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DO RED-COCKADED WOODPECKERS SELECT CAVITY TREES
BASED ON CHEMICAL COMPOSITION OF PINE RESIN?

RICHARD N. CONNER,‘,’  ROBERT H. JOHNSON,* D. CRAIG RUDOLPH,’ AND
DANIEL SAENZ’

ABSTRACT-We examined resin chemistry of loblolly  (Pinus  rue&)  and shortleaf (f’. d~irzata)  pines se-
lected as cavity trees by Red-cockaded Woodpeckers (Picoides  bowalis)  in eastern Texas. We sampled resin
from (1) pines selected by Red-cockaded Woodpeckers that contained naturally excavated active cavities, (2)
pines selected by forest biologists that contained artificially installed cavity inserts and were actively  being used
by Red-cockaded Woodpeckers, and (3) control pines of similar age and appearance to the active cavity trees.
We hypothesized that if woodpeckers are inducing a change in resin chemistry by excavating resin wells, this
change should appear in active cavity trees selected by woodpeckers and trees selected by biologists, but not in
control pines. If woodpeckers are selecting pines that have specific resin chemistry, concentrations of some resin
components in active cavity trees selected by the woodpeckers for natural cavity excavation should be different
from both control pines  and pines selected by biologists. A large diterpene acid peak containing an isopimaric-
levopimaric-palustric  methyl-ester mix in active natural cavity trees was approximately 20% greater than controls
and 22% greater than trees with artificial cavities. None of the other eight resin chemicals differed among
treatments. The activity of Red-cockaded Woodpeckers at resin wells did not appear to affect the composition
of cavity tree resin. Woodpeckers, however, may select pines with specific resin chemistries for cavity trees.
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The Red-cockaded Woodpecker (Picoides
borealis) nests and roosts nearly exclusively
in living pines (Pinus  spp.).  Red-cockaded
Woodpeckers flake off loose bark resulting in
a smoother surface on the cavity tree’s bole.
The woodpeckers also make daily excavations
at small wounds, termed resin wells, around
their cavity entrance and on the bole of their
cavity tree from which resin flows down the
tree (Ligon 1970). These behaviors result in a
resin barrier that serves as an effective de-
fense against rat snakes (Eluphe  spp.) if the
cavity tree can produce adequate resin (Jack-
son 1974, Rudolph et al. 1990). Rat snakes
regularly attempt to climb Red-cockaded
Woodpecker nest trees and are known to prey
on Red-cockaded Woodpeckers when the res-
in barrier is inadequate (Jackson 1978a,  Neal
et al. 1993).

Red-cockaded Woodpeckers make a sub-
stantial investment in time and energy when
excavating a cavity (Conner and Rudolph
1993, and characteristics used to select cavity
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trees affect the rate of cavity excavation. Red-
cockaded Woodpeckers select pines that have
thin layers of sapwood  and large diameters of
heartwood (Conner et al.  1994), as well as
pines that have had their heartwood softened
by fungal  decay from Phrllinus  pini  ini’ections
(Jackson 1977, Conner and Locke 1982,
Hooper et al. 1991) because cavities can be
more quickly excavated in such pines (Conner
et al. 2001).

Red-cockaded Woodpeckers also select
cavity trees based on the ability of pines to
produce resin (Conner et al. 1998a),  which af-
fects the defense of the cavity. The breeding
male woodpecker selects the cavity tree that
produces the most resin for his roost tree,
which usually becomes the woodpecker
group’s nest tree during spring. Cavity trees
producing higher yields of resin at resin wells
likely provide better barriers against rat
snakes, enhancing the probability of survival
of the breeding male and his offspring (Con-
ner et al. 1998a). Presumably, the woodpeck-
ers either taste the resin or sense the viscosity
of the resin early in the process of excavating
a cavity and abandon the tree if they do not
detect the proper resin composition. If the
cavity is hunian  made (artificial), the tasting-
sensing stage may be circumvented, and the
woodpeckers use this convenient resource be-
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cause it requires little or no time-energy in-
vestment in excavation, and the availability of
suitable pines for cavity excavation is often
low.

Pine resin (oleoresin) is a complex mixture
of resin acids (diterpenes) and other chemicals
dissolved in monoterpene solvents (Zinkel et
al. 1971, Hodges et al. 1979). Pine resin,
which the woodpecker uses to create a barrier
against rat snakes, serves as the pine’s pri-
mary defense against bark beetle infestation
(Wahlenberg 1946, Hodges et al. 1977, Con-
ner et al. 1998a).  Red-cockaded Woodpecker
cavity trees in eastern Texas, especially active
cavity trees, are regularly attacked and killed
by southern pine beetles (Dendroctonus  fron-
t&s) and occasionally by various species of
engraver beetles (Zps  spp.; Conner et al. 1991,
Conner and Rudolph 199.5, Rudolph and Con-
ner 1995). High resin flow rate and total pro-
duction (yield), along with a fast crystalliza-
tion rate if flow rate is high, are known to
favorably influence the pine’s ability to phys-
ically repel a bark beetle attack (Wahlenberg
1946, Hodges et al. 1979). In addition, Hayes
et al.  (1994a) suggest that 4-allylanisole,  a
component of pine oleoresin, may serve to re-
pel bark beetles.

Although the adhesive properties of pine
resin alone may serve as the deterrent to rat
snakes attempting to climb Red-cockaded
Woodpecker cavity trees (Rudolph et al.
1990), repellent properties of the chemical
components of pine resin also may serve this
purpose (Jackson 1974).  The monoterpene
limonene is known to be toxic to bark beetles
(Tomlin et al. 2000) and may have a similar
effect on rat snakes. Thus, similar to their se-
lection of pines for cavity excavation that
have high resin yields, thin sapwood,  large di-
ameters of heartwood, and decayed heart-
wood, Red-cockaded Woodpeckers also may
use specific resin chemistries as a selection
criterion. An additional possibility is that daily
excavation at resin wells on active cavity trees
induces a wound response in the pine that al-
ters resin chemistry by affecting the concen-
trations of various resin acid components.
Wound response in pines usually involves in-
creased resin flow volume (Rue1 et al. 1998),
whereas  resin chemical composition normally
is considered a function of the pine’s genotype
(Trapp and Croteau 2001). However, short

term wound response in grand firs (Abies
grandis)  can involve a moderate increase in
monoterpene concentration and a slight in-
crease in diterpene concentration (Steele et al.
1998, Trapp and Croteau 2001).

We examined resin chemistry in active
Red-cockaded Woodpecker cavity trees in
loblolly (Pinus  taedu)  and shortleaf (P. echin-
atu)  pines in eastern Texas. We sampled resin
from (1) pines selected by Red-cockaded
Woodpeckers that contained naturally exca-
vated cavities in active cavity trees, (2) pines
selected by forest biologists that contained ar-
tificially installed cavity inserts and were ac-
tively being used by Red-cockaded Wood-
peckers, and (3) control pines of similar age
and appearance to the active cavity trees. If
Red-cockaded Woodpeckers are inducing a
change in pine resin chemistry by daily ex-
cavation at resin wells, this change should ap-
pear in active cavity trees which have been
selected by woodpeckers for naturally exca-
vated cavities, as well as in active cavity trees
that have been selected by biologists for arti-
ficial insert installation, but not in control
pines. If Red-cockaded Woodpeckers are se-
lecting pines for cavity trees that have specific
resin chemistry, concentrations of some resin
components in active cavity trees selected by
the woodpeckers for natural cavity excavation
should be different from both control pines
and pines selected by biologists that contain
active cavity inserts.

METHODS

We used increment borers to collect xylem
wood tissue and the resin it contained from
Red-cockaded Woodpecker cavity trees in
loblolly and shortleaf pines on shrink-swell
soils on the northern portion of the Angelina
National Forest (62,423 ha; 3 1” 15’ N, 94” 15’
W) in eastern Texas. A small subpopulation
of Red-cockaded Woodpeckers occurs on this
portion of the national forest (Conner and Ru-
dolph 1989). We used woodpecker activity at
resin wells, amount of bark scaling, and con-
dition of the cavity entrance as indicators of
tree status (see Jackson 1977, 1978b).

We sampled a total of 52 pines (36 loblolly
and 16 shortleaf pines) each month during Au-
gust and September 1997, including 13 active
naturally excavated cavity trees, 13 active
cavity trees that contained one artificial cavity
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insert, and 26 control pines of similar age and
general appearance to the active cavity trees.
Two cores (0.5 cm diameter by 3 cm long) of
xylem tissue were extracted at breast height
from opposite sides of the outermost xylem
rings of each pine. Both xylem core samples
removed from each pine were immediately
placed in foil-sealed scintillation vials in the
field that were filled with 10 ml of pentane
containing 0.2 mg of the internal standard te-
tradecane. The lids were securely tightened
and the vials placed on ice in insulated coolers
for transport back to the laboratory; samples
were maintained in explosion-proof freezers
until processed.

We analyzed terpenoid components of the
resin samples using a Varian 3400 gas chro-
matograph with flame ionization detector.
Components were separated on a J&W Sci-
entific DB-5 column (30 m length X 0.52 mm
internal diameter) using a thermal gradient
program (initial temperature 70” C maintained
for 5 min, increasing to 2.50” C by 6j”/min and
held for 10 min). The injector port was main-
tained at 260” C and the detector at 280” C;
peaks were integrated using Varian ChemStar
software on a PC (Varian, Inc. 1995). Samples
were prepared for chromatographic analysis
using a modified method of Lewinsohn et al.
(1993),  which allows the simultaneous anal-
ysis of mono- and diterpenoids of conifer
oleoresin. Approximately 48 h prior to sample
preparation, 5 ml of MTBE (methyl tert butyl
ether) containing 0.25 mg of tricosanoic acid
(internal standard) were added to the pentane-
containing sample vials and allowed to further
extract at room temperature. The mixture was
then evaporated to 2.5 ml under N, gas and
split into two l.O-ml aliquots: one processed
for monoterpenes and the other for diterpene
acids. Diterpenes were esterified using TMS-
diazomethane (Aldrich Chemical Co.) because
it is commercially available and more stable
than lab-generated diazomethane. After pro-
cessing, the two fractions were recombined,
further concentrated to approximately 300 ml,
and analyzed. Monoterpene peaks were quan-
tified against tetradecane, and diterpene resin
methyl esters were quantified against the
methyl ester of tricosanoic acid.

We identified individual peaks by compar-
ison with published peak retention times
(Hayes et al. 1994b) under replicated chro-

matographic conditions and confirmed them
by GC-mass spectra produced From a single
sample that exhibited all peaks being quanti-
fied. Mass spectra were produced using a Var-
ian 3400GC with a 30-m DB-5 column cou-
pled to a Saturn 3 mass detector under chro-
matographic conditions similar to those used
for the quantitative analysis. Total terpenoid,
total monoterpene, total diterpene resin acid
yields, and the concentration of individual ter-
pene components were statistically analyzed
using StatView  ver. 4.5 (SAS Institute, Inc.
1998). We tested all data for normality and
homogeneity of variance. We pooled data
across months because no monthly differences
were detected in an initial two-way ANOVA
design (treatment X month), and tree types
(natural cavity, artificial cavity, and control)
were compared subsequently with a one-way
ANOVA  followed by a Tukey’s multiple com-
parison test if significant differences among
means were detected. Under situations where
the assumptions of parametric statistical tests
were not met, data were log transformed
(log,+,). A two-way ANOVA  design (treat-
ment X tree species) used to explore possible
differences in production of specific resin
components between tree species detected a
difference only for ol-pinene  (Table 1).

RESULTS

Seven volatile monoterpene peaks, includ-
ing ol-pinene,  P-pinene,  limonene, 4-allylani-
sole, and three unknown smaller peaks were
identified and quantified. Five diterpene meth-
yl-ester peaks, including pimaric acid, isopi-
maric-levopimaric-palustric acids (quantified
as a single large unresolved peak due to poor
separation on the DB-5 column), dehydroa-
bietic  acid, abietic acid, and neoabietic acid
also were identified and quantified. We de-
tected no significant differences in total vol-
atile monoterpene or total diterpene acid con-
tents among the three treatments (Table 1). We
compared individual peaks across the three
treatment levels; likewise, no significant dif-
ferences were seen for 01- or P-pinene,  limo-
nene, or 4-allylanisole. However, the large di-
terpene acid peak containing the isopimaric-
levopimaric-palustric methyl-ester mix did
show a significant difference among the three
treatment levels (Table l), with levels found
within the active natural cavity trees being
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TABLE 1. Amounts of monoterpenes and diterpenes (means t SE, mg/two-core sample) measured from
increment cores extracted during August and September 1997 from active naturally excavated and active artificial
insert Red-cockaded Woodpecker cavity trees and morphologically similar control pines on the Angelina National
Forest in eastern Texas. Red-cockaded Woodpeckers selected pines with higher iso-levo-palustric  acid levels.
Means for all components except cr-pinene  were compared with a one-way ANOVA  (df = 2, 49).

Rem chemcals

Monoterpenes
or-pinene”
P-pinene
Limonene
4-allylanisole
Total monoterpenes

Diterpene resin methyl-esters
Pimaric acid
Iso-levo-palustric  acids
Dihydroabietic acid
Abietic acid
Neoabietic acid
Total diterpene methyl-esters

Arlificml  cavity Natural cawty Contml pines
trees 01 = 13) tree5 (II = 13) 01 2 26) f P

0.283 t 0.034 0.373 i 0.079 0.281 k 0.026 0.71 0.982*
0.192 F 0.021 0.232 t 0.065 0.204 t 0.017 0 . 1 1 0.900
0.294 I!I 0.035 0.244 t 0.040 0.252 i 0.028 0.65 0.524
0.501 St 0.030 0.451 i: 0.052 0.468 2 0.033 0.54 0.582
1.390 ir 0.112 1.382 + 0.230 1.295 t- 0.088 0.27 0.764

0.275 t 0.028 0.305 -r 0.030 0.279 + 0.021 0.35 0.705
1.938 i: 0.114 2.482 i 0.206 1.992 t 0.127 3.50 0.034
0.218 t 0.054 0.227 i- 0.038 0.199 rf- 0.020 0.16 0.855
0.295 ir 0.036 0.310 rt 0.050 0.388 k 0.039 2.04 0.136
0.533 t 0.046 0.612 + 0.043 0.615 i- 0.029 1.73 0.183
3.259 I!Z 0.193 3.936 i 0.278 3.476 i: 0.178 2.14 0.123

20% greater than controls  (Tukey’s P =
0.043) and 22% greater than trees with artifi-
cial cavities (Tukey’s P = 0.066). We detected
no difference between trees with artificial cav-
ities and control pines (Tukey’s P > 0.99).
There was no significant interaction between
treatment and month in the initial two-way
ANOVA  for the large diterpene peak. We
found no significant differences in any of the
terpenoid measures (volatiles, resin acids, or
total terpenoid content) between the sampling
months (August and September).

Loblolly  pines produced significantly more
oc-pinene than did shortleaf pines (F,,,,  =
16.32, P < 0.0001). The two-way ANOVA
design (cavity tree type X tree species) de-
tected no significant differences among treat-
ments (cavity types and control) for ol-pinene
concentrations (Table 1). There was no sig-
nificant interaction between treatment and tree
species (F,,,,  = 1.79, P = 0.17). We did not
detect a difference between tree species for
any of the other resin components.

DISCUSSION

Daily excavation at resin wells coats Red-
cockaded Woodpecker cavity trees with fresh
pine resin, producing a constant “wick” of
resin volatiles that evaporate and diffuse from
the trees. Active maintenance of resin wells
by Red-cockaded Woodpeckers may induce

and maintain elevated chemical defenses in
trees. Under this scenario, induction could ac-
tually enhance the short term resistance of
trees to beetle attack and infestation (defenses
are already mobilized and wound response
resin is being produced; Rue1  et al. 1998),  but
could lower the long term resistance by de-
pleting carbohydrate stores over time that
could otherwise be used to mount an effective
defensive response to a future beetle attack.
However, in this study, the activity of Red-
cockaded Woodpeckers at resin wells did not
appear to affect the terpene yield (concentra-
tion) or composition of cavity tree resin, and
argues against the idea of induced terpene de-
fenses. We found that active cavity trees with
artificial cavity inserts had the same terpene
yields and composition as the control trees.

In contrast, the proportion of isopimaric-
levopimaric-palustric resin acids in the oleo-
resin of Red-cockaded Woodpecker-selected
active cavity trees was greater than that found
in either the control or active artificial cavity
trees. These data suggest that Red-cockaded
Woodpeckers may use biochemical informa-
tion, in addition to other cavity tree selection
factors, as selection criteria for determining
suitable cavity trees. The chemical compo-
nents of the resin in pines selected by wood-
peckers may have enhanced properties that
maintain resin  stickiness, which in turn limits
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the ability of rat snakes to gain access to the
nest cavity. Alternatively, woodpecker-select-
ed cavity trees may contain higher concentra-
tions of specific diterpene resin acids that are
distasteful or toxic to rat snakes and likewise
serve to inhibit rat snake climbing and thereby
nest predation. Although diterpenes affect res-
in viscosity, the complete effect of these di-
terpene resin acids on resin stickiness and tox-
icity to rat snakes is poorly understood. Lim-
onene, which is one of the most toxic mono-
terpenes to bark beetles (Coyne and Lott
1976, Raffa and Berryman  1982, Tomlin et al.
2000),  was not present in significantly higher
levels in cavity trees selected or used by Red-
cockaded Woodpeckers. An additional possi-
bility is that Red-cockaded Woodpeckers use
resin characteristics to help detect presence of
red heart fungus.

Previous research has suggested that the
monoterpene 4-allylanisole in pine resin
serves as a repellent to southern pine beetles
(Hayes and Strom 1994, Hayes et al. 1994a).
Because loblolly and shortleaf pine Red-cock-
aded Woodpecker cavity trees are regularly in-
fested and killed by southern pine beetles
(Conner et al. 1991, 1998b; Conner and Ru-
dolph 1993,  we expected to find lower levels
of 4-allylanisole in active cavity trees that re-
ceive daily wounding from woodpeckers ex-
cavating resin wells than in control pines. This
was not the case, suggesting that factors other
than 4-allylanisole levels, such as the yield of
resin from cavity trees (Hodges et al. 1979,
Conner et al. 2001),  influence cavity tree vul-
nerability to southern pine beetles.

In present day forest landscapes it may not
be possible to obtain a precise determination
of Red-cockaded Woodpecker cavity tree
preference. Cavity trees currently used by
Red-cockaded Woodpeckers and those select-
ed by biologists for cavity insert installation
may not provide the resin characteristics fully
preferred by Red-cockaded Woodpeckers be-
cause they represent a truncated age distribu-
tion-and an artifact of what was left after the
removal of old growth pine forests in the
South between 1880 and 1930 (Conner and
0’ Halloran  1987). However, resin chemistry
is controlled primarily by tree genetics (Trapp
and Croteau 2001) and likely is not affected
by the truncated pine age distribution present
throughout the South.

A more precise separation of resin chemi-
cals within the large diterpene peak we
detected and a better comprehension of the
physical chemistry and toxicity of each resin
component also are needed before a more
complete understanding of Red-cockaded
Woodpecker cavity tree selection can be
achieved. Additional research is needed to
evaluate resin chemistry in longleaf pines (Pi-
nus palustris). Longleaf  pines appear to be the
preferred pine species for Red-cockaded
Woodpecker cavity trees (Conner et al. 2001),
and are known to produce greater yields of
resin than either loblolly or shortleaf pines
(Hodges et al. 1977, Conner et al. 1998a).
Red-cockaded Woodpecker selection of pines
with specific resin chemistries may be more
pronounced in longleaf pine than in other pine
species.
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