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Abstract. Any automatic system for grading hardwood lumber can conceptually be divided
into two components. One of these is a machine vision system for locating and identifying grad-
ing defects. The other is an automatic grading program that accepts as input the output of the
machine vision system and, based on these data, determines the grade of a board. The progress
that has been made on developing the first component, the machine vision component, will be
reported in this paper. The machine vision system being developed is made up of a subsystem
for imaging rough lumber surfaces, a computer vision subsystem for analyzing the image data
and identifying grading defects, a materials handling subsystem for moving boards through the
imaging devices, a computer for executing the algorithms comprising the computer vision sub-
system and, finally, another small computer for controlling all the other components. This paper
will describe the progress that has been made on developing all of these components. It will also
indicate the directions for future research. A major goal of this research activity is to create a
vision technology that will be applicable to not only the grading of hardwood lumber but a
number of other forest products related applications as well.
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1. Introduction

Any automatic system for grading hardwood lumber is composed of two compo-
nents. One of these is a machine vision system that can locate and identify grading
defects. The other component is an automatic grading program that accepts as
input the output of the machine vision system and, based on these data, determines
the grade of a board. This program is a computer algorithm form of the National
Hardwood Lumber Association (NHLA) hardwood grading rules. Its development
has entailed translating the English statements appearing in the NHLA grading
rules into precise mathematical statements that can be understood by a computer.
A good deal of progress has been made on developing this program [1-3].

This paper reports the progress that has been made on developing the other
component of an automatic grading system, the machine vision component. The
machine vision system being developed is composed of an imaging subsystem for
imaging board surfaces, a materials handling subsystem for moving boards through
the imaging subsystem, a computer vision subsystem that analyzes board image
data to locate and identify grading defects, a computer for executing the algorithms
that comprise the computer vision subsystem and, finally, a small computer for
controlling all the other subsystems of the machine vision system.

Of al the components that comprise the machine vision system, the one that is
the most difficult to design is the computer vision subsystem. There are a number
of reasons for this. First, for a grading system to be truly robust, it must be able
to handle a variety of different hardwood species. Hardwood species vary signifi-
cantly in their appearance. Grading defects in hardwood lumber manifest them-
selves in many different ways. For an automatic system to be industrially useful
requires that it be able to process lumber at least as fast as a skilled human grader.
This means that the vision system must be able to analyze image data at a rate of
at least two linear feet per second, i.e. to grade a 16 foot board in 8 seconds. Lastly,
since grading depends on detecting small grading defects, the vision system must
be able to process high spatial resolution image data. The need for high spatial
resolution data together with the rather high flow rates mean that the algorithms
comprising the computer vision subsystem must analyze lots of data fairly quickly.
To minimize total system costs the computer vision algorithms must be structured
so that they minimize the computational complexity of the analysis task. Only in
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this way can a reasonably “inexpensive” computer be used to perform the pro-
cessing.

All these requirements taken together pose a challenge to the developer, especi-
ally considering the state-of-the-art of computer vision. Developing computer
vision algorithms is an art and not a science. At the beginning of any computer
vision related research activity there is no assurance that a complete computer
vision system for solving an applications problem can be created. Given this fact,
prudence demands that one proceed cautiously. This implies that one must first
establish the feasibility for creating the required computer vision methodologies.
Also the initial research should employ standard off-the-shelf imaging hardware
and computing system so as to minimize initial hardware costs.

This paper will report the results of the initial investigations that have gone into
developing the computer vision subsystem. It will show some of the processing
results that have been obtained. It will be argued that these results do indicate the
feasibility for creating a computer vision system that can locate and identify grad-
ing defects on rough hardwood lumber.

The initial research has employed standard off-the-shelf hardware. The 512 x 480
standard RS-170 solid-state camera used in the initial investigations restricts the
research by allowing only images of 8 inch by 8 inch square areas of board surfaces
to be considered. The use of this hardware is the limiting factor in proceeding
further. To proceed further requires access to images of full-sized material, i.e.,
boards up to 16 feet long, up to 13 inches wide, and up to 2% inches thick.

Currently, a full-scale prototype machine vision system is being developed. This
system will combine all the components of a machine vision system so that a
variety of experiments can be performed. As was stated above, developing com-
puter vision algorithms is an art and not a science. A good deal of experimentation
is required to develop robust methods. The experimentation performed must reflect
the type of material the algorithms will have to analyze in the industrial setting.
Practically speaking, the feasibility of the complete machine vision system cannot
be established until issues of maintainability and reliability are addressed. Also, in
any automated system, hardware and software must interact. Compromises must
be made between what can be accomplished with hardware and what can be
accomplished with software. A complete systems approach is required in the devel-
opment process. This full-scale prototype will allow all these issues to be addressed.

The major thrust of the current research activities is developing this fullscale
prototype. The development of this prototype is very important. It provides a
vehicle for performing research on a number of forest products related problems
and not just the development of an automatic grading system. Currently, two
problem domains are being considered. One is developing a machine vision system
that can be used to automatically grade lumber. This will be referred to as the
rough lumber problem, since any grading system must be able to handle rough
lumber. A second problem is developing a system that can be used to automate
the rough mills of hardwood furniture and fixture plants. This will be called the
surfaced lumber problem, since most furniture and fixture plants, at least, skip
plane boards prior to cut-up. An important goa of this research activity is to
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develop methods that have general applicability within the forest products indus-
try. Considering both of these problems simultaneously provides an excellent
opportunity to develop general-purpose methods. This paper will report the pro-
gress that has been made on developing this prototype.

2. Computer vision subsystem development
2.1. The rough lumber grading problem

A machine vision system for grading hardwood lumber must be able to handle
rough lumber. Developing computer vision methods for locating and identifying
grading defects on rough lumber is a difficult problem. This problem is arguably
more complex than the computer analysis of images of surfaced lumber since
surfacing removes a good many of the discolorations that routinely appear on
rough lumber. For example, there is the variability in the exposure to ultra-violet
radiation. After lumber is sawn, it is typically stacked, usually outside, where the
stack is exposed to direct sunlight. Boards on the exterior portion of the stack
receive a significant exposure to ultra-violet radiation while boards on the inside
of the stack receive very little exposure to ultra-violet light. This difference in
exposure can and does cause a marked variation in material appearance depending
on a board’s location within the stack [4]. Light surfacing removes any such color
variations.

Stacks stored outside are exposed to the weather. This weathering can also cause
a variation in the visual appearance of a board, again depending on its location
in the stack. Again, light surfacing removes the discolorations caused by
weathering.

There is also the problem of boards getting dirty during the various materials
handling operations that occur prior to grading. Obviously dirt can be mistaken
for a grading defect. Most graders carry a knife to ensure that a particular spot
on a board is not just dirt that can be scraped off, but a real grading defect. A
machine vision system will not have access to a knife. Surfacing just prior to
machine vision inspection removes al dirt and prevents the machine vision system
from having to address the problems caused by dirt.

Even the drying process introduces potential color variations in the material.
Sap can come out of lumber and dry on the surface. The stickers used to separate
the boards during drying can leave marks on the material, etc.

The rough surface itself can cause problems. The lighting needed to create a
digital image of the board can cast shadows. These shadows could be misinter-
preted by computer vision algorithms as being a defect. It is also known that the
extent of surface roughness can affect the color of the materia [5]. Surfacing
creates a relatively smooth surface, free of sap stains and sticker marks.

More and more secondary remanufactures are surfacing the materia prior to
cut-up in the rough mill. These manufacturers do it to simplify the cut-up operation
for the sawyers. Surfacing makes defects, especially small defects, easier to see. The
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fact that surfacing is used in the rough mill is another indication of the relative
difficulty of the two analysis problems.

Finally, the computer analysis of rough lumber for the purpose of grading must
cope with the problem of surface moisture. Lumber can be graded right after it is
first sawn to sometime after it is kiln-dried. The variation in surface moisture
content during this period of time is substantial and is known to cause a significant
variation in the visual appearance of the material [6]. This is another problem
that does not need to be considered in rough mill automation since boards cut up
in rough mills have all been dried.

2.2. Initial problem statement

Because of the complexity of the rough lumber inspection problem, it was
decided to reduce the complexity somewhat in the initial investigations by con-
sidering a less general problem. A decision was made to concentrate on just four
species, maple, red oak, cherry, and yellow poplar. Only fairly clean boards were
selected for the study. Boards with mud spots on them were not included in the
data base. Boards with sticker marks were allowed. Badly weathered boards were
not. Boards containing areas discolored by ultra-violet light were also not con-
sidered.

The boards selected were digitized using a standard black and white RS-170
solid-state camera having a resolution of 512 x 480. Full-color images were
obtained by using red, green, and blue color filters. The resulting full-color images
had a spatial resolution of approximately 64 points per inch so that each image
represents approximately an eight inch by eight inch area.

The process of digitizing an image is referred to as “scanning”. To scan an image
one must select a number of scanning parameters. These parameters correspond
to setting the f - stop and exposure time on a 35 millimeter camera. For a vision
system to be species-independent the same scanning parameters have to be used
to image all the material examined. Hence one set of scanning parameters must
be used to image all the various hardwood species. Using one set of parameters
means that each species will not be “optimally” imaged just as one setting for the
f - stop and exposure time will not optimally image all pictures one might want to
take. The concern in using just one scanner setting is that the images created could
be so poor as to make the analysis of these images computationally complex for
the computer.

To determine the effects of scanning parameter settings, a number of boards
from each species were scanned twice. The first image of each board was created
using scanning parameters “optimized” for that board's species. The second image
of each board was created using scanner settings that allow all hardwood species
to be imaged. This last set of scanner settings has been used to scan numerous
surfaced boards of red oak, white oak, hickory, poplar, maple, walnut, cherry,
mahogany, and white pine.

Finally, another small humber of rough samples of red oak were scanned when
their surfaces had varying degrees of surface moisture content. The procedure
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followed was to wet the surface of each sample by letting the sample soak in water
for some time. The samples were then removed from the water and scanned at
regular time intervals. The purpose of this set of data was to determine the effects
of surface moisture on the computer analysis of the images.

The goal of these studies was to draw from the experience that has been gained
from the study of surfaced lumber [7-12] and to see if the same basic technology
could be used on both problems. In those areas where difficulties occurred, the
objective was to create algorithms that will work on both rough and surfaced
lumber.

The image data used in the initial studies were color image data. Color character-
istics of board features play an important role in the cut-up operation performed
in the rough mill. Because of this, a good deal of research had gone into the use
of color data prior to considering the rough lumber grading problem. Another
reason for selecting color imagery is that humans can perform both grading and
saw up based solely on input of color information from the eye. Therefore the
initial concentration on color imagery seems well founded.

2.3. The segmentation system for color imagery

To achieve an inexpensive real-time implementation of the computer vision
subsystem means that efforts must be made to reduce the computational complex-
ity of these algorithms, to make them as computationally simple as possible. One
method for reducing computational complexity comes from the studies that have
been conducted on surfaced lumber [7-12]. The idea is a simple one and comes
from a cursory analysis of the problem. The imaging subsystem of the machine
vision system must have a field of view as wide as the widest board that should
be processed. Studies show that over 99 percent of most hardwood lumber is less
than 13 inches wide. So this would seem a reasonable field of view. Yet the average
hardwood board has a width of between 6 and 7 inches. If one can easily separate
pixels of background from those of board, a substantial reduction in the amount
of data that needs to be processed by the recognition algorithms can be achieved.
Next, if one looks at a typical board, the vast majority of the board surface is clear
wood, free of al defects. If one can create computationally simple methods for
separating areas of clear wood from areas that might potentially contain a defect,
another substantial reduction would occur in the volume of data that has to be
processed by the recognition algorithms. This savings becomes particularly impor-
tant if one considers that recognition algorithms are always the most computation-
ally complex of the algorithms appearing in any computer vision system. By
limiting the volume of data that has to be processed by the recognition algorithms
the computational complexity of the whole analysis problem can be markedly
reduced.

If this simplification method is employed then the resulting vision system soft-
ware can best be conceptually divided into two parts, a Segmentation System and
a Recognition System. The purpose of the Segmentation System is to separate
picture elements, “pixels’, of background from pixels of board, and pixels of clear
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wood from pixels of potential grading defects. The objective is to use very simple
algorithms for performing each of these tasks. The purpose of the Recognition
System is to identify the type of defect present at the locations marked by the
Segmentation System. The goal of the Segmentation System is to reduce the vol-
ume of data that must be processed by the Recognition System.

Approximately two years of effort have gone into developing robust methods
for performing the segmentation operation, though admittedly, the thrust of these
efforts has gone into the segmentation of surfaced lumber. The general methods
used are described in Refs. [7-12]. However, the methods reported in these refer-
ences had trouble separating decay and blue stain from areas of clear wood. Since
the publication of these articles a new method has been devised [13,15]. It has
yielded significantly improved results and has been used, without alteration, to
segment images of surfaced red oak, white oak, hickory, poplar, maple, walnut,
cherry, and white pine.

A goa of this study was to determine whether this new segmentation method
would also work on rough lumber. Obviously, there is a strong theoretical motiva-
tion for wanting similar methods to be used on both problems. The overall objec-
tive is to create a vision technology that is applicable to a variety of forest products
applications.

2.4. The recognition system for color imagery

The purpose of the Recognition System is to identify the type of defect present
at a particular location, a location provided to the Recognition System by the
Segmentation System. In computer vision terminology the Recognition System
performs the “scene analysis’ operation, i.e., given a particular image region the
purpose of the Recognition System is to assign a label that identifies what is present
in that region.

Conceptually, there are three basic approaches to scene analysis [16]. The first
of these is the bottom-up type of approach. Using a version of this type of
approach, image data are processed by a number of different operations, each
operation producing a new data structure that makes some new facet of the image
explicit to the computer. The last of the operations performed are those that
actually label the regions of the image.

Bottom-up approaches have their origin in very early computer vision research
[17-19]. Bottom-up approaches are known to be very sensitive to noise. Any
mistake made by an early processing operation propagates up through the rest of
the processing operations. As such this type of approach has proven ineffective on
real-world images [16], e.g., images of rough lumber.

A second class of scene analysis strategies are the top-down methods. The basic
idea behind a top-down method is the formulation of a hypothesis of what is in
the image. Once the hypothesis has been made operators are applied to the image
to verify whether the formulated hypothesis is correct. Note that the initial hypoth-
esis is generated without using any information collected from the scene. Further,
if the results of an operation disprove the current working conjecture of the scene
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analysis system, then another working conjecture or hypothesis is generated. The
generation of this new hypothesis is also independent of any information obtained
from the scene during earlier processing.

Because no image-derived information is used in formulating working hypothe-
ses, top-down methods are very limited in their generality [16]. However, these
approaches have been successfully used on very complicated albeit highly struc-
tured real-world scenes, e.g., the analysis of chest radiographs [20].

The third class of scene analysis strategies is the combination or heterarchical
strategies. Such strategies use a combination of both bottom-up and top-down
methods. It can be argued that human vision uses a combination strategy. The
need for some bottom-up processing where image-derived information is used to
guide the analysis should be intuitively clear. The need for a scene analysis system
to make a hypothesis and attempt to verify that hypothesis using special operators
is not so intuitively clear. See Ref. [16] for an argument indicating the importance
of top-down processing in human vision.

The final Recognition System being developed for the rough lumber inspection
problem will use a combination strategy. Bottom-up type operations are used
initially. The culmination of the bottom-up operations is a labelling of the various
regions found in the image. For each region, the bottom-up derived labelling is
used as the current working hypothesis for the top-down type of analysis that
comes next. ldealy, an examination of the current working hypothesis could be
found to be erroneous by the operators applied to test the hypothesis. If this
happens, additional bottom-up processing would be required to generate a new
working hypothesis for the region. This new working hypothesis would then be
used in a top-down analysis, etc. Obviously, such a recognition procedure will
work in real-time only if very few iterations are required before a correct labdl, i.e.,
defect type, is assigned.

As of this writing the Recognition System is not completely developed. It has
only been trained to identify splits/checks, knots, holes, and wane. Also, the system
does not contain all the required top-down components. It does contain a signifi-
cant amount of the required bottom-up processing. The system is rule-based, uses
neural networks to validate the final working hypothesis about the identity of a
defect at a particular location, and uses fuzzy logic to help focus attention of the
recognition algorithms.

2.5. Initial study results

The analysis of the moistened red oak samples confirmed the results given in
Ref. [6]. Clearly, surface moisture content can significantly affect wood color. More
importantly it was found that the color difference between clear wood and grading
defects changes markedly with surface moisture content. When surface moisture
is high there is very little color difference between clear wood and many of the
grading defects. As the surface dries this color difference becomes much more
pronounced. Hence whether man or machine is doing the grading, the grading can
be accomplished more easily and with greater accuracy if board surfaces are
alowed to dry [13-15].
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It was this result that rnotivated the consideration of kiln-dried lumber in this
study. Such samples have low surface moisture content and are dimensionally
stable. Dimensional stability of the samples was an important consideration in
selecting kiln-dried lumber. Dimensional stability of the samples simplifies efforts
to verify the accuracy of an automatic analysis.

The application of the previously developed segmentation methods to the rough
lumber samples showed that these techniques work almost as well on rough lumber
as on surfaced lumber. There is some dight degradation in quality caused by the
shadows cast by the rough surface of the material [13-15].

The results obtained from the segmentation methods did not depend on the
scanning parameters used. Hence, this study, just like the study involving surfaced
samples of red oak, white oak, cherry, maple, walnut, poplar, hickory, and white
pine, indicates that a single scanner setting for all hardwood species can be used.
This is a very important result with regard to the possibility of obtaining species-
independent processing [13-15].

Next the segmentation methods work equally well across the spectrum of hard-
wood species that have been tested to date. Both this study and the one done on
surfaced lumber samples show the robustness of these methods and their ability
to be applied to any species and obtain good results. Again, this is a very important
result with regard to creating species-independent processing methods [13-15].

The most important results to be presented are those obtained by applying the
partially developed Recognition System to rough lumber data. Consider the board
image shown in Fig. 1. This is a black and white version of the color image used
in the actual processing. This image is of a rough poplar sample. Figure 2 shows
the results obtained from the initial segmentation operation performed by the
Segmentation System. As of this point in the processing the computer knows on

Fig. 1. A digital image of a rough yellow poplar sample.
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Fig. 2. The results obtained from the initial segmentation operation performed by the Segmentation
System on the digital image of Fig. 1.

a pixel-by-pixel basis to which of six possible classes each pixel in the image
belongs. Both the number of classes as well as the rules for assigning a class to
each pixel are determined automatically by the segmentation methods in the Seg-
mentation System. The black area represents the “background class’. This assign-
ment is easy because one can control the color of the background and hence easily
train the computer to recognize this color. The other five classes represent areas
of different but approximately uniform color. Note that the Segmentation System
is able to detect the color difference between heartwood and sapwood. Also, note
that it has detected three different classes that together comprise the knot on the
board.

As of this point the system believes that the class shown in medium gray, i.e.,
the heartwood, is the clear wood area. It believes that this class is the clear wood
class because there are always more pixels of this clear wood than any other class.
This follows from the fact that the largest portion of any board is clear wood area
whether this clear wood be heartwood or sapwood.

Note that the purpose of the Segmentation System is to detect areas that might
contain a defect. It does not have to find the exact boundary of a defect, only an
approximate one. Nor does it have to be completely noise free. If it makes errors,
these errors can be corrected at later stages of the processing.

Further bottom-up processing is performed by the Segmentation System to
determine the number and location of the 4-connected regions appearing in the
segmented image. The boundaries of the various connected regions found are
shown in Fig. 3. Note that prior to this processing the computer only knew on a
pixel-by-pixel basis to which class each pixel belonged. It also knows which class
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o

Fig. 3. Boundaries of connected regions of the segmented image of Fig. 2.

seemingly corresponds to clear wood. The result of this new processing is to make
explicit to the computer the number and location of connected regions.

An examination of Fig. 3 shows that the initial segmentation did produce some
erroneous results. Most of the “noise” in the segmented image is confined to very
small connected regions. Hence the next operation performed by the Segmentation
System is to merge these small regions with larger ones. Two tests are employed
to do this merging. After all the merging that can be done is completed, each of
the resulting connected regions has a list of properties computed from it and these
properties are put in the region's attribute table.

The first processing step of the Recognition System is again a bottom-up one.
Each region in Fig. 4 is first given a label based on the properties in the attribute
list. Adjacent regions having the same label are merged together to form the
concept of DEFECT_oBJECT. An attribute table of the merged regions is computed
and associated with the perect_oBJEcT. The initia labelling of the bEFECT_OBJECT
is then verified based on updated attributes together with additional properties
computed from the peErFecT oBJECT using neural networks.

The process of creating perecT_oBJECTS is done by independently operating
defect recognition modules. Each of these modules is an “expert” in identifying
one particular type of defect. Each defect recognition module is applied to only
those regions that “might be’ the type of defect the module was designed to
recognize. Fuzzy logic vectors are used to perform this “focus of attention” func-
tion. There is a fuzzy logic vector associated with each region. The value of a
region’s fuzzy logic vector is based on values in its region property list. The values
of the i"component of a region’s fuzzy logic vector is the computed “likelihood”
that the region is defect type i.
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Fig.4. The connected regions that remain after the region merging operation is performed by the
Segmentation System.

The resulting labelling can still have errors. To remove such errors a top-down
type processing is used. For a particular bEFECT OBJECT this processing uses, as its
working hypothesis, the label that was assigned to the perecT_oBJECT during the
bottom-up processing.

The results obtained after applying the existing top-down type processing are
shown in Fig. 5. Note that the light gray area shown in Fig. 5 is the region of the
image that the Recognition System believes to be background. The labelling of the

Fig. 5. A pictorial output of the results obtained from the Recognition System.
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background region was actually performed by the Segmentation System. The white
area of the figure is the region that the Recognition System believes is clear wood,
i.e., either heartwood or sapwood. The dark gray area in the figure is the region
that the Recognition System believes is a knot.

Approximately two years of effort have gone into creating the current recogni-
tion system. Much has been learned. Much remains to be done. For more informa-
tion on this recognition system see Refs. [21-23].

2.6. Problems

The primary focus of the authors research in hardwood lumber surface defect
detection has been directed towards the rough mill automation problem. The
thrust of this work has been on developing algorithms for locating and identifying
surface defects and badly colored wood on surfaced lumber. Defect removal in the
rough mill is largely based on removing aesthetically displeasing areas so that such
areas will not appear in rough parts. The obvious sensor to use on the surface
lumber problem is a color camera. Through the years of effort on the surface
lumber problem a good deal of color-related scanning equipment has been accumu-
lated, not to mention the experience that has been gained in using this equipment.
Hence, when the rough lumber grading problem was posed, an obvious choice for
an initial sensor was a color camera.

All the experiments that have been performed to date do indicate that color
imagery is useful in defect detection. The computer vision methods described in
the last section progressed surprisingly fast given the a priori perception of problem
difficulty. It has worked remarkably well on the simplified problem on which it
was applied. Unfortunately, the rough lumber problem in its full generality is a
very difficult problem. Dirty material can and does confuse the segmentation
method that has been created. Experiments with other segmentation methods have
yielded no better results. The shadows cast by the rough surface can and do reduce
the sensitivity of this and other segmentation methods. Even in surfaced lumber
there are knots that have the same color as clear wood. This situation is further
exacerbated in rough lumber. Wane detection is no problem as long as cambium
is intact. But if debarkers are used, the cambium frequency comes off with the
bark, not to mention some sapwood as well. In such cases wane is both difficult
to detect as well as difficult to identify.

It is currently believed that color information alone is not enough. Color imagery
requires that defects be detected in an indirect manner. That is, one attempts to
infer the presence of a defect and identify it based on non-unique characteristics,
e.g., knots are typically reddish brown but a bark pocket can be the same color.
And, as was mentioned above, knots can be the same color as clear wood. Hence,
it is possible for a defect to evade detection in color imagery and, even if detected,
evade being correctly identified.

This al leads the authors to believe that other imaging scanners are needed to
augment color cameras. To aid in knot detection an X-ray scanner would seem
useful [24,25]. Experiments performed at Virginia Tech indicate that X-rays pro-
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vide an effective way to detect the presence and extent of knots. X-ray scanners
are currently being used by some softwood companies to aid in the automatic
grading of structural lumber [26,27]. X-ray scanners seemingly provide a direct
method for locating and identifying knots. For boards of uniform thickness X-ray
scanners can directly measure the density differences that exist between knots and
clear wood. In addition to being able to detect knots it is also known that X-ray
images can be used to detect holes, split/check, wane, decay, and honeycomb. Not
only are X-ray imaging systems versatile in the number of defects they can detect,
they are also readily available in low-radiation, yet high spatial resolution units.
But even the addition of an X-ray device might not be enough.

Variations in X-ray attenuation can come from a variety of sources, most partic-
ularly board thickness. A welcome addition to the color camera systems and X-ray
scanner would be a system for gauging board thickness. A new laser-based ranging
camera system is being designed at Virginia Tech to do just that. This new scanner
can detect any defect that affects measurement of board thickness, e.g., holes, wane,
and splits/checks, etc. This new scanning device is based on the same basic princi-
pals as systems currently in use for wane detection. The difference between the
new system and the older systems is the resolution of the camera system and the
frame rates used to produce images. The goal is to create a system that has at least
32 points per inch cross-board resolutions and at least 10 points per inch down-
board resolution. This new laser-based ranging camera system is based on new
high-speed, high-resolution camera systems that are just beginning to come on the
market.

Experiments with a simplified version of this scanning system have shown it to
be effective in locating and identifying all these defects. Again, this scanning system
is able to detect these defects in a non-evasive manner based on differences in
measured thickness of a board.

Obvioudly, each new scanner added to a machine vision system increases the
cost of the system by the amount that the scanner costs. An objective in adding
new scanners is to improve overall system performance so that the additional price
is offset. Another objective is to add scanner systems that will make the analysis
problem less computationally complex. Reducing the computational complexity
can markedly reduce the cost of the computing hardware needed to anayze the
image data in real-time. A final objective for adding a scanning system is to make
the analysis problem solvable.

Based on the results that have been obtained to date, it seems impossible to
accurately locate and identify grading defects of typical rough lumber coming out
of a sawmill using only color image data regardless of the computational complex-
ity of the algorithms employed. To solve this problem is going to require additional
scanners. These scanners must improve the results obtainable when only color
data are used. These improved results should help offset their costs. They should
also reduce the complexity of the computer vision analysis tasks thereby reducing
the cost of the computer needed to process image data in real-time.

Integrating information from color cameras, an X-ray scanner, and the new
“range”’ scanning system should markedly improve the quality of the results obtain-
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able from automatic analysis. Interestingly, these new scanners also provide an
effective tool in the analysis of surfaced lumber for rough mill automation. It is
also known that they will prove useful on a variety of other forest products related
applications as well. However, the question remains, will they be enough? Cur-
rently, it is believed that they will but further study is needed to ensure that this
is the case.

Lastly, it must be pointed out that for each new scanner added the computer
vision subsystem will have to be adapted to handle data from this new imaging
device. Obviously, this adaption will require some time. However, the objective in
adding each new scanning system is to reduce the complexity of both the software
and the software development effort.

Incidentally, the concept of using a multi-sensor approach to hardwood lumber
defect detection is not new. The idea was first discussed in a 1981 paper [24] that
did foresee much of what has happened over the last decade.

3. Hardware development

Excluding the computer vision subsystem, the rest of the prototype machine
vision system is all hardware. This hardware includes the imaging subsystem, the
materials handling subsystem, the computer system that will process the computer
vision algorithms, and a small computer system that will control all machine vision
components. As was stated in the introduction there are a number of reasons for
wanting to create a full scale prototype. One reason is to examine the hardware/
software trade-offs in designing a commercially viable machine vision system. As
was indicated in the last section one hardware/software trade-off concerns the
number and types of imaging systems that must be used. Currently, it appears that
using just color data makes it very difficult if not impossible to create a computer
vision software system that can accurately locate and identify grading defects on
rough lumber or that can detect removable defects on surfaced lumber for rough
mill automation. Therefore to solve these problems additional hardware is needed,
i.e., additional imaging systems, so that the software design problem can be simpli-
fied and solved.

Actually, there are a number of uncertainties involved in both the hardware and
software components of this machine vision system. Currently, data are insufficient
to alow one to determine exactly what spatial resolutions should be used with
each of the scanning devices to be employed in this machine vision system. This
is a critical point since the lower the spatia resolution, the less computationally
complex the analysis problem. There is also an uncertainty as to how accurate the
machine vision system must be. Clearly, it should be as accurate as a human grader
but how accurate is the human grader? These same basic questions remain unan-
swered in the rough mill automation problem as well.

The purpose of the prototype system is to resolve these uncertainties for both
problems. Within the context of the aircraft industry this prototype is equivalent
to an experimental plane. Its goal is to probe the frontiers and provide the data
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upon which commercially viable systems can be created. And just as in the case
of the aircraft industry, experimental planes inevitably cost more than commercial
aircraft whose design was based on the data obtained from the experimental plane.
This additional cost factor follows from the fact that there are so many uncertain-
ties. Hence, the experimental prototype must be over designed. The data collected
by this system will probably be of a higher spatial resolution than that used in a
commercial machine vision system. The number of sensors employed will probably
be greater than that used in a commercial system. The computers employed will
probably be more expensive than the ones that will be used on commercial systems.

The primary design criteria for creating the prototype are simple. One must
allow for amost every eventuality. The subsystems must be flexible enough to
provide a mechanism for change. The prototype must provide a vehicle for resolv-
ing the many uncertainties associated with designing and building a commercially
viable system for automatically grading hardwood lumber or for automating the
rough mill of furniture and fixture plants. The authors feel that the design for this
prototype accomplishes all these objectives.

In what follows the design and development of each of these hardware subsys-
tems will be described in some detail.

3.1. Imaging subsystem

As was mentioned above, the imaging subsystem is going to be comprised of a
number of imaging sensors. Of all these imaging sensors, the one farthest along in
the development phase is the color imaging subsystem. A color line scan camera
has been selected. This Pulnix camera has a resolution of 864 color pixels. At 64
points per inch spatial resolution this camera will allow a 13% inch field of view,
a field of view wide enough to handle the vast majority of hardwood lumber. The
camera can run at 2.5 MHz. At this speed the camera can generate images that
have 64 points per inch cross-board resolution and 32 points per inch down-board
resolution at board speeds of two linear feet per second. Tests indicate that this is
more than enough spatial resolution for most forest products related applications,
especially for automatic grading and rough mill automation. Two of these cameras
have been purchased, one for scanning each of the two board faces. For more
information about the motivation for selecting these cameras see Refs. [23,28,29].

Light sources for illuminating board surfaces have also been selected. These
sources use tungsten—halogen incandescent bulbs that have a color temperature
of approximately 3600K. The light from a bulb is transferred through a fiber-optic
cable that is composed of a number of very thin fiber-optic light lines. At the far
end of this cable the individual fiber-optic lines are stacked on top of one another
with their ends forming a straight line. These fiber-optic lines are all enclosed to
keep them permanently in this configuration. These light sources are produced by
the Fostec Corporation. There are a number of motivations for using this type of
light source [12,28,29], one of which is that they provide a convenient method for
changing bulbs that burn out. While the choice of the fiber-optic light sources is
fixed, consideration is being given to changing from tungsten—halogen incandes-
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cent bulbs to xenon bulbs. Xenon bulbs have better spectral characteristics and
much longer expected lifetimes. However, the xenon light sources also cost signifi-
cantly more than tungsten halogen sources.

The cameras and light sources have all been mounted on an imaging system
"prototyper”. This prototyper is a4 x 6 feet optical bench in a free-standing enclo-
sure. A simple 6 feet long computer-controlled linear stage is used to transport
boards up to 4 feet long through the color camera systems. Both cameras were
initially connected to the PS/2 via a rather low-speed paralel interface, an interface
similar to the one typically used to connect a printer to a computer This easy to
design interface has allowed experiments to be conducted using these cameras
while more complicated inter-face hardware was being designed, built and tested.
For more information about the progress that has been made on developing the
color imaging components see Ref. [12,28,29]. A picture of the prototyper is given
inFig. 6.

This more complicated hardware is a high-speed interface that allows both color
cameras to be connected to a PS/2 Model 80. It provides the mechanism for
collecting the color imagery and storing it into computer memory [30]. This
interface will alow the collection of color imagery data as fast as it can be generated
by the camera systems, i.e., 2.5 MHz.

This “prototyper” has allowed various imaging geometries to be tried. It has
allowed the illumination problems to be solved. Basicaly, it will alow al the
components of the color scanning system to be checked out. Once completely

Fig. 6. The machine vision "prototyper" with the color imaging subsystem components attached.
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checked out on the prototype, all that will remain to be done is design and build
dust-free enclosures for the cameras and light sources, enclosures that can be
directly mounted to the materials handling subsystem. The actual mounting of the
color imaging components to the materials handling subsystem should occur by
late 1991 or early 1992.

Approximately one year of effort has gone into determining the “best” sensors
to use in conjunction with the color cameras. The analysis performed was based
on difficulties that were being experienced by the computer vision subsystem in
accurately and reliably locating and identifying various defects. It was clear that
one of the primary problems being experienced involved accurately locating and
identifying knots. Since knots are one of the most common defects, it was clear
that something was going to have to be done to improve this aspect of machine
vision system performance.

Another study being conducted at Virginia Tech involves the use of computer
tomography (CT) image data to automatically locate and identify internal defects
in logs. Data used in this research activity consist of successive scans of a number
of log sections. These data have been used to simulate what X-ray images of boards
cut from these sections would look like. These data clearly show that X-rays can
be used to easily detect the presence of knots in boards.

Hence, an additional scanner that is being considered for use on the machine
vision system is an X-ray scanner. The scanner under consideration is similar to,
but has a higher spatial resolution than, the X-ray scanners used to scan luggage
at airports. The X-ray scanning system under consideration has a 20 pixels per
inch cross-board resolution and, at 2 linear feet per second, will allow a 10 pixels
per inch down-board resolution. As of this writing it is believed that X-rays repre-
sent the “best” method for detecting knots. The use of capacitance sensors and
microwaves is precluded by the fact that the machine vision system being designed
must be able to handle green lumber. Efforts are currently underway to locate
sources of funding so that this system can be purchased. It will take approximately
one year to integrate this device into the machine vision system. The integration
involves designing and building mounting hardware so that this scanner can be
attached to the materials handling subsystem. It also involves designing and build-
ing a high-speed interface to the PS/2 Model 80 computer. The development of
computer vision algorithms to analyze the data from this scanner will proceed in
parallel with the other hardware development activities.

An additional scanning system that will definitely be used in the machine vision
system is the new laser-based ranging camera system being designed and built at
Virginia Tech. Theoretically, this system could detect thickness to approximately
0.01 of an inch. An important part of the design of this system involves creating
the special-purpose hardware needed to collect the “range’ data from this scanning
system in real-time. It will take approximately 1%z years to completely develop this
system. Funds to procure all the necessary hardware have been raised. Funds to
support the personnel costs are currently being pursued. As in the case of the X-ray
scanner, the development of computer vision algorithms to analyze data from this
imaging system will proceed in parallel with the hardware development activity.
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3.2. Materials handling subsystem

The materials handling subsystem has been designed and built by Automated
Lumber Handling (ALH) Company of Lenoir, North Carolina. It should be
installed on the Virginia Tech campus by August 1991. An early conceptualization
of this subsystem is shown in Fig. 7. This conceptualization looks very much like
the actual subsystem built by ALH. The actual system is shown in Fig. 8. This
picture was taken at the ALH plant in Lenoir.

There are only two real major differences between this conceptualization and
the actual subsystem. One is that the actual subsystem will use pneumatic pinch-
rollers instead of the string-loaded ones shown in the figure. The other is that the
actual subsystem will have an optical sensor to detect board presence on one side
of each of the pinch-rollers. These devices will be used to detect the presence of a
board and to signal when a pair of rollers comprising a pinchroller configuration
should be pressed together.

The materials handling equipment was designed to handle all hardwood and
softwood lumber species of economic significance for the wood furniture, fixture
and cabinet industries. The maximum dimension of each piece of lumber to be
handled is 17 feet in length, 20 inches wide and 2% inches thick. The system will
handle warped boards, in particular, crooked boards that fit into the 17 feet long
by 20 inches wide by 2% inches thick volume. The weight per unit volume used to
design the system was 6 pounds per board foot.

The motion control system used in the materials handling equipment has two
modes of operation. The first is a constant-velocity mode where a board is
accelerated from a standing start to a software-selectable speed before the leading
edge of the board enters the first imaging station. The program-selectable speeds
range from O to 6 linear feet per second. The board is to travel through all the
imaging stations at this speed. It is extremely important that this speed be accu-
rately controlled so that high-quality images can be obtained. The accuracy
requirement for the constant-velocity mode is that the board always be within
+1/100 of an inch of where it is supposed to be. After the trailing edge of a board
has passed the last imaging station, the board will be decelerated to a complete
stop.
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Fig. 7. An early conceptuaization of the materials handling subsystem for the full-scale prototype.
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Fig. 8. The materials handling system that was designed and built to move material through the
various imaging components. This system was designed and built by Automated Lumber Handling
Company of Lenoir, NC.

The design specifications for the material handling equipment required that it
provide space for at least five imaging stations. These imaging stations are the
positions where the color cameras, X-ray scanner, and the new “range” scanning
device will be located.

The second mode of operation for the motion control equipment involves a
start/stop type of operation where a board is moved some software-selectable
distance and then completely stopped. The minimum incremental distance the
system was designed to handle is 1/128 of an inch. Positioning accuracy during
this type of movement must also be very accurate. It was specified that the position-
ing accuracy must be such that the accumulated error along a 17 feet long board
is less than 1/256 of an inch. ALH believes their design will be able to meet al the
design requirements with the possible exception of this last specification.
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The motion control equipment will be programmable in G-code. Outputs from
all “important” sensing devices associated with the material handling system will
be such that they can be made available to the system control computer system.

It is very important that board vibration be minimized while a board is in an
imaging area of each scanning device. It was specified that board vibration should
be less than 1/128 of an inch for at least 90 percent of the system operating time.
This is the reason pinch-rollers surround each imaging station.

The ALH design specifies that the materials handling equipment will be approxi-
mately 45 feet long. It will be composed of three sections, a 15 feet long materials
infeed section, a 15 feet long imaging section (this is the section depicted in both
Figs. 7 and 8), and a 15 feet long outfeed section. The center imaging section will
be four feet wide. Boards will travel through the system approximately 42 inches
off the floor.

Compared to other materials handling equipment being used in the forest pro-
ducts industry, the requirements placed on this materials handling system are
extremely precise. It is about as accurate as any system handling lumber can
reasonably be. Obviously, this precision does not come without some cost associ-
ated with it.

Is all this precision needed? This precision will probably not be needed on a
commercially viable machine vision system. One of the purposes of this research
is to find whether this precision is needed.

3.3. Image processing and system control computers

At the spatial resolutions currently being used, a hardwood board 16 feet long
will generate 32 megabytes of color image data from both sides of the board. At
industrial speeds these data must be collected in 4 to 8 seconds. These data must
also be processed in 4 to 8 seconds. The other imaging systems will add even more
data, albeit only about 4 megabytes, to this total. These additional data that must
be collected and processed in 4 to 8 seconds. To many, including the authors, the
above represent staggering image processing requirements. Obviously, reduced
spatial resolutions can and probably will reduce the required computational load,
but still, one must be concerned about the cost of an image processing computer
system capable of processing this quantity of data in the above stated times. High-
speed computers cost more than low-speed ones, usually significantly more. One
must even be concerned about the cost of the main memory needed to store all
these data. Real-time processing will not alow the use of disk storage. Hence, the
original image data from all the scanners must be put in main memory. Intermedi-
ate data structures used by the computer vision software must also be stored in
main memory. This means that there must be lots of main memory. Again there
must be a concern about total system cost. High-speed computers and memory
cost money.

To help alleviate fears about costs, some important points need to be made.
Today’s bench mark processor is Intel’s 486 microcomputer. The fastest 486 on
the market today runs at a clock speed of 33 MHz and can execute, and this is
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the important statistic, 27 million instructions per second (MIPS). The people at
Intel estimate that a benchmark processor in the year 2000 will run at clock speeds
of 250 MHz and be able to execute, and again this is the important statistic, 2
billion instructions per second, i.e., 2,000 MIPS. While this projection might seem
rosy, the decade of the 1980s saw a comparable increase in speed as Intel projects
for the decade of the 1990s. Interestingly the pace of technological improvement
is increasing all the time. Hence Intel’s projections may be conservative. If Intel’'s
projections are true, a relatively low-cost high-speed system that can meet the
processing requirements posed by this problem should be available within a few
years, most certainly well before the year 2000.

As to the cost of memory, another statistic is of interest. In the 1980s average
memory costs steadily declined while the amount of memory available on a single
chip soared. Entering the 1980s one could get either 16 kilobit or 64 kilobit memory
chips. Today one can get 4 million bits on one memory chip. Also in the 1980s the
cost of a memory chip declined markedly from one year to the next. A chip that
cost $1.00 one year could easily cost only 60c the next year. Given the world-wide
competition it is doubtful that any of these trends will end. This also suggests that
an affordable computer system capable of meeting all the processing requirements
should be available within a very few years.

With the cost of computers and memory continuing to decline, the most econom-
ical way to proceed with this research activity is to get a minimal computer system,
one that will alow the proof of concept of an automatic grading system to be
demonstrated. To establish proof of concept seemingly requires the collection of
all needed image data at industrial speeds, the processing of these data to locate
and identify grading defects in a “reasonable” time period, abeit not real-time,
and the ability to create large image data bases of board images for algorithm
testing and performance evaluation.

Starting with main memory, to collect image data at industrial speeds requires
at least enough main memory to hold all image data generated by the various
scanners. A board that is 16 feet long will generate approximately 37 megabytes
of data from al the scanning systems. |If one wants to process these data at reason-
able speeds, then the original data together with the data generated during process-
ing must all be stored in main memory. This should require no more than 20
additional megabytes. Finally, processing programs and the operations system also
have to reside in main memory. This should take no more than 7 megabytes.
Hence, a minimal memory configuration for establishing the proof of concept is
64 megabytes of main memory.

To provide a reasonable turnaround for the processing of image data, a com-
puter is needed in the 30 MIPS range. In order to avoid having to redesign the
high-speed interfaces that connect the imaging components to the image processing
computer, the image processing computer should have a Micro Channel. A mini-
mal computer system that meets all the above requirements is the IBM RS/6000
520 series workstations. Hence this will be the computer system used initially as
the image processing computer.

As to the future, the computer vision subsystem has been designed in such a
way that it can effectively use a multiple instruction stream, multiple data stream
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(MIMD) computer architecture. Further, the algorithms are such that a fully sym-
metrical parallel processing system is not needed. Fortunately, “economical” 100
MIPS machines are just now coming on the market. These systems have a MIMD
architecture and are, at least currently, asymmetrical in their paralel processing
capabilities. The asymmetric nature of the parallel processing is not caused by any
limitations of the hardware, but rather is caused by the nature of currently available
operating systems. These operating systems do not as yet support full symmetric
parallel processing.

NCR will start marketing a system in the fall of 1991 that will have a MIMD
architecture which can have up to four 50 MHz 486 processors in it. With all four
processors installed this system will execute approximately 160 MIPS. Other com-
puter manufacturers will no doubt introduce comparable systems. The authors
believe (and history supports this belief) that the cost will go down sharply in the
coming year. Hence by the time all the research is completed and a commercially
viable machine vision system is to be produced, the cost of such computers should
be very reasonable.

As to the system control computer, initially an IBM PS/2 computer will be used.
The purpose of the system control computer is to provide control signals to the
materials handling system and the image processing computer. This computer will
continuously monitor many system components to assure they are working prop-
erly. If a system error does occur, the system control computer will be able to help
locate the fault in order to minimize down time. An important consideration in
developing the control software that will run on the system control computer is a
user-friendly interface. The goa is to create an interface that will allow a typical
employee of either a sawmiller or a secondary remanufacture to operate the
machine vision system. An effective machine vision technology is one that does
not require continuous monitoring by highly skilled workers.

As the arguments presented above should indicate, the authors feel that the
“best” image processing computer to use on a machine vision system is a general-
purpose computer sold by a national vendor. The authors feel that if required
processing speeds can be obtained from a commercial system, then these systems
are preferable to special-purpose hardware implementations. It is believed that if
special-purpose digital hardware is required it should be kept to a minimum. The
benefit to be gleaned in following this approach is increased reliability and the
ready availability of hardware maintenance.

4, Conclusions

This paper has presented the progress that has been made on developing both
the hardware and software components of a machine vision system prototype that
can be used to establish proof of concept of the automatic grading of hardwood
lumber. The prototype that is being developed represents an experimental tool
that has many uses for forest products related machine vision development. It
provides a mechanism for collecting data on full-sized boards, the kind of boards



R. W. Conners et al. / Automatically grading hardwood lumber 341

that are routinely processed by hardwood sawmiller, secondary remanufactures,
etc. It provides a mechanism for creating large image data bases, data bases that
can be used to establish algorithm robustness. These same data bases can be used
to quantitatively determine how well a typical employee performs various tasks in
the forest products manufacturing industry. These data on human performance
levels are very critical in making informed design decisions regarding the structure
of commercialy viable machine vision systems. This prototype provides a vehicle
for studying problems of reliability and maintainability of the various hardware
components, issues that should be of concern to anyone who intends to implement
a machine vision system. Finally, in its most sophisticated form, after all the needed
algorithms have been developed and reasonable processing speeds are possible,
this prototype will provide a vehicle for demonstrating the savings a commercial
machine vision system will provide the sawmiller and other forest products related
manufacturers. What makes this system so important is that it provides a vehicle
for investigating a number of forest products related inspection problems. Its devel-
opment is not going to be inexpensive. But the utility it offers, the data it will
collect, and the testbed it provides would seem to justify the cost.
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