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ABSTRACT / Geographically explicit analysis tools are needed
to assess forest health indicators that are measured over large
regions. Spatial scan statistics can be used to detect spatial
or spatiotemporal clusters of forests representing hotspots of
extreme indicator values. This paper demonstrates the ap-
proach through analyses of forest fragmentation indicators in
the southeastern United States and insect and pathogen indi-
cators in the Pacific Northwest United States. The scan statis-
tic detected four spatial clusters of fragmented forest including
a hotspot in the Piedmont and Coastal Plain region. Three
recurring clusters of insect and pathogen occurrence were
found in the Pacific Northwest. Spatial scan statistics are a
powerful new tool that can be used to identify potential forest
health problems.

Forest health analysts seek to define the location,
extent, and magnitude of changes in forest ecosystems,
to explain the observed changes when possible, and to
draw attention to the unexplained changes for further
investigation. The data come from a variety of sources
including satellite images, field plot measurements,
and low-altitude aerial surveys. Indicators estimated
from the data are assessed in a variety of ways. For
example, national assessments typically aggregate infor-
mation across sites within states, biophysically defined
regions (ecoregions), or other large strata. The strata
that are characterized by extreme average indicator
values become candidates for further investigation.

That approach has some important limitations that
will be illustrated for ecoregions. Biophysical parame-
ters often account for some of the normal variation in
indicator values, but different types of ecoregions may
be better suited for terrestrial or aquatic data, for ex-
ample, so there is not a single best stratification scheme
for all assessment questions (Omernik and Bailey
1997). In addition, health issues that span parts of
adjacent ecoregions may be masked by the modifiable
area unit problem (Fotheringham and Wong 1991)
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that dilutes the signal from the affected parts of each
ecoregion. Furthermore, the approach may not provide
early warning of emerging problems because regional
averages will obscure a few extreme values within an
ecoregion. Finally, aggregation removes any informa-
tion about spatial patterns that could have been used to
estimate additional indicators for analysis. While re-
gional aggregation schemes are useful for maintaining
a common reporting basis over time, it would also be
useful to have spatial analysis tools that do not require
advance definition of assessment regions. The objective
of this study is to describe and demonstrate the use of
spatial scan statistics as an analytical tool for identifying
spatial clusters with high indicator values.
Epidemiologists and ecologists have long been con-
cerned with detecting and evaluating geographic clus-
ters or hotspots for intensive follow-up analysis. O’Neill
and others (1992) applied epidemiological theory to
model the spread of disturbances on landscapes, and
Flather and other (1998) used geographic overlay tech-
niques to identify regional hotspots containing unusu-
ally large numbers of threatened and endangered spe-
cies. Czaplewski and others (1994) used Moran’s I
statistic to assess spatial autocorrelation of forest growth
and detected a spatial cluster of slow-growing forests by
partitioning Moran’s I statistic into its components.
Forest health assessments have much in common
with epidemiological studies and several epidemiologi-
cal analysis methods are potentially applicable to forest
health problems. One method is based on a scan sta-
tistic to detect clustering in space and time. Developed
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first for the one-dimensional point process (see Naus
1965), the classical scan statistic examines temporal
windows of different length to test the randomness of
disease occurrence in time. Kulldorff (1997) extended
scan statistics to use geographic windows to permit
cluster detection in both the spatial and spatiotemporal
domains. Spatial scan statistics have been used to study
childhood leukemia (Hjalmars and others 1996), breast
cancer (Kulldorff and others 1997) and brain cancer
(Kulldorff and others 1998a).

Spatial scan statistics have several advantages for an-
alyzing forest health data over large regions. The pri-
mary advantage is that the approach is designed specif-
ically to detect clusters and test their significance; the
cluster sizes and regions do not have to be specified in
advance. The null and alternative hypotheses are
clearly defined, and the test statistic is based on a
likelihood ratio and not on an ad hoc procedure. The
test is valid regardless of the actual spatial pattern and
the approach works with data at multiple spatial scales.
The approach is capable of accounting for confound-
ing factors in the background population that are
known to be important covariates.

Methods

Let i be an index for a set of measurement units that
tile a study area, each with a geographic location rep-
resented by X; Let M; be the size of a population
contained in unit 7, and let N; be the number of indi-
viduals in that population that have some attribute of
interest. The presence of the attribute of interest for a
member of the population will hereafter be referred to
as an event. For example, a common application uses
counties as the measurement units, and the geographic
centroid of each county defines its location. The pop-
ulation of people in each county (M;) is surveyed to
determine how many have the event of a disease (1V;).
The objective of the scan statistic is to identify clusters
of measurement units for which the occurrence of the
event is significantly more likely within the cluster than
outside of the cluster.

The scanning proceeds by visiting every X; (i.e., every
location) in the study area. At each X; circular windows
of different sizes are imposed, with the subject X; at the
center of each one (Figure 1). A window also contains
other measurement units if their X; are within the
circle. If there are n;, measurement units and n, win-
dows imposed upon each unit, then the total number
of windows in the study area equals n, * n, Each
window potentially contains different sets of neighbor-
ing measurement units, and each is a potential cluster.

Spatial Scan Statistics 765

¢ Geometric center of measurement unit (Xi)
{™™ Measurement units

Figure 1. Hypothetical example of the scanning process. In
this example, the scanning procedure starts at measurement
unit 1 where a set of concentric circles are generated and V¥,
is calculated for each circle around measurement unit 1.
Once the maximum circle size is achieved (say 20% of the
area), then the procedure is then carried out at measurement
unit 2. This process is carried out for each measurement unit.

The method for determining the significance of a
potential cluster is based on a likelihood ratio. The
numbers of events in each measurement unit are as-
sumed to be Poisson distributed (see Kulldorff 1997 for
a derivation under the Poisson and Bernoulli distribu-
tions). The test statistic for a specific window w (V) is
defined by the likelihood ratio under the null hypoth-
esis that the rate of events is the same everywhere
(Hjalmars and others 1996, Kulldorff 1997, Kulldorff

and others 1997):
N N, N. Ne
() ()
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In equation 1, Nand M refer to the number of events

and population size, respectively, and the subscripts ¢
and ¢ refer to the totals of those variables over mea-
surement units within the window, and outside of the
window, respectively. M" =3, M,is the total population
size in the study area, and N = 3, N, is the total
number of events in the study area. I is an indicator
function that has a value of 1 if N/M, > N'/M,/, and
zero otherwise. The indicator function sets up a one-
sided test of the null hypothesis against the alternative
that the rate of events is higher within the window.
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To understand the test statistic, note that the likeli-

hood function for a specific window is proportional to
(Kulldorff and others 1997):

N[ N, NT_ N (NT— N,
6= e

where w is the expected number of events within the
window under the null hypothesis that the rate of
events is constant across the study area, and I is an
indicator function that in equation 2 has a value of one
if N,> u and zero otherwise. N,/ and (N — N,) /(N"
— W) are proportional to the event ratios within and
outside the window, respectively. For fixed NT and .,
the likelihood increases with the number of events in
the window (NV,).

The window corresponding to the maximum likeli-

hood ratio (i.e., the maximum V¥, for all w) identifies

by its component measurement units the most likely or
primary cluster. Secondary clusters are identified by the
ranks of the W, for all w. The indicator function guar-
antees that the cluster rates are higher (not lower) than
expected under the null hypothesis. The distribution of
the maximum ¥, and a simulated Pvalue are obtained
by a Monte Carlo simulation that repeats the analysis
for a large number of random replications of the orig-
inal data set under the null hypothesis of complete
spatial randomness (Kulldorff 1997). The significance
test for the primary cluster compares W, for the pri-
mary cluster to the distribution of ¥ from the Monte
Carlo simulation. If the value of ¥ exceeds 95% of the
values from the Monte Carlo simulation, then the clus-
ter is considered significant at the 5% level. Simulated
P values for secondary clusters are also obtained by
comparing their ¥, to the same simulated distribution;
those values are considered approximate and conserva-
tive estimates (Kulldorff 1997).

For interpreting the results, it is helpful to examine
a map of the relative risk for the individual measure-
ment units. Relative risk (R;) is defined as the ratio of
the observed to expected number of events under the
null hypothesis (equation 3):

N
R= 3)

where N; and M; are as previously defined, and r =
NT/M" is the estimated rate of event occurrence over
the entire study area. The scanning procedure detects
spatial clusters that are local neighborhoods containing
measurement units with high relative risk values.

To extend the procedure to three dimensions, the
scanning uses cylinders rather than circular windows.
Imagine a stack of maps where each layer in the stack

represents a different time. The base of the scanning
cylinder represents geographic space and the height of
the cylinder represents time. The scanning procedure
allows both the base and the height to vary continu-
ously as scanning progresses through space and time.
There is no change in either the likelihood ratio or the
significance test.

The scan statistic approach is computationally inten-
sive, and as a result, several features of the scan statistic
are implementation-dependent. This study used the
SaTScan software (Kulldorff and others 1998b, Glaz
and Balakrishnan 1999) that permits the user to con-
strain the maximum circle size. One convention is that
a circle includes no more than half of the total popu-
lation (Kulldorff and others 1997). In principle, the
size of the circle may vary continuously, but in practice,
the test statistic only needs to be computed for circles
that contain different subsets of measurement units.
The software does not report secondary clusters that
overlap the most likely cluster because they provide
little additional information. Depending on the data
and problem structure, the software indicates the loca-
tion of a cluster but usually not its exact boundaries.

The scan statistic method is superficially similar to a
fractal analysis of mass-area scaling (Milne 1992) and to
lacunarity analysis (Plotnick and others 1993) in that all
of these procedures involve the counting of events
within different-sized windows imposed everywhere in a
study area. Fractal analysis is most often used to quan-
tify if and how the rate of events scales in relation to
window size, and lacunarity analysis is designed to de-
scribe the clumpiness of events over the entire map.
Where both of those techniques assume second-order
stationarity, the scan statistic is specifically designed to
detect clusters that represent nonstationarity.

Applications

We analyzed two aspects of forest health using spatial
scan statistics. The first example demonstrates a purely
spatial analysis of forest fragmentation patterns in the
southeastern United States and the second example
demonstrates a space—time analysis of insect and patho-
gen disturbance over a 10-year period in the Pacific
Northwestern United States (Figure 2). These indica-
tors were selected because they are part of the forest
health assessment framework specified by the Montréal
Process and, as such, are used for strategic forest plan-
ning (USDA Forest Service 2000) and national assess-
ments of forest sustainability (e.g., USDA Forest Service
2003), resource conditions (e.g., USDA Forest Service
2001), and forest health (e.g., Conkling and others
2003). According to this framework, forest fragmenta-
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Figure 2. Location of (1) the Pacific Northwest and (2)
southeastern United States with respect to North America (A).
The Pacific northwestern United States (B) is comprised of
Washington (WA) and Oregon (OR). The southeastern
United States (C) includes: Alabama (AL), Arkansas (AR),

tion is an indicator of both biological diversity and
forest health and vitality. Disturbances such as insect
and pathogen activity are indicators of forest health
and vitality. Spatial scan statistics are potentially appli-
cable to other indicators of both ecological and forest
health.

Spatial Cluster Analysis of Forest Fragmentation
Patterns

Forest perforations are an important forest health
issue because they introduce edge effects near the in-
terior of forest patches, and the resulting edge effects
are disproportionate to the area that has been frag-
mented (Reed and others 1996). While some degree of
perforation is normal in all forests (e.g., storm dam-
age), large numbers of perforations associated with
urban and agriculture land-cover types are not normal.
Some species and ecological processes may benefit
from anthropogenic forest perforations, but a forest

Florida (FL), Georgia (GA), Kentucky (KY), Louisiana (LA),
Mississippi  (MS), North Carolina (NC), Oklahoma (OK),
South Carolina (SC), Tennessee (TN), Texas (TX), and Vir-
ginia (VA).

health issue arises if those species and processes do not
represent natural conditions. Knowledge of the loca-
tion of geographic clusters of perforated forest is useful
because perforations tend to grow and coalesce over
time, such that clusters of perforated forest may repre-
sent large regions close to a transition to a predomi-
nantly patchy forested environment (Wickham and oth-
ers 1999).

This example uses a data set comprised of county-
level forest fragmentation statistics that were compiled
for forested areas of a 13-state region in the southeast-
ern United States. The statistics were computed from
land-cover maps derived from 1992 satellite imagery
(Vogelmann and others 2001). Using procedures de-
scribed by Riitters and others (2002), each of the ap-
proximately 993 million 0.09-ha units of forestland in
the study area was assigned a label indicating the type of
forest fragmentation, if any, observed in the surround-
ing 7.29-ha neighborhood. Approximately 201 million
units were classified as perforated forestland, defined as
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Table 1.  Summary statistics for forest fragmentation and insect and pathogen data sets
Number of Total population Total number of Annual
Example measurement units (7) (M") events (N7) events/100,000
Forest fragmentation 1072 893944 (km?) 180615 (km?) 20217.7
Insect and pathogen activity 7376 19803396 (ha) 7406684 (ha) 3740.5
Cluster 1 Cluster 1

Relative Risk
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Figure 3. Relative risk, or the ratio of the observed to the
expected proportion of forestland in each county that has a
perforated forest label and the four most likely regional clus-

a unit of forestland that exists within a 7.29-ha land-
scape that is more than 60% forested and is within
120 m of a nonforest pixel (Riitters and others 2002).
Total forestland area, and perforated forestland area
were aggregated to the county level to identify clus-
ters of counties with a high proportion of perforated
forest.

The data set contains 1072 county records, and each
record has the population of 0.09-ha units of forestland
in the county (M;) and the number of events taken to
be the number of those 0.09-ha units that had the
perforated forest label (N;) (Table 1). The data were
converted to square kilometers, the size of the circular
window was permitted to vary from 0 to 50% of the
study area, and 9999 replications were used in the
Monte Carlo simulation. Figure 3A illustrates the coun-
ty-level relative risk values (equation 3) for the study
area. The visual impression is that the high-risk coun-

ters of perforated forest conditions (A). Local hotspots of
perforated forest conditions within the largest regional cluster

(B).

ties occur in the Piedmont and Coastal Plain regions
where forestland is already known from other informa-
tion to be juxtaposed with urban and agricultural land
uses. It appears that there may be several clusters in that
area, but counties with high relative risk also occur
elsewhere in the study area and it is not visually appar-
ent whether or not these are clustered.

The four most likely clusters found by the spatial
scan statistic (Table 2) are shown in Figure 3A. The two
most probable clusters of counties identified by the
scan statistic include most of the high-risk counties in
the Piedmont and Coastal Plain regions (Figure 3A).
Cluster 1 includes all of the high-risk counties in Vir-
ginia, North Carolina, and South Carolina, and cluster
2 includes many of the high-risk counties in southern
Georgia. Clusters 3 and 4 contain mostly medium- to
high-risk counties in eastern Texas and southern Lou-
isiana and Mississippi, respectively.
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Table 2. Summary and test statistics for spatial clusters of forest fragmentation and spatiotemporal clusters of

insect and pathogen activity

Population Number of Annual Expected number Log likelihood
Example (M,) events (N, events/ 100,000 of events () ratio (W) P
Forest fragmentation
Cluster 1% 142,200 36,556 25,724.5 28,730.5 1185.5 0.0001
Cluster 2 39,784 10,833 27,247.6 8,038.1 460.5 0.0001
Cluster 3 23,221 6,099 26,282.5 4,691.6 198.3 0.0001
Cluster 4 17,302 4,506 26,060.5 3,495.8 136.5 0.0001
Insect and pathogen
activity
Cluster 1% 236,458 400,910 33,913.6 44,218.9 535,932.1 0.0001
Cluster 2 257,091 188,468 14,663.3 48,077.4 118,426.4 0.0001
Cluster 3 40,364 46,759 23,171.4 7,548.3 46,167.1 0.0001

“Denotes the primary cluster identified by the spatial scan statistic. All other clusters are considered secondary clusters and are ranked by their

log likelihood ratio.

When evaluating clusters in relation to the map of
relative risk (Figure 3A), it is apparent that seven high-
risk counties near the Georgia—South Carolina border
fell between clusters 1 and 2 but were not contained in
either. If they had been included, then the two clusters
would have merged into one. The most likely explana-
tion is that the software considered those seven coun-
ties to be part of a secondary cluster that overlapped
the most likely cluster, and as a result the cluster was
not reported. Furthermore, the largest cluster contains
many medium-risk counties, indicating that the actual
cluster shape may not be circular. Those observations
suggest that reapplying the algorithm over a smaller
area will help to resolve spatial clusters.

When the spatial scan statistic was applied to the
subset of counties contained in cluster 1, the results
(Figure 3B) suggest that cluster 1 is comprised of sev-
eral smaller clusters arranged in a linear fashion along
Interstate 95. This makes intuitive sense because the
pattern of land use and development near urban areas
and major transportation corridors often produces
fragmented forest conditions. This, in turn, suggests
that instead of counties, a better aggregation scheme
for evaluating regional patterns of forest fragmentation
might be based on proximity to urban areas and trans-
portation corridors.

In summary, the scanning procedure found four
regional clusters of perforated forest in the southeast-
ern United States, including one regional cluster that
was a collection of subregional hotspots. It was clearly
useful to apply the scan statistic at multiple scales with
this data set, and subsequent analyses might use mea-
surement units other than counties to better locate
significant clusters. With this information it will be
easier to focus the subsequent assessment of fragmen-

tation impacts on forest health in places where such
impacts are most likely to be found.

Space-Time Cluster Analysis of Insects and
Pathogens

Insects and pathogens influence forest succession,
productivity, and stability through complex ecosystem
interactions (Berryman 1986). They are a natural and
essential component of forest ecosystems (Castello and
others 1995) and are influenced by climate, land man-
agement, plant defenses, and predators. Interactions
between forests, insects, and pathogens occur at small
scales within forest tracts and at large scales over large
forested regions. Temporal trends are also of interest
because of concern for the cumulative impacts of in-
sects and pathogens over large areas and the possible
management and ecological implications associated
with such trends. Space-time cluster analysis of insect
and pathogen disturbance is useful in several ways.
Knowledge of the location of significant clusters can be
used to allocate funding at the strategic planning level
and to help identify emerging forest pest complexes
that may warrant further investigation.

The US Forest Service conducts annual low-altitude
aerial surveys to identify damage to forested areas. The
damage from insects and pathogens is recorded by
making maps while surveying an area from an airplane.
The information is used to evaluate overall health con-
ditions and to identify specific areas for possible treat-
ment to reduce the impacts of major outbreaks. Ten
years of maps (1990-1999) for the states of Washington
and Oregon were used in this example.

The amounts of forestland and forestland with in-
sects or pathogens were first summarized within a lat-
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tice of 56.25 km? square tiles for Washington and Or-
egon. The insect and pathogen information was
summarized separately for each year of the study and
there was no differentiation between specific insects or
pathogens. The amount of forestland was based on
land-cover maps derived from 1992 satellite imagery
(Vogelmann and others 2001), and this measurement
was used for all years of the study. Summary statistics
are provided in Table 1. The number of hectares of
forestland represents the population within each tile
(M;) and the number of hectares with insects or patho-
gens present represents the events (V;). As usual, the N;
values are assumed to be Poisson distributed, and tiles
are assumed to have equal risk of insect or pathogen
activity under the null hypothesis. Under the alterna-
tive hypothesis, there exists at least one space-time
cluster where the risk inside the cluster was greater
than outside. Because forestland is not continuous
across the entire study region, the maximum cluster
size was fixed at 20% of the total population to ensure

Figure 4. The three most likely current
space-time clusters of insect and patho-
gen presence in Washington and Ore-
gon.

&

that clusters did not contain large unconnected forest
areas. The clusters were also forced to contain at least
one event from the measurement year 1999 because
interest centers on contemporary clusters. For the
Monte Carlo simulation, 999 replications were used.

The three most likely space—time clusters identified
by the spatial scan statistic are shown in Figure 4 and
summary statistics are presented in Table 2. These clus-
ters occurred east of the Cascade Mountains and the
most likely cluster was identified in the Yakama Indian
Reservation that exhibited a trend of increasing insect
and pathogen events during the study period (Figure
5). Within this cluster, there were approximately
179,000 ha of forestland with insects or pathogens
present in 1998 (Figure 5). About 94% of the events in
the cluster across years were attributable to western
spruce budworm (Choristoneura occidentalis).

Cluster 2 was in southern Oregon and it included
part of the Fremont National Forest (Figure 4). Fir
engraver (Scolytus ventralis), Modoc budworm (Choristo-
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Figure 5. Ten-year trends of forestland area experiencing
insect and pathogen presence within the three most likely
clusters identified by spatial scan statistics. The values have not
been adjusted for the different cluster sizes.

neura retiniana), and mountain pine beetle (Dendrocto-
nus ponderosae) accounted for 75.6, 11.3, and 6.5% of
the events in the cluster, respectively. The number of
events in this cluster increased until 1995 and peaked at
approximately 103,000 ha of forestland (Figure 5).
Mountain pine beetle was associated with 99% of the
events in cluster 3, located in the Deschutes National
Forest in central Oregon. The number of events in this
cluster also increased from 1990 to 1995 (Figure 5).

The area identified by cluster 1 is part of a well-
known western spruce budworm infestation that began
in 1984 and is unprecedented in duration in this re-
gion. For the past several years, forests in this area were
treated with a microbial pesticide (Bacillus thuringensis)
and thinned in an attempt to curb the infestation.
Because the forests in this area have been defoliated for
several years, they are likely to be susceptible to second-
ary insects or pathogens. For example, the douglas-fir
beetle (Dendroctonus pseudotsugae) is of particular inter-
est because it causes mortality and has already been
observed in the area. Considering the region contain-
ing the cluster, some possible secondary impacts of the
budworm and subsequent infestations might include
increased fuel buildup and loss of nitrogen and phos-
phorous to aquatic systems.

The area identified by cluster 2 is an interesting
result and illustrates the usefulness of spatial scan sta-
tistics for identifying areas that warrant further investi-
gation. Three different agents accounted for approxi-
mately 93% of the activity in the area, however, four
additional agents were also present. The shape and
location of this cluster were also noteworthy. The clus-
ter was located along the forest grassland ecotone in
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southern Oregon forcing the shape to be relatively
linear (Figure 4). There is no obvious explanation for
the location, shape, and agents present in the second
most likely cluster and a more detailed analysis may
help to explain this result.

Discussion

A comparison of the scan statistic procedure with
classical methods further demonstrates the utility of the
approach. A classical approach for the forest fragmen-
tation data starts by examining statistics among States.
When that is done, the best evidence for a spatial
cluster is in the State of Georgia, where the average
county has 25.4% of its forest classified as perforated,;
this is the largest state-level average observed. Lacking
any other decision rule, the counties in Georgia with
the highest values could be identified. This group com-
prises counties that roughly correspond with the sec-
ond most likely cluster from the scan statistic (see Fig-
ure 3). The classical method did not identify the largest
and most likely cluster because low values in western
North Carolina counties obscured the high values in
eastern counties.

The classical approach may appear contrived be-
cause states should not be used for stratification since
there is no reason to expect forest fragmentation pat-
terns to follow state boundaries. However, the same
argument applies when aggregating any indicator (e.g.,
forest fragmentation, air pollution, tree size measure-
ments, etc.). Biophysically defined units such as ecore-
gions presumably make sense for some indicators, but
there is no reason to expect good results for all indica-
tors. Forest fragmentation indicators, for example, ex-
hibit local patterns that are summarized better by
county boundaries than by ecoregion boundaries, only
because the counties are smaller than ecoregions. The
scan statistic makes it possible to identify spatial clusters
as groups of neighboring measurement units that may
or may not all appear in the same assessment region.
Later in the assessment process, individual assessment
units could be evaluated based on whether they contain
part of a significant cluster.

Depending on the application, it may make sense to
look for clusters where the risk of events is less (not
more) than elsewhere. For example, from a land man-
agement perspective, clusters with low forest perfora-
tion values might be candidates for preservation
whereas clusters with high perforation would be candi-
dates for mitigation. The examples presented here uti-
lized one-sided tests of the hypothesis and, as a result,
only the clusters with significantly more than the ex-
pected number of events were detected. The procedure
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can detect clusters with significantly less than the ex-
pected number of events by changing the direction of
the inequality in the indicator function in equations 1
and 2. An analysis sensitive to both cluster types re-
quires a two-sided test, which can be performed by
dispensing with the indicator function.

Clearly, the analyst must make choices of scale when
implementing the scan statistic procedure. There are
two general strategies for varying the scales over which
clusters are tested. First, the scanning procedure can be
tuned to detect clusters of different sizes by limiting the
maximum circle size. The forest fragmentation analysis
used a 50% (of the total population) upper limit, which
meant that the search was optimized for detecting clus-
ters in the interval (0, 50) percent of the total popula-
tion. The insect and pathogen analysis used a 20%
upper limit to help prevent clusters from containing
large non-forest areas that are between the mountain
ranges in the study area.

If the data and computer resources permit, the sec-
ond strategy involves a redefinition of the measurement
unit. For example, the fragmentation analysis started
with data that were already aggregated within county-
size measurement units, but the scanning procedure
could have instead been directed at much smaller units
of aggregation. In that case, subcounty resolution of
clusters would have been possible. More recent versions
of the SatScan software offer additional options that
were not available at the time our study was conducted.

Conclusion

Several national monitoring programs assemble
large, spatially explicit databases from field sampling,
aerial survey, and satellite imagery. With recent ad-
vances in computer hardware and information manage-
ment, it is now possible to examine forest health issues
that were intractable only a decade ago. Creative geo-
graphic analyses of time-series data are needed to ad-
dress a common goal of identifying specific places
where the available indicators signal relatively poor
forest health conditions. Classical approaches that start
by aggregating data according to pre-defined strata may
mask forest health problems, or fail to detect problems
that span parts of several strata. Based on our experi-
ences with real-world data, spatial scan statistics appear
to be a powerful tool for overcoming some of these
limitations.
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