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Abstract 
 
Interpolated surfaces of forest attributes are important analytical tools and have been used in risk assessments, 
forest inventories, and forest health assessments.  The USDA Forest Service Forest Inventory and Analysis 
program (FIA) annually collects information on forest attributes in a consistent fashion nation-wide.  Users of 
these data typically perform interpolations with the kriging or inverse distance weighting methods which requires 
the coordinates of each FIA plot.  However because of privacy issues, FIA uses two methods to manipulate plot 
locations to insure landowner privacy.  The influence these manipulations have on the accuracy of interpolated 
surfaces is unknown.  We investigated the influence by comparing actual and interpolated estimates of forest 
biomass created from data with manipulated coordinates for three interpolation techniques.  We found that kriging 
consistently under-performed the inverse distance and Thiessen polygon methods.  Overall the inverse distance 
method performed best.  We suggest using the inverse distance method for spatial interpolation of FIA data with 
blurred plot coordinates when relatively little spatial autocorrelation exists.   
 
Keywords:   forest inventory and analysis, spatial statistics, cross-validation, Food security act of 1985 
 
1. Introduction 
 
The USDA Forest Service Forest Inventory and Analysis Program (FIA) collects data on tree and forest attributes 
using a systematic sample.  These data are used for many purposes including timber inventories, forest health 
assessments, and risk assessments.  However because of privacy issues actual plots location can not be revealed to 
scientists outside the FIA program.  FIA proposed two methods to manipulate plot locations to insure landowner 
privacy.  They are “fuzzing” and “fuzzing and swapping”.  Fuzzing refers to a random shift in the x,y coordinate 
of the actual plot location.  Fuzzing and swapping refers to a random shift in the x,y coordinate of the actual plot 
location and a random swapping of plot attributes between plots (e.g., tree volume m3ha-1).  The effects these 
manipulations have on the accuracy of spatial interpolations are unknown. 
 
FIA field plots are one part of a 3 phase sample of forests in the United States.  The base FIA sample is a 27x 
intensification of the EMAP isotropic sampling grid (White et al. 1992) and covers the entire United States.  The 



nominal sampling intensity is approximately 1 plot per 2430 ha (Brand 2004).  The EMAP and FIA sampling 
grids are triangular and each grid point is represented by a Thiessen polygon which is hexagonal (Figure 1).  FIA 
used various sampling designs prior to the EMAP sampling grid therefore the location of the FIA field plot within 
the hexagon is not necessarily the center.  The actual location is based on whether there was an existing field plot 
in the hexagon (FIA or Forest Health Monitoring).  If an existing plot was located in the hexagon, then it was 
chosen.  If several existing field plots were present, the one closest to the hexagon center was used.  If no existing 
field plots were present, then a new sample location was selected based on a random azimuth and distance from 
hexagon center (Reams et al. In review).   
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Figure 1.  The EMAP base grid for Minnesota and  

the Thiessen polygon for each plot. 
 
Field plots are located on both public and private properties.    Public and private owner’s awareness of the FIA 
program and granting access to the forest land is essential to the program. For this reason, the exact plot 
coordinates are kept confidential.  The confidentiality policy is consistent with the Privacy Act of 1974 and the 
1985 Food Security Act.  However, new legislation includes further provisions for confidentiality of FIA 
information (Smith 2002).   Prior to 2002, FIA field plot locations were available to the general public outside of 
the FIA program with fuzzed locations within approximately 1.6 km of the actual location.  Currently the 
proposed measures to insure confidentiality are (1) to fuzz 95 percent of plot location to within 0.8 km, (2) fuzz 
the remaining 5 percent within 1.6 km of the actual locations and (3) to swap 1-20 percent of the plots.  Fuzzing 
and particularly swapping can influence the spatial characteristics of the data. 
 
Spatial statistics are widely used in forestry, ecology, and other disciplines.  Many applications of spatial statistics 
in these disciplines use FIA data.  For example, Morin et al. (2003) used FIA field plot data and median indicator 
kriging to interpolate a surface of percent forest basal area of species susceptible to Phytophthora ramorum (a 
fungus-like organism that causes sudden oak death).  This interpolated surface was then intersected with other 
spatial data and used to assess the potential susceptibility of Eastern Forests to Phytophthora ramorum.  In this 
example, Morin et al. (2003) used fuzzed FIA field plot locations.  Coulston et al. (2003) used ordinary kriging to 
predict potential ozone injury at FIA plot locations and assess ozone injury risk to ozone sensitive northeastern 
tree species.  This analysis was conducted using the hexagon centers rather than actual FIA plot locations.  
Coulston et al. (2004) used Thiessen polygons to assess air pollution in forest ecosystems of the United States 
using FIA biomonitoring data with fuzzed plot locations.   
 
The objectives of this study are (1) to examine the influence that plot coordinate manipulations (fuzzing and 
swapping) have on interpolated surfaces of tree biomass using data from Minnesota as an example, (2) to 
investigate whether external users could develop meaningful spatial models based on fuzzed and swapped plot 
locations.  To accomplish this we compared the Thiessen polygon, inverse distance squared weighting, and 
kriging interpolators using the original plot locations.  We then compared the three interpolators using fuzzed and 
fuzzed and swapped replications of the original dataset.   
 
 



2. Methods 
 
2.1 Fuzzing and swapping 
 
We followed the suggested FIA protocols to fuzz and swap plot locations.  The main restriction was that fuzzing 
and swapping occurred at the county level.  Plots from one county were not fuzzed into another county.  
Likewise, plots from one county were not swapped with plots from another county.  This FIA protocol ensured 
that county level summaries were valid regardless of the plot coordinate manipulations.   
 
Fuzzed plot coordinates were generated for each of the 3735 currently measured plots in Minnesota (Figure 2).  
To accomplish this, we randomly selected 5 percent of the plots and fuzzed their coordinates by randomly 
generating an offset distance and randomly generating an offset azimuth.  The offset distance was between 0 km 
and 1.6 km and the offset azimuth fell between 0° and 360°.  For the remaining 95 percent of the of the plots, the 
offset distance was between 0 km and 0.8 km and the offset azimuth was between 0° and 360°.  If the random 
offset placed the plot in a different county then another random offset was generated for that plot.  We created 30 
replications of fuzzed plot locations.   
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Figure 2.  Fuzzed locations of the 3735  

FIA plots used in this analysis. 
 
We used 25 of the fuzzed plot replications to generate the fuzzed and swapped replications.  Five replications of 
fuzzed plot coordinates with each of 1, 5, 10, 15, and 20 percent swap were created.  To swap the desired 
percentage of plots (e.g. 20 percent) we selected all plots within a county.  Twenty percent of the plots were 
randomly selected and added to a list.  Suppose the list was indexed from 0 to n-1 where n was the total number 
of plots in the list and i was the index number.  Then each i plot was swapped with the (n-1) – i plot in the list for 
n > 1.  This swapping was done for each county for each level of swapping (1, 5, 10, 15, 20 percent).  In 
summary, we had 5 replications of fuzzed plot coordinates, 5 replication of fuzzed and 1 percent swapped plot 
coordinates, 5 replication of fuzzed and 5 percent swapped plot coordinates, 5 replication of fuzzed and 10 
percent swapped plot coordinates, 5 replication of fuzzed and 15 percent swapped plot coordinates, and 5 
replication of fuzzed and 20 percent swapped plot coordinates. 
 
2.2 Interpolation techniques 
 
Thiessen polygons (NN), also known as polygonal declustering, and inverse distance weighting (IDW) were the 
simplest interpolation techniques we implemented (see Isaaks and Srivastava 1989 for e.g.).  To interpolate a 



surface from point data using Thiessen Polygons, the area of influence each point represents is determined.  For 
example, in Figure 1 the hexagonal cells are the area of influence for each plot of the triangular grid.  The 
Thiessen polygons are then assigned the same value as the point they represent.  When this technique is used to 
predict a point, it is simply the nearest neighbor method.  Inverse distance weighting is also a nearest neighbor 
method and a low-pass filter in the context that the surface created is relatively smooth.  Adjusting the power to 
which the separation distance is raised and/or the number of nearest neighbors will influence the smoothness of 
the interpolation.  We used both the NN and IDW (based on the twelve nearest neighbors) interpolation 
techniques to predict biomass (t ac-1) in Minnesota based on the real coordinates and each fuzzed and swapped 
replication.   
 
Kriging is also a low-pass filter however this interpolation technique requires several steps to implement.  These 
steps include computing the empirical semi-variogram, modeling the empirical semi-variogram, and applying the 
kriging equations.  Second order stationarity (constant mean and variance) is a requirement when using this 
technique.  We used a square-root transformation to normalize the biomass data, calculated the empirical semi-
variogram, and checked for anisotropy.  We selected the power model based on the form of the empirical semi-
variogram. 
                                                                                    γ(h)=C1(h)a                                                                            (1) 
where, 
γ(h) = the semi-variance at distance h  
C1 = model parameter related to the total semi-variance 
a = model parameter related to the range of autocorrelation.   
 
We fit the power model using weighted non-linear regression where the weight was inversely proportional to 
distance and semi-variance.  The logic behind this weighting was that small semi-variance values near distance 0 
have the most importance when kriging.  This is similar to the weighing proposed by Cressie (1985).  We used 
kriging and a power covariance model to interpolate biomass (t ac-1) in Minnesota based on the real coordinates 
and each of the 30 fuzzed and swapped replications. 
 
2.3 Comparing the results 
 
Cross-validation was used to examine each interpolation technique (NN, IDW, and kriging) using actual plot 
locations.   Cross-validation is a standard statistical technique where each observation is sequentially removed 
from the dataset and an estimate is calculated for the observation that was removed.  To compare the results we 
used 
                                                                               xp=1/n(Σ(vo-vp)

2)                                                                        (2) 
where, 
xp = the average squared prediction error 
n=number of observations 
vo=observed value 
vp=predicted value. 
 
In the case of the fuzzed and fuzzed and swapped replications, we predicted a value at each actual plot location 
for each replication and interpolation technique.  We then used equation (2) to compare observed versus predicted 
values for each of the interpolation techniques.    
 
3. Results 
 
As expected, the kriging interpolator performed better than either the IDW or NN methods (Figure 3) using the 
real coordinates.  IDW had a similar but slightly higher xp. However, both the kriging and IDW displayed bias by 
over-predicting small values and under-predicting large values (Figure 4).  NN did not display this bias but was 
the worst of the interpolators examined using cross validation. 
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Figure 3.  The average squared prediction error (xp) for each interpolation technique based on the amount of 

fuzzing and swapping.  Results for the real plot locations are labeled “none”.  The xp value for the “none” 
category represents how well the interpolation technique predicted unknown value.  All other categories  

represent how closely each interpolation technique estimated the biomass at the actual plot location.   
The values of the “none” category are not comparable with the values of the other categories. 
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Figure 4.  Observed versus predicted values of forest biomass (t ac-1) from the cross-validation analysis  

using the real plot locations for (a) kriging, (b) IDW, and (c) NN. 
 
Using the fuzzed and fuzzed and swapped replications to predict values at each actual plot location we found that 
the best interpolator depended on the amount of coordinate manipulation.  For example, when only fuzzing was 
done, the NN interpolator had the lowest xp but when the fuzz with 15% swap scenario was examined, the IDW 
performed better (Figure 3).  The NN interpolator performed better for all scenarios except fuzz with 15% and 
20% swap.  Interestingly, the kriging interpolations did not perform as well as the NN and IDW interpolations for 
any amount of fuzzing and swapping.      
 
4. Discussion 
 
The bias of the interpolated biomass values created using IDW and kriging on the original data (no coordinate 
manipulation) was somewhat expected.  We examined why this occurred using the empirical variogram created 
with the real plot coordinates (Figure 5).  The power model without a nugget effect was used to model the 
empirical variogram however, if we had used another model (e.g. exponential, spherical, Gaussian) we would 
have specified a nugget effect.  In variogram terminology, a nugget effect is used to explain micro-scale variation 
in the data and the sill refers to the total semi-variance which is approximately the variance of the dataset.  The 
difference between the nugget and the sill represents the semi-variance explained by distance.  If we had used an 



exponential model with a nugget effect, the nugget would have been approximately 2.5 and the sill would have 
been 3.2.  This means that only 22% of the total variance in the dataset was attributable to distance.  When the 
empirical variogram displays a linear structure with 0 slope the best estimator is the average.  Because of the high 
frequency spatial pattern, and the limited amount of information provided by the variogram, both the IDW and 
kriging interpolators tended to predict values close to the average for each location.  This in turn over predicted 
low values and under predicted high values.  
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Figure 5.  Empirical and modeled variogram calculated using 
 the real plot locations and the square-root of forest biomass. 

 
The fuzzing and swapping did influence the overall spatial structure of the dataset as illustrated by the variogram 
analysis.  On most occasions, the estimated C1 and a parameters from the fuzzed and fuzzed and swapped 
replications were outside of the 95% confidence interval of the parameters based on actual plot locations (Table 
1).  In fact, both parameters were within the 95% confidence interval in only 5 of the 30 replications.  As 
mentioned above, the semi-variance at short lag distance is important when kriging a surface.  The coordinate 
manipulations had the largest influence on semi-variance values at short lag distances (Figure 6).  As expected, 
this was particularly evident for the fuzz and swap 20% scenario but was also visible in all fuzzing and swapping 
scenarios. 
 
Table 1. The number of times the parameters for the power variogram model (equation 1) of the replications 
(fuzzed and swapped) fell within the 95% confidence intervals of the parameters calculated using the original 
dataset (no coordinate manipulations).  For each column, the maximum number is 30.   

C1 a

95% C.I (1.788 - 1.9724) (0.0425 - 0.0531)

C1 a Both parameters

Fuzz 1 1 1
Fuzz Swap 1% 2 2 2
Fuzz Swap 5% 0 1 0
Fuzz Swap 10% 1 1 0
Fuzz Swap 15% 1 1 1
Fuzz Swap 20% 1 1 1

6 7 5

Number of replications within 95 % C.I.

 
 
The NN interpolation technique had the lowest xp for all scenarios except the fuzz with 15% swap and fuzz with 
20% swap.  Under these relatively high degrees of swapping, the IDW performed better.  While the NN 
preformed well, the implication is that if you use the Thiessen polygon interpolation method you have a better 
chance of the predicted value actually occurring in the polygon.  However, the resolution of the interpolated 
surface is only as fine as the sampling intensity.  The IDW method can be used to interpolate surfaces at a higher 
resolution than the sample.  In this case, the interpolated value at the actual (even if unknown) plot locations 
would be relatively close and the interpolated values at un-sampled location would be better than the NN 
estimate.    
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Figure 6.  Average variogram for each level of fuzzing and swapping.   

Results using the real plot locations are labeled “none”. 
 
This analysis only addresses one variable (biomass) however there are many FIA plot attributes of interest for 
interpolation.  Some of these attributes may have a more, or less, pronounced spatial structure.  To examine the 
influence blurred plot coordinates has on the larger suite of FIA variables, simulations could be used.  For 
example, one could generate spatial surfaces with known covariance functions and apply the same analysis 
presented here.  We suggest that this topic should be investigated further.  However in the case of variables that 
exhibit a weak spatial structure, such as forest biomass, we suggest the IDW interpolator.  We have shown that as 
the degree of fuzzing and swapping increased the usefulness of FIA program for spatial modeling decreases.  To 
make the program more useful to users and maintain plot confidentiality, perhaps the best alternative is to have 
FIA generate the interpolated surface.  However the resources and infrastructure are currently limited for this to 
happen on a production scale.   
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