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ABSTRACT 

Cormier, K.L., Reich R.M., Czaplewski R.L. and Bechtold, W.A., 1992. Evaluation of weighted 
regression and sample size in developing a taper model for loblolly pine. For. Ecol. Manage., 53: 
65-76. 

A stem profile model, fit using pseudo-likelihood weighted regression, was used to estimate mer- 
chantable volume of loblolly pine (Pinus taeda L.) in the southeast. The weighted regression in- 
creased model fit marginally, but did not substantially increase model performance. In all cases, the 
unweighted regression models performed as well as the weighted regression models, even for very 
small sample sizes. 

INTRODUCTION 

Taper equations can be useful in predicting the volume of an individual 
tree or a stand of trees. Given the amount of variability that exists among 
individual tree forms, using smaller sample sizes to evaluate the parameters 
of a taper equation may increase the risk of making larger errors. The use of 
weighted regression techniques, however, may reduce the error by properly 
modeling the variability that exists among individual trees. Disadvantages of 
using weighted regression are the risk of retransformation errors (Czaplewski 
and Bruce, 1990) and the relative complexity of using weighted regression on 
an already complex taper equation. 

Biging (1984) developed a taper equation, derived from the Chapman- 
Richard's function, to describe stem form for second-growth mixed conifers 
in northern California. The model predicts upper stem diameters as a func- 
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tion of relative height and diameter at breast height (dbh). Biging found that 
his sigmoid equation compared favorably with a segmented polynomial equa- 
tion developed by Max and Burkhart (1976), which Cao et al. (1980) found 
to be superior to several other taper models in predicting upper stem diame- 
ters, including Kozak et al. ( 1969 ), Demaerschalk ( 1973 ) and Goulding and 
Murray (1976). The objectives of this study were to evaluate the effect of 
weighted regression on the fit and performance of Biging's taper equation, 
using both large and small data sets. 

MATERIALS AND METHODS 

Data 

The data used for this study were collected on 5350 loblolly pine (Pinus 
taeda L. ) trees by the USDA Forest Service, Southeastern Forest Experiment 
Station, Forest Inventory and Analysis Project (SE FIA), at Asheville, NC. 
The data were collected over a 20-year period from Florida, Georgia, North 
Carolina, South Carolina and Virginia. Diameters were measured at the 
ground, stump height (0.3 m),  breast height (1.37 m) and at 4 ft. (1.2 re)- 
intervals above the stump to a 7 in. ( 17.5 cm) diameter outside bark (dob). 
Measurements taken above the 7 in. (17.5 cm) dob were taken at 5 ft. (1.5 
m )-intervals to a 4 in. ( 10 cm ) dob. 

Forty-two percent of the trees were from randomly selected permanent plots 
which were measured non-destructively using a McClure mirror caliper and 
section poles (Cost, 1971 ). Diameters inside bark (dib) were estimated us- 
ing prediction equations based on bark thickness at breast height, diameter at 
breast height (dbh), dob of section ends, and heights of the section ends (Cost, 
1978). 

The remaining 58% of the trees were sampled from logging operations in 
the same geographical area. For each state and 10-year inventory cycle, 100 
logging sites were selected proportional to the type of wood products (e.g. 
pulpwood, sawtimber, etc.) being harvested in the inventory unit. At each 
site, data were taken on as many trees as could be measured in 1 day. Diam- 
eters were measured using calipers and heights were measured with steel tapes. 
Inside bark diameters were measured directly from felled trees using a Swed- 
ish bark gauge. 

Measurements at ground level were not used because they were suspected 
of decreasing model performance in the lower bole (McClure and Cza- 
plewski, 1986). A few trees with major defects, broken tops or excessive limb- 
ing were excluded because of their unmerchantable or atypical characteristics. 

All measured trees were randomly divided into a developmental data set 
used to estimate the parameters of the taper model, and a validation data set, 
used for validating the taper model. The development data set contained 
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40 380 sections from 2742 trees; the validation data set contained 37 828 sec- 
tions from 2608 trees. The means and SD for dbh and total height were simi- 
lar for both the development and validation data sets (Table 1 ). 

Four sub-samples of  50 trees each, were randomly sampled from the devel- 
opment data set to assess the importance of using weighted regression in de- 
veloping taper models using small sample sizes. Means and SD for dbh and 
total tree height varied among the four sub-samples, with sub-samples one 
and four having a higher proportion of smaller trees and more variability 
(Table 1 ). 

Methods 

Biging's ( 1984 ) sigmoid equation, which has three parameters, was chosen 
for this study because of its simplicity and the fact that it can easily be in- 
verted to estimate heights. It was also felt that Biging's sigmoidal model would 
be more sensitive to heterogeneous errors associated with stem profiles. 

Biging's sigmoidal model for stem profile is given by 

( d / D  ) =bl  +b2{ln[1  - ( h /H)b3(1  + e x p ( - b l / b 2 )  ]} (1) 

TABLE 1 

Descriptive statistics for the development and validation data sets and the four subsets of  the devel- 
opment data set. Descriptive statistics for the total data set are also given 

Data set Mean SD Min. Max. No. of trees No. of sections 

Diameter at breast height (in.,) 
Development 10.4 4.331 1.0 33.3 2742 40 380 

I st subset 8.3 4.918 1.3 19.3 50 629 
2nd subset 10.7 4.818 1.2 20.8 50 776 
3rd subset 9.6 4.827 1.5 20.4 50 698 
4th subset 8.3 4.916 1.4 18.7 50 678 

Validation 10.3 4.325 1.0 38.3 2608 37 828 

Total set 10.3 4.328 1.0 38.3 5367 78 208 

Total Tree Height (ft.) 
Development 59.8 18.602 9.0 115.0 2742 40 380 

1st subset 48.5 23.555 11.0 101.0 50 629 
2nd subset 64.6 22.100 18.0 103.0 50 776 
3rd subset 59.1 21.161 19.0 111.0 50 698 
4th subset 50.7 22.329 11.0 90.0 50 678 

Validation 59.6 18.318 9.0 118.7 2608 37 828 

Total set 56.7 18.460 9.0 118.7 5367 78 208 
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where d is diameter at height h, D is diameter at breast height, h is height 
above ground to top diameter d, H is total tree height, and b I ,b2,b3 are regres- 
sion coefficients. GAUSS TM (1984), a matrix programming language, was 
used to fit the model to the data using both weighted and unweighted non- 
linear regression. 

Since the variability in diameter is not homogeneous over the range of data, 
weighted regression might improve the fit. One method commonly used in 
fitting a weighted regression model is the use of a variance function to ap- 
proximate the variability associated with the regression model (Fig. 1 ). Three 
methods for approximating the variance were suggested by Carrol and Rup- 
pert ( 1988 ): ( l ) squared residuals; (2) absolute residuals; (3) natural log of 
the absolute residuals. Carrol and Ruppert assumed that the expectations of 
the squared residuals provided a good approximation of the variance. How- 
ever, if large outliers exist, then the absolute residuals or the natural log of the 
absolute residuals can be used. Carrol and Ruppert ( 1988 ) suggested using a 
pseudo-likelihood technique in estimating the variance function. The vari- 
ance function and estimates of the model parameters were obtained using an 
iterative procedure: ( l )  obtain preliminary estimates of coefficients of the 
taper model using unweighted non-linear regression; (2) based on the plot of 
residuals, develop a variance function and compute the estimated weights; 
(3) update the preliminary estimates of the coefficients of the taper model 
using weighted non-linear regression; (4) repeat steps two and three until 
estimates of the coefficients for the variance function and the model converge. 

To assess the performance of the taper model, estimates of tree volume for 
the validation data were calculated using diameters and heights predicted from 
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Fig. 1. An example of a variance function calculated from a residual plot using regression 
techniques. 
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Biging's taper equation. Predictions of  height at any given diameter were de- 
rived from Eqn. ( 1 ): 

(h/H) =A-A{exp [ (d/D) - bl ]/b2} 1/b3 (2) 

where A = 1 / ( 1 + exp (bl /b2 ) ). b l,b2,b3 are regression coefficients estimated 
from Eqn. ( 1 ). 

Board-foot volumes were calculated for sawtimber trees and cubic-foot vol- 
umes for pulpwood-sized trees. Sawtimber trees were defined as trees with a 
dbh of 12 in. or greater and containing at least one 16-ft. sawlog. All other 
trees were classified as pulpwood. Board-foot volumes were calculated using 
the Scribner log rule (Avery and Burkhart, 1983) which assumes a 0.25 in. 
sawkerf. Cubic-foot volumes were calculated using Smalian's formula which 
assumes a geometric form of paraboloid. In all cases, s tump height was as- 
sumed to be at 0.5 ft. 

To estimate merchantable cubic volume, the length of the stem from the 
s tump to a 3 in. top, estimated using eqn. (2), was divided into 4-ft. sections. 
Equation ( 1 ) was used to predict upper and lower diameters of each 4-ft. 
section and the volume estimated using Smalian's formula. Cubic volumes of 
each 4-ft. section were then summed to obtain merchantable cubic foot 
volume. 

Board-foot volumes were estimated for each sawtimber tree assuming an 8- 
in. merchantable top. Using Eqn. (2), height to an 8-in. top, minus the stump 
height, was estimated and then divided by 16.25 ft. ( 16-ft. log plus 0.25 ft. 
edging) to determine the number  of 16-ft. sawlogs in the stem. If there was 
less than one 16-ft. sawlog, the tree was re-classed as a pulpwood tree and 
cubic volumes were calculated accordingly. The amount  of merchantable saw- 
timber from the last 16-ft. log to the 8-in. top was calculated by subtracting 
the height of the last 16-ft. sawlog from the height to the 8-in. top. If the re- 
maining log length was greater than 2 ft., the length was added to the last 16- 
ft. sawlog, providing it was not the first sawlog, and split as follows: 

Log length (ft.) 18 20 22 24 26 28 30 

1st Log (ft.) 10 10 12 12 14 14 16 
2nd Log (ft.) 8 10 10 12 12 14 14 

If the last 16-ft. sawlog was also the first, the remaining sawtimber was counted 
as a part of topwood.  Using Eqn. ( 1 ), the diameters at each end of the sawlog 
were used in estimating board-foot volumes. Topwood volume, the volume 
between the last sawlog and a 3-in. top, was calculated using the same proce- 
dure used for calculating cubic volumes in pulpwood trees. 

To assess the behavior of the model, the biases and SD associated with es- 
t imating relative diameters and relative heights for the unweighted and 
weighted models were calculated and compared. The performance of the 
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weighted and unweighted models was assessed by comparing the percent biases 
in estimating board-foot and cubic volume, calculated from the validation 
data. 

RESULTS A N D  DISCUSSION 

To compare the performance of the unweighted models with the weighted 
models, Furnival's index of fit (FIF) was used (Furnival, 1961 ). Furnival's 
index of fit enables the comparison of fit of the original unweighted model 
with the weighted model using computed maximum likelihoods as a criterion 
for choosing the most appropriate form of the model (Furnival, 1961). 
Smaller FIF values indicate a better fit to the data, with FIF equaling root 
mean squared error (RMSE) for an unweighted model. The root mean 
squared errors between the full development data model and the four subset 
models were similar within the unweighted and the weighted model groups 
(Table 2). Although FIF values for the weighted models were consistently 
smaller than FIF values for the unweighted models, FIF values were not sub- 
stantially different, indicating that the unweighted models performed nearly 
as well as the weighted models. The bias and the SD associated with estimat- 

TABLE 2 

Regression coefficients and relevant fit statistics for the unweighted and weighted models generated 
from the development data set and the four subsets using Biging's (1984) taper model 

Data set Unweighted model 

Regression coefficients RMSE R 2 FIF 

bl b2 b3 

Development Data Set 
Unweighted 1.24206 0.29019 0.14970 0.073 0.989 0.073 
Weighted 1.21521 0.28513 0.16198 1.013 0.991 0.070 
First Subset 
Unweighted 1.20393 0.31651 0.21928 0.083 0.987 0.083 
Weighted 1.16097 0.33199 0.27904 1.010 0.990 0.075 
Second Subset 
Unweighted 1.19781 0.30048 0.18761 0.076 0.988 0.076 
Weighted 1.18693 0.28506 0.17540 1.068 0.992 0.075 
Third Subset 
Unweighted 1.25447 0.27788 0.13048 0.075 0.989 0.075 
Weighted 1.23238 0.26852 0.13116 1.015 0.991 0.066 
Fourth Subset 
Unweighted 1.36363 0.28299 0.10003 0.077 0.989 0.077 
Weighted 1.32178 0.28596 0.12171 1.006 0.991 0.072 

The root mean square errors (RMSE) for the weighted models are in different units than the RMSE 
for the unweighted models and should not be compared directly. FIF, Furnival's index of fit. 



TAPER MODEL FOR LOBLOLLY PINE 71 

ing relative diameters (Table 3 ), and relative heights (Table 4), were similar 
between the weighted and unweighted models for a given data set. 

Volume equations 

Estimates of merchantable cubic foot volume of pulpwood-size trees were 

TABLE3 

Biases and SE for the unweighted and weighted models generated from the development data set and 
the four subsets using eqn. ( l ): predicting relative diameter across relative height 

Relative height Bias SE 

Unweighted Weighted Unweighted Weighted 

Development data set 
0.0-0.1 0.015 0,021 0.103 0.105 
0.1-0.2 - 0 . 0 4 3  - 0 , 0 4 2  0.067 0.033 
0.2-0.4 0.001 0.001 0.054 0.054 
0.4-0.6 0,015 0.011 0.035 0.065 
0.6-0.8 - 0.008 - 0.013 0.074 0.075 
0.8-1.0 -0 .011  - 0 . 0 1 3  0.046 0.048 
1st Subset 
0.0-0.1 - 0.008 - 0.005 0.104 0.106 
0.1-0.2 - 0 . 0 7 0  - 0 . 0 7 4  0.088 0.090 
0.2-0.4 - 0.024 - 0.029 0.059 0.031 
0.4-0.6 - 0.005 - 0.009 0.064 0,064 
0.6-0.8 - 0.020 - 0.022 0.076 0.077 
0.8-1.0 - 0.013 - 0.013 0.047 0.047 
2nd Subset 
0.0-0.1 0,020 0.033 0.105 0.109 
0.1-0.2 - 0 , 0 4 2  - 0 . 0 3 2  0.067 0.061 
0.2-0.4 0.001 0.008 0.054 0.054 
0.4-0.6 0.016 0.017 0.066 0.066 
0.6-0.8 - 0 , 0 0 5  - 0 . 0 0 8  0.074 0.075 
0.8-1.0 - 0,009 - 0.012 0.045 0.046 
3rd Subset 
0.0-0. ! 0,022 - 0.034 0.104 0.109 
0.1-0.2 - 0,037 - 0.030 0.064 0.060 
0.2-0.4 0.004 0.008 0.054 0.052 
0.4-0.6 0,014 0.015 0.066 0.066 
0.6-0.8 - 0,017 - 0.008 0.075 0.075 
0.8-1.0 - 0,013 - 0.012 0.045 0.049 
4th Subset 
0.0-0.1 - 0,022 - 0 . 0 2 2  0.103 0.103 
0.1-0.2 - 0.072 - 0 . 0 7 5  0,089 0.092 
0.2-0.4 - 0,025 - 0.029 0.060 0.062 
0.4-0.6 - 0 , 0 1 0  - 0 . 0 1 4  0.064 0.065 
0.6-0.8 - 0.031 - 0.034 0.080 0.081 
0.8-1.0 - 0.020 -0 .021  0.052 0.053 
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T A B L E  4 

Biases and SE for the unweighted and weighted models generated from the development data set and 
the four subsets using eqn .  ( 2 ) :  predicting relative height across relative diameter 

Relative diameter Bias SE 

Unweighted Weighted Unweighted Weighted 

Development data set 
0 . 0 - 0 . 2  - 0 . 0 0 7  - 0 . 0 5 5  0 . 0 0 7  0 . 0 0 6  

0 . 2 - 0 . 4  - 0 . 0 5 1  - 0 . 0 5 5  0 . 0 0 6  0 . 0 0 6  

0 . 4 - 0 . 6  - 0 . 0 0 3  - 0 . 0 0 8  0 . 0 0 6  0 . 0 0 6  

0 . 6 - 0 . 8  0 . 0 0 9  0 . 0 0 7  0 . 0 0 8  0 . 0 0 8  

0 . 8 - 1 . 0  - 0 . 0 1 2  - 0 . 0 1 1  0 . 0 0 5  0 . 0 0 5  

1st Subset 
0 . 0 - 0 . 2  - 0 . 0 0 7  - 0 . 0 9 4  0 . 0 0 1  0 . 0 1 2  

0 . 2 - 0 . 4  - 0 . 0 5 6  - 0 . 0 5 5  0 . 0 0 6  0 . 0 0 6  

0 . 4 - 0 . 6  - 0 .021  - 0 . 0 2 3  0 . 0 0 6  0 . 0 0 6  

0 . 6 - 0 . 8  - 0 . 0 2 5  - 0 . 0 3 1  0 . 0 0 9  0 . 0 0 9  

0 . 8 - 1 . 0  - 0 . 0 4 4  - 0 . 0 4 9  0 . 0 0 7  0 . 0 0 7  

2nd Subset 
0 . 0 - 0 . 2  - 0 . 0 0 7  - 0 . 0 4 5  0 . 0 0 7  0 . 0 0 5  

0 . 2 - 0 . 4  - 0 . 0 4 8  - 0 . 0 5 2  0 . 0 0 5  0 . 0 0 6  

0 . 4 - 0 . 6  0 . 0 0 1  - 0 . 0 0 1  0 . 0 0 6  0 . 0 0 6  

0 . 6 - 0 . 8  0 . 0 1 0  0 . 0 1 8  0 . 0 0 8  0 . 0 0 8  

0 . 8 - 1 . 0  - 0 . 0 1 2  0 .001  0 . 0 0 5  0 . 0 0 5  

3rd Subset 
0 . 0 - 0 . 2  - 0 . 0 0 7  - 0 . 0 4 3  0 . 0 0 1  0 . 0 0 5  

0 . 2 - 0 . 4  - 0 . 0 5 5  - 0 . 0 5 9  0 . 0 0 6  0 . 0 0 7  

0 . 4 - 0 . 6  - 0 . 0 0 6  - 0 . 0 0 7  0 . 0 0 6  0 . 0 0 6  

0 . 6 - 0 . 8  0 . 0 1 2  0 . 0 1 8  0 . 0 0 8  0 . 0 0 8  

0 . 8 - 1 . 0  0 . 0 0 7  0 . 0 0 3  0 . 0 0 5  0 . 0 0 5  

4th Subset 
0 . 0 - 0 . 1  - 0 . 0 0 8  - 0 . 0 9 5  0 .001  0 . 0 1 3  

0 . 2 - 0 . 4  - 0 . 0 6 7  - 0 . 0 6 9  0 . 0 0 8  0 . 0 0 8  

0 . 4 - 0 . 6  - 0 . 0 3 1  - 0 . 0 3 5  0 . 0 0 7  0 . 0 0 7  

0 . 6 - 0 . 8  - 0 . 0 2 8  - 0 . 0 3 4  0 . 0 0 9  0 . 0 0 9  

0 . 8 - 1 . 0  - 0 . 0 4 6  - 0 . 0 5 0  0 . 0 0 7  0 . 0 0 7  

consistently overpredicted across all five data sets. These overpredictions are 
believed to be caused by retransformation bias. Czaplewski and Bruce (1990) 
found retransformation bias affects predictions for volume in profile models 
that are fit to diD. 

There was little difference between the weighted and unweighted subset 
models. Both the weighted and unweighted models for two of the four small 
sample subsets (2 and 3 ) were in close agreement with the development data 
set, whereas the models for the other two subsets ( 1 and 4 ) were substantially 
different (Fig. 2). 

Using the model developed from the original development data set, board- 
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Fig. 2. Plot of the percent bias in pulpwood volume by diameter class for the large data set and 
each of the four subsets with small sample sizes. The large, unweighted data set was used to 
compare the accuracy of the weighted and unweighted models for each subset. As the scales are 
different for each plot, the large data set also provides a standard for comparison. Negative 
values represent over-predictions; positive values represent under-predictions. The error bars 
represent 95% confidence intervals. 

foot volume estimates underpredicted volume in the smaller diameter classes 
and overpredicted in the larger diameter classes. Again there appeared to be 
little difference between the weighted and unweighted models for each subset 
(Fig. 3 ). Both the weighted and unweighted models for subsets two and three 
agreed with the development data set, whereas the models for subsets one and 
four overpredicted volumes across all diameter classes (Fig. 3 ). 

Topwood volume estimates were consistently overestimated across all di- 
ameter classes using the model developed with the original development data 
set. Once again, there was little difference between the weighted and un- 



74 K.L. CORMIER ET AL. 

a 
m 
ILl 
ILl 
n-  
I'-- 
n-  
UJ 
DD 

¢/') 
n-  
O 
LL 
0') 
LU 

_J >o 
Z 
O') 

I;D 

@ 

0.15 

0.12 

0.09 

0.06 

0.03 

0 

-0.03 

-0.06 

-0.09 

-0.12 

-0.15 

-0.18 

0.2 

0.15 

0.1 

0.05 

0 

-0.05 

4).1 

MODEL #1 
0.2 

0.15 

~< = LARGE MODEL 

0.1 

0.05 

0 

-0.05 

MODEL #2 

-0.1 
12 14 16 18 12 14 18 18 

13 15 17 19 13 15 17 19 

MODEL # 3  0.15[ MODEL #4 

-0.2 L 
12 14 16 18 12 14 t6  18 

13 15 17 19 13 15 17 19 

DIAMETER CLASS (IN) 

• = WEIGHTED [ ]  = UNWEIGHTED 

Fig. 3. Plot of the percent bias in sawtimber volumes by diameter class for the large data set and 
each of the four subsets with small sample sizes. The large, unweighted data set was used to 
compare the accuracy of the weighted and unweighted models for each subset. As the scales are 
different for each plot, the large data set also provides a standard for comparison. Negative 
values represent over-predictions; positive values represent under-predictions. The error bars 
• epresent 95% confidence intervals. 

weighted models for each subset (Fig. 4). Again the models for two subsets 
agreed with the development data set, whereas the models for the other two 
subsets overpredicted volume at higher levels (Fig. 4). As the errors in esti- 
mating topwood volume are negatively correlated with errors in estimating 
board-foot volumes for the same trees, it was not surprising to find topwood 
volumes being overpredicted when board-foot volumes were underestimated. 

In all three volume estimations, both the weighted and unweighted models 
for subsets one and four did not give adequate estimations of  volume. A pos- 
sible explanation for this is that subsets one and four did not adequately de- 
scribe the population because of  sampling errors. Mean dbh and range of  dbh 
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for subsets one and four were smaller than mean dbh and range ofdbh for the 
other data sets, indicating that subsets one and four had a higher concentra- 
tion of  smaller diameter trees, and fewer large diameter trees. This would 
cause an inherent bias in the models developed from subsets one and four. 
Table 3 indicates that the models developed from subsets one and four con- 
sistently overpredicted relative diameters across the entire tree length, whereas 
the models developed from the other data sets overpredicted relative diame- 
ters at the base and the top of  the tree. 
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CONCLUSIONS 

Although the pseudo-likelihood approach has been shown to be a good 
method for fitting weighted regression models (Carrol and Ruppert, 1988 ), 
we found that it did not substantially increase model performance for Biging's 
(1984) stem profile model. The weighted models had smaller errors associ- 
ated with fitting the data but the errors were not substantially smaller than 
the unweighted models. 

Using Biging's (1984) stem profile model, we observed that sub-samples 
of 50 trees estimated volumes as well as the large sample of  2742 trees in two 
out of four cases. The two sub-samples that failed to estimate volumes satis- 
factorily did so because they did not adequately represent the population. The 
weighted regression technique did not reduce the risk of errors associated with 
using smaller sample sizes with respect to Biging's taper equation. 
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