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From forest to finished product, wood is moved from one processing stage
to the next, subject to the decisions of individuals along the way. While this
process has worked for hundreds of years, the technology exists today to
provide more complete information to the decision makers. Virginia Tech
has developed this technology, creating a machine vision prototype for

wood products manufacturing.

hen atree is felled, a process begins to max-
W imize the value of that wood. The log is

taken to a sawmill, where someone decides
whether the wood is more valuable as lumber,
veneer, or chips. If the log is made into lumber,
boards cut from it must be edged and trimmed, a
process that requires someone to decide how to trim
off defective parts and make the board as valuable
as possible. Then someone must examine the board
and give it a grade—based on the quality of the
wood and presence of defects—and this determines
the board’s selling price. Finaly, at the rough mill,
someone cuts the lumber again to produce defect-
free dimension parts.

Much of this process is based on subjective deci-
sions and incomplete information. When a sawyer
trims a board, he knows only what he sees on the
board’'s surface. As the board passes through the
mill, decisions must be made quickly, and sometimes
a board is trimmed or cut in a less than desirable
way. Finaly, when the board is graded, the grader
makes decisions on the value of the board based only
on what he can infer from an inspection. Since this
is a subjective process, two people may assign dif-
ferent grades to the same board.

In the forest products industry, workers' decisions
directly affect the quality and yield of the wood
products created. Unfortunately, the process is slow
and subject to error. Lumber is often improperly cut
and trimmed, and boards are frequently incorrectly
graded. " Furthermore, this manua process doesn't
lend itself to the development of automated sawmiill
operations. Clearly, machine vision technology, with
its ability to provide more complete information,
could find a place in the forest products industry.
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VISION TECHNOLOGY IN FORESTRY

To some extent, vision technology has existed in
the industry since the early 1980s.’Various tech-
nologies, such as laser ranging and black-and-white
cameras, have been used to measure the dimensions
of logs and lumber. While this has been most useful
in improving efficiency, it has done little to maximize
the value of the resulting products. Much research,
then, has gone into developing other technologies
that can detect and plot features in the wood.

A useful technology must accurately identify the
three features of a board that will affect its value:

. Surface features: knots, holes, splits, decay, dis-
coloration, slope of grain.

. Geometry features: three-dimensional  shape,
warp, wane, variations in thickness.

. Internal features: voids, knots, decay.

Most research has gone into optical sensing meth-
ods, including cameras and spectrometers, which
measure the intensity and color of reflected light.™
These devices detect surface features and can be
readily automated, but they will miss knots that are
the same color as clear wood, or classify soil or
grease on the board as a defect. They can aso be
confused by variations between species and by the
roughness and moistness of the wood. Of course,
they are of no use for detecting internal features.

Technologies that measure density of the wood
can detect internal features, so much research has
gone into developing machine vision systems using
ultrasound, microwave, nuclear magnetic resonance,
and X-ray technologies.’While these systems over-
come some of the problems of optical systems, they
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Figure 1. Schematic of the multisensor machine vision prototype for lumber inspection.

cannot detect the color of the wood or defects such
as stains. Also, since some defects have nearly the
same density as clear wood, they cannot detect al
defects, nor can they accurately differentiate between
defect types.

It is apparent that an ideal machine vision system
would incorporate various sensing technologies, ana-
lyzing the combined data to locate and plot wood fea-
tures and defects.

MULTISENSOR PROTOTYPE

Over the past 10 years, researchers at Virginia Tech
have experimented with machine vision technologies
for the forest products industry. Our work initialy
involved image-processing algorithms for lumber
grading based on black-and-white and color
imagery. **We have since gone on to experiment with
multiple-sensing systems. By integrating information
from color cameras and other sensors, we have devel-
oped a multisensory system suitable for a variety of
manufacturing applications. Figure 1 shows a simple
conceptualization of this system.

Our work has resulted in a multisensory machine
vision prototype, pictured in Figure 2. This design
includes

« acolor-imaging system for locating and identify-
ing surface defects and discolorations,

« a high-speed laser-ranging system for detecting
cracks and holes in the surface and variations in
the thickness of the board, and

« an X-ray imaging system for locating and identi-

Computer

fying features associated with higher or lower den-
sity than clear wood.

The prototype integrates this sensing array with a
materials handling system, an image-processing sys-
tem, a control computer, and machine vision software.

The prototype is a full-scale machine that can han-
dle the typical widths, thicknesses, and lengths of lum-
ber. It can be configured for different types of sawmill
operations and handle both green and dry lumber. It
was built so that other sensing devices, besides the
three described, can be added and tested. The proto-
type has been used to test various applications, includ-
ing edging and trimming, lumber grading, color
sorting, and automation of sawmill operations.*

The prototype meets all industrial requirements
except that it does not provide a full range of speeds.
Industrial processing speeds run from 120 to 1,200
linear feet per minute, but because of cost and safety
concerns, the materials handling system on this pro-
totype can achieve speeds of only 360 linear feet per
minute. The effective speed of the prototype is lower,
though, because the scanning system can only process
data at a maximum 120 linear feet per minute (2 lin-
ear feet per second). This speed is adequate for hard-
wood applications, but would not be satisfactory for
the inspection and processing of softwood lumber.

Color Imaging system

The prototype uses two Pulnix color line-scan cam-
eras—one for each face of the board—having a resolu-
tion of 864 pixels and a data collection rate of 2.5 MHz.



The cameras were configured for a 13-1/2-inch field of
view, which has been wide enough for the board spec-
imens tested. With a processing speed of 2 linear feet
per second, the cameras can produce color images
with 64 pixels per inch cross-board resolution and 32
pixels per inch down-board resolution. This resolu-
tion is necessary to detect fine cracks and splits in the
wood. With a crack-preserving filter applied to the
data, however, the resolution can be later cut in half,
allowing the data resolution to match that of the laser-
ranging and X-ray sensing devices.

Tungsten-halogen incandescent bulbs illuminate the
boards, with the light carried to the board surfaces
through a bundle of fiber-optic cables. The ends of the
cables are arrayed so that they shine aline of light across
each board surface. The incandescent bulbs, then, can
be mounted in a convenient location away from the
board surfaces, keeping them away from the dusty wood
and allowing easy replacement when bulbs burn out.

Laser-based ranging system

The laser-based ranging system, designed and built
at Virginia Tech, uses a 16-mW helium-neon gas laser
with a 632.8-rim wavelength. A 24-facet polygon
scan mirror, rotating at about 30,000 rpm, sweeps a
point of laser light across the board. The image is cap-
tured by four EG&G black-and-white 128 x 128
array cameras at the rate of 384 frames per second.
At 2 linear feet per second, the cameras have a data
resolution of 32 pixels per inch cross-board and 16
pixels per inch down-board. Because the mirror is
rotating so fast, sweeping the point of laser light
across the board surface several times in one video
frame, the cameras see a continuous laser line falling
across the board.

The cameras then capture the displacement of the
laser line and variations in its light intensity. This data,
as an anadlog signd, is transferred to a special-purpose
electronics board (which aso provides a timing sig-
na to the camera). The board converts the data to an
8-bit digital image, determines where the laser line is
in each row of data, and then enters that pixel location
into a lookup table. The table generates 7 bits of range
data, which are transferred to a computer interface
on the imageprocessing computer. Through this
process, the laser-based ranging system can measure
board thickness and voids and indentations in the
board surface to within I/64th of an inch.

X-ray scanning system

The X-ray scanning system is much like those used
to scan luggage in airports. The X-ray source's kilo-
voltage and beam current are both variable, with a max-
imum kilovoltage of 160 and a maximum beam current
of 1 mA. The linear detector array that detects X-ray
transmission throuoh a board uses a scintillator and a

Figure 2. Multisensory lumber-scanning prototype.

photodiode to generate each pixel value. With the mate-
rials handling system moving boards at a rate of 2 lin-
ear feet per second, the imaging geometry of the system
achieves a cross-board resolution of 32 pixels per inch
and a down-board resolution of 16 pixels per inch.

Materials handling system

In order for these sensing devices to work properly,
boards need to pass through the prototype at a con-
stant rate, without bouncing vertically or shifting lat-
eraly. In this system, canted drive rollers beneath the
board keep it moving, while pneumatic rollers above
the board keep it in place. Canting the drive rollers
keeps the board diding snugly against a fence, which
is critical for accurate image registration. The posi-
tioning accuracy of the material passing through the
system is £0.01 inch. A dedicated computer controls
the system, which has programmable speeds ranging
from O to 6 linear feet per second.

Image-processing system

The prototype's image-processing system is a 200-
MHz Pentium PC with 64 Mbytes of main memory,
running Windows NT. A single PC is not capable of
executing the current vision algorithms in the four to
eight seconds allowed for real-time operation because
of the large amount of data in the collected images. For
example, the color image data alone from both sides
of a16-foot, 13-1/2-inch board will require 32 Mbytes.

Part of this problem can be solved through parallel
processing—having one PC process image data from
the top of the board and another PC process data from
the bottom. Another partial solution, which the pro-
totype now incorporates, is the use of specia-purpose
electronics to perform low-level image-processing
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functions. Low-level functions are ssimple sequential
operations suitable for pipelined processing, such as
repetitive operations on individual pixel values or
groups of pixel values. In Virginia Tech’s image-pro-
cessing agorithms, these low-level functions require
more than 70 percent of the computational time, so
performance can be significantly improved by run-
ning them on special-purpose boards.

Therefore, the image-processing system uses the
Morrph-ISA board, a modular and reconfigurable
hardware processing board developed at Virginia
Tech.”For computational units, the board uses field-
programmable gate array chips. For each low-level
image-processing task, the board creates speciaized
digital-processing units, which are connected using a
synchronous bus standard to create systolic process-
ing designs. These designs are then compiled into the
gate-level resources of the FPGA chips. Being modu-
lar, the board needs only the required resources for
the functions being performed.

The output from these low-level functions then
needs to be passed on for high-level image-processing
tasks, which involve complicated data structures and
decision making. In order to keep this transfer from
further slowing down the system, a high-performance
direct memory access interface board (also developed
at Virginia Tech) for the PCI bus transfers this infor-
mation into system memory without using the system
processor. Through this configuration, then, real-time
processing of the large amounts of machine vision
data is possible.

Control computer

A 286 PC controls the entire prototype system,
sending control signals to the materials handling sys-
tem computer and the image-processing system com-
puter. The PC aso continuously monitors the system
components to ensure that they are operating cor-
rectly. At this point the software running the system
is rudimentary, written in C and running under DOS,
but it will be developed to include an interface so
that a typical employee at a hardwood mill can use
it to operate the system and perform routine main-
tenance.

Machine vision software

The software for the image-processing system was
written in Visua C++ and consists of three algorithm
modules:

. An image preprocessing module generates the
images and histograms needed for further pro-
cessing.

. Animage segmentation module combines image
data, performs segmentation functions, and
extracts feature regions for further investigation.

Computer

. A feature recognition module uses domain-
specific knowledge to identify feature regions that
correspond to lumber defects.

Image preprocessing module. This module performs
the following functions, implementing them in real
time using the Morrph hardware:

. Performs shade correcting on the color and X-
ray image data to remove nonuniformities in
either illumination or detector sensitivity.

. Extracts a programmable field of view from the
color, X-ray, and range image data. This reduces
the amount of image data that is transferred. It
also provides a method for compensating for mis-
alignments between sensors.

. Determines the leading, lagging, right, and left
boundaries of a board in al images. This further
reduces the amount of data that must be
processed and alows the histograms to be com-
puted only from pixels that correspond to a board
face.

. Averages the red, green, and blue channels of the
color image data to create a new black-and-white
image of the board.

. Halves the cross-board resolution of the color
image data using a crack-preserving filter.

. Generates histograms of pixel values for the
black-and-white and X-ray images.

. Outputs six registered images (red, green, blue,
black-and-white, X-ray, and laser) and two his-
tograms (black-and-white and X-ray).

Image segmentation module, Taking those images
and histograms, this module does the following:

+ Smooths the two histograms using a Gaussian fil-
ter.

- Establishes multiple image threshold levels, sep-
arating clear wood from features that might be
defects. This thresholding is based on the fact that
most of a board face is clear wood, and thus the
largest peak in the histogram must be from that.
A defect is indicated by an alteration of shape of
the clear-wood peak and/or the existence of a
smaller pesk within the histogram.

» Uses connected component labeling to identify
contiguous regions of interest with similar thresh-
old levels. A defect, then, is a connected region
that has similar gray-level characteristics.

« Extracts properties—size, geometry, location,
color, density—for each region of interest. Each
property is defined using inexact descriptive
adjectives like darker, lighter, redder, bigger, and
rounder. Because these terms are not exact, fuzzy
logicis used.



Feature recognition module. This module uses tech-
nical data on wood features and patterns to identify
regions of interest that affect the quality and value of
lumber. The knowledge-based system uses rules to
determine whether a region is a member of a particu-
lar defect class. Using fuzzy logic, the rules assign
membership function values to the conjunctions and
disunctions in the basic set of adjectives used to rep-
resent region properties. For example, a simple rule
for recognizing a knot would be: “A feature is a knot
if it isredder than clear wood and isround. ”

Software efficiency. To handle the large amounts of
data, the machine vision software processes data in a
way that minimizes computational complexity and
enhances feati ire-detection canahilities

1. The segmented laser profile image is analyzed to
determine which areas of the board fall above or
below an acceptable thickness threshold. Areas
that are too thin are then removed from consid-
eration in subsequent analysis of X-ray and color
image data.

2. X-ray data, along with color data, is used to locate
knots, voids, and decay. These areas are removed
from subsequent analysis.

3. By thetime the color image datais anayzed, the
larger and unambiguous defect regions have
already been eliminated. Processing the data this
way reduces computation time and makes it eas-
ier to analyze smaller defect regions in the his-
togram data.

Applications

Figure 3 shows the color image, the range image,
and the X-ray image for the same board. Using these
images, the software agorithm identifies feature
regions and produces a table, or digital map, that lists
the location and identity of all lumber grading fea
tures. Figure 3d is a graphical representation of that
table, showing identified features as rectangles.

The data in the feature table can be used in a variety
of applications, some of which have been developed
independently of this project. One application takes the
data, determines where the board should be edged and
trimmed for maximum value, and automatically posi-
tions the edger and trimmer saw lines.” Another uses
the data to automatically grade hardwood lumber."
A third demonstrates the potential for using the data
in the manufacturing of dimension products from hard-
wood lumber.” Virginia Tech is now using these appli-
cations to both demonstrate the usefulness of the
prototype and test its accuracy and performance.

Virginia Tech itself has developed two applications
for its machine vision prototype, both now being
patented. One addresses the growing use of edge-glued
panelsin the manufacturing of doors, tabletops, desk-

(a) (b) (c) (d)

Figure 3. Illustration of multisensory machine vision results
showing (a) color image, (b) laser-ranging image, (c) X-ray
image, and (d) resulting defect map with rectangular feature
areas identified.

tops, and other wood products. Because light-colored
stains are becoming more popular, it is critica that
the bare-wood colors of adjoining panels match. As a
manual process, color sorting of wood is labor inten-
sive and difficult, but this application, when used with
the prototype system, can collect color data and auto-
matically sort wood.

Another Virginia Tech project applies this technol-
ogy in rough mills where defects are removed with
crosscut saws. This too requires a good deal of human
attentiveness and energy to be done well. Researchers
at Virginia Tech, however, have developed the hard-
ware and software for the full-scale prototype system
that will operate a fully automatic crosscut saw in a
rough mill.

vision technology in the forest products indus-
try. Thelabor-based techniquesof today are lit-
tle changed from sawmill practices of ahundred years

T hese applications show the usefulness of machine
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ago. Now, however, wood is more valuable and labor
is more expensive. At the same time, technology has
become more cost-effective. The development of
machine vision hardware and software now provides
the means to reap maximum value from wood and to
make those working in the industry more effective in
their jobs.
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