Table 2. Regression model R2 and the probability of a greater F statistic under the null hypothesis MSEtrue locations = MSEperturbed locations

for each dependent variable, spatial resolution r, and spatial autocorrelation c.



regression) using perturbed plot locations can influence both
model accuracy and model development when ancillary data
are intersected with perturbed plot locations. The results pre-
sented here should be used as guidelines to decide when per-
turbed plot locations are sufficient for modeling purposes
and when the FIA Spatial Data Services Centers should be
used to perform spatial overlays.
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