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Abstract. Colonization-competition trade-offs represent a stabilizing mechanism that 
is thought to maintain diversity of forest trees. If so, then early-successional species should 
benefit from high capacity to colonize new sites, and late-successional species should be 
good competitors. Tests of this hypothesis in forests have been precluded by an inability 
to estimate the many factors that contribute to seed production and dispersal, particularly 
the many types of stochasticity that contribute to fecundity data. We develop a hierarchical 
Bayes modeling structure, and we use it to estimate fecundity schedules from the two types 
of data that ecologists typically collect, including seed-trap counts and observations of tree 
status. The posterior density is obtained using Markov-chain Monte Carlo techniques. The 
flexible structure yields estimates of size and covariate effects on seed production, variability 
associated with population heterogeneity, and interannual stochasticity (variability and se- 
rial autocorrelation), sex ratio, and dispersal. It admits the errors in data associated with 
the ability to accurately recognize tree status and process misspecification. We estimate 
year-by-year seed-production rates for all individuals in each of nine sample stands from 
two regions and up to 11 years. A rich characterization of differences among species and 
relationships among individuals allows evaluation of a number of hypotheses related to 
masting, effective population sizes, and location and covariate effects. It demonstrates large 
bias in previous methods. We focus on implications for colonization-competition and a 
related hypothesis, the successional niche-trade-offs in the capacity to exploit high re- 
source availability in early successional environments vs. the capacity to survive low- 
resource conditions late in succession. 

Contrary to predictions of trade-off hypotheses, we find no relationship between suc- 
cessional status and fecundity, dispersal, or expected arrivals at distant sites. Results suggest 
a mechanism for maintenance of diversity that may be more general than colonization- 
competition and successional niches. High variability and strong individual effects (vari- 
ability within populations) generate massive stochasticity in recruitment that, when com- 
bined with "storage," may provide a stabilizing mechanism. The storage effect stabilizes 
diversity when species differences ensure that responses to stochasticity are not highly 
correlated among species. Process variability and individual effects mean that many species 
have the advantage at different times and places even in the absence of "deterministic" 
trade-offs. Not only does colonization vary among species, but also individual behavior is 
highly stochastic and weakly correlated among members of the same population. Although 
these factors are the dominant sources of variability in data sets (substantially larger than 
the deterministic relationships typically examined), they have not been not included in the 
models that ecologists have used to evaluate mechanisms of species coexistence (e.g., even 
individual-based models lack random individual effects). Recognition of the mechanisms 
of coexistence requires not only heuristic models that capture the principal sources of 
stochasticity, but also data-modeling techniques that allow for their estimation. 

Key words: coexistence; colonization-competition hypothesis; hierarchical Bayes; Markov-chain 
Monte Carlo; masting; population size, effective; random effects; stochasticity; successional niche; 
tree fecundity schedule; tree seed prodztction. 

INTRODUCTION colonizing and competitive abilities and, thus, a hier- 

~ o l ~ ~ i ~ ~ t i ~ ~ ~ ~ ~ ~ ~ t i t i ~ ~  trade-offs may be a sta- archy of species arranged these two axes 

bilizing force for tree diversity (Tilman 1994, Rees et 1994). Species that tend to first have high 

al. 2001). This mechanism requires a trade-off between fecundity and broad dispersal. This capacity to colonize 
early is offset by inferior competitive ability (Horn and 
~ a c ~ r t h u r  1972, Armstrong 1976, Hastings 1980, Cas- 
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scape provides continual turnover in terms of newly 
disturbed sites. By itself, the mechanism has strict re- 
quirements in terms of parameters describing coloniz- 
ing ability and rates of competitive demise. Moreover, 
there is a limit to how similar the species can be in 
terms of these parameter trade-offs (Tilman 1994, 
Holmes and Wilson 1998, Adler and Mosquera 2000). 
This stringent requirement can be alleviated to some 
degree by the presence of a second mechanism, the 
successional niche, whereby species trade off compet- 
itive ability when resources are scarce (e.g., low light 
levels long after disturbance) with the capacity to ex- 
ploit abundant resources that may be present imme- 
diately following disturbance (Pacala and Rees 1998). 
Although both competition-colonization and succes- 
sional niches require trade-offs, these mechanisms can 
operate simultaneously (Bolker and Pacala 1999, Rees 
et al. 2001, Hixon et al. 2002), resulting in the pos- 
sibility of trade-off combinations that involve both 
mechanisms. Tree species may possess a suite of traits 
related to successional status (Oosting 1942, Connell 
and Slatyer 1977, Christensen and Peet 1984, Huston 
and Smith 1987, Pacala et al. 1996). 

There are no direct tests of the colonization-com- 
petition hypothesis in forests, where manipulative ex- 
periments are necessarily shorter than tree generations. 
Experimental tests have been suggested for short-lived 
plants (Tilman 1994, Pacala and Rees 1998, Bolker and 
Pacala 1999). Levine and Rees (2002) used seed size 
as a basis for examining the relationship in annual 
plants, but perennial plants entail broader challenges. 
In lieu of long-term field experiments, tests would re- 
quire two elements. First, colonization capacity needs 
estimation. If colonization-competition trade-offs main- 
tain diversity, then fecundity and dispersal capacities 
of early-successional species combine to result in high- 
er probabilities of arriving at new sites than late-suc- 
cessional species. Second, models incorporating those 
estimates can be used to evaluate whether or not trade- 
offs with competitive ability could promote coexis- 
tence. We address the first component here, by provid- 
ing estimates of fecundity schedules and dispersal. The 
second component is the subject of another study (J. 
S. Clark, M. Dietze, S. Govindarajan, and I? Agarwal, 
unpztblished manuscript). 

Although there have been numerous efforts to quan- 
tify fecundity of trees growing in closed stands, none 
have produced accurate estimates. Fecundity schedules 
comprise a complex set of patterns that involve tree 
size (e.g., Harper 1977, Thomas 1996), location 
(Greenberg and Parresol 2002) and resource effects 
(LaDeau and Clark 200 l),  autocorrelation (dependence 
in time), synchronicity among individuals that may in- 
volve climate and pollen limitation (Koenig and Knops 
2000), and sex ratios. Lack of fecundity estimates re- 
sults from an inability to directly observe seed pro- 
duction. Open-grown trees sometimes provide a basis 
for whole-tree seed-production estimates (e.g., Koenig 
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et al. 1994). More typically, forests have closed can- 
opies, where seeds can often be seen on trees, but not 
counted. Observations from towers above the canopy 
(LaDeau and Clark 200 1) are an exception. Where trees 
are isolated from conspecifics and dispersal distances 
are low (seed shadows do not overlap), direct calcu- 
lations based on seed-trap densities provide rough es- 
timates (Downs and McQuilken 1944, Greenberg and 
Parresol 2002). Seed orchards are of little relevance, 
because artificially high fecundity of open-grown trees 
does not apply to closed stands-they are open-grown 
for a reason. Likewise, onset of reproduction observed 
for open-grown trees occurs earlier than it does in the 
understory. We are unaware of sex-ratio estimates for 
any overstory tree species-a tree with no apparent 
seed might be male, immature, observed at the wrong 
time, or seeds may simply be obscured from view. Us- 
ing inverse methods (Ribbens et al. 1994, Clark et al. 
1998, 1999b) it has been possible to identify a single 
fecundity parameter, which is not sufficient to describe 
the many elements of fecundity schedules. We show 
here that the many sources of stochasticity that are left 
out of previous inverse models result in misleading 
estimates. 

We introduce methods to simultaneously estimate a 
comprehensive range of factors that determine tree fe- 
cundity schedules. Developments in computational sta- 
tistics during the 1990s (Gelfand and Smith 1990, Gel- 
man et al. 1995, Carlin and Louis 2000) allow us to 
define a high-dimensional model for these joint effects 
and to estimate the full complement of latent (unob- 
served) variables and parameters that describe fecun- 
dity schedules. Our analysis involves a process model 
for the fecundity schedule that accommodates the time- 
series character of seed production in individuals. Be- 
cause fecundity is a latent process (we cannot directly 
observe it), we embed this process model within a rich 
structure that links the latent fecundity process to the 
two types of data ecologists typically obtain, seed col- 
lections and observations of whether or not individual 
trees are reproductive. The latent fecundity process is 
estimated tree-by-tree together with "population-lev- 
el" variables, such as sex ratios, covariate and size 
effects, and serial (year-to-year) autocorrelation, to- 
gether with dispersal and the parameters that describe 
onset of first reproduction. The individual time series, 
together with their uncertainties, are then available for 
more extensive investigations of spatial and temporal 
effects. An unusually large data set involving nine 
stands from two regions spanning up to 1 1 years reveals 
location effects. As part of this analysis we demonstrate 
how to address the broad challenge of assimilating dif- 
ferent types of evidence as the basis for inference at 
the individual and population levels. Results allow us 
to evaluate the extent to which species differ at the 
population and individual levels and to evaluate the 
extent to which actual fecundity schedules support as- 
sumptions of the colonization-competition hypothesis. 
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Because it will be familiar to ecologists and serve 
as a point of departure, we begin with a summary of 
the classical modeling approach. This brief overview 
provides context and illustrates why previous methods 
are inadequate. We then describe statistical computa- 
tion methods that allow us to accommodate full fecun- 
dity schedules. Our analysis involves partitioning the 
deterministic and stochastic factors that contribute to 
fecundity schedules for all of the dominant canopy spe- 
cies in our two study regions. 

The limitations of traditional methods 

Fecundity models are typically allometric (Harper 
1977, Thomas 1996). For trees, diameter is the common 
size variable, because it is readily observed: 

where y, is the annual log seed production by the ith 
tree having log diameter d,, and 

is the fecundity process model, where a, and a, are 
regression parameters, and E ,  is a zero-mean error pro- 
cess, E ,  - N(0, uZ). If fecundity is simply proportional 
to basal area (diameter squared) (e.g., Ribbens et al. 
1994, Clark et al. 1998, 1999b, Greenberg and Parresol 
2002), then a, = 2 (Fig. I). If the rate of fecundity 
increase eventually declines with diameter, as expected 
when trees become large (Downs and McQuilkin 1944, 
Greenberg and Parresol 2002), then 0 < a, < 1. The 
last term in Eq. 1 allows for observation error and 
process variability on annual seed counts. Observation 
errors result because counts are imprecise. Process var- 
iability is model misspecification. Eq. 1 is not the exact 
relationship between tree diameter and fecundity, but, 
rather, an approximation. It is an approximation, be- 
cause many factors that affect fecundity are not con- 
tained in the model. Because fecundity y, typically can- 
not be directly observed, this traditional approach is 
not tenable. 

Inverse approaches allow some progress by intro- 
ducing a transport model for dispersal that translates a 
process that is obscure (seeds in trees y,) to data that 
can be collected (seeds counted in traps sJ)(Ribbens et 
al. 1994, Clark et al. 1998, 1999b). Such models can 
be written in general terms as 

where A is the area of a seed trap, T is the duration of 
the study, and gJ(y) is expected seed flux to the ground 
at location j (seeds per area per year). The Poisson 
sampling distribution is the sole source of variability, 
as gJ(y) is a function of a deterministic fecundity pro- 
cess (Eq. 2) and a "mean" dispersal process. This ap- 
proach entails shortcomings that are unappreciated. A 
short catalog of problems includes the following: 

Tree diameter (cm) 
FIG. 1 .  Seed counts on seven Acer rubruna trees from 

central Massachusetts felled in 1971 (solid circles; Abbott 
1974). Also shown is the maximum-likelihood estimate (solid 
line) with 95% CI (dashed lines) for the fecundity schedule 
obtained using an inverse modeling approach (Clark et al. 
19996). 

1 )  No process variability. -Because we cannot ob- 
serve seed production, we must infer it; fecundity is a 
latent variable to be estimated, not observed. If we 
allow no stochasticity in the fecundity process, we as- 
sume that Eq. 2 describes seed production exactly. We 
can "propagate" error in the estimates of a, and a, to 
y ,  but that confidence envelope is conditioned on the 
assumption that there is no stochasticity in the fecun- 
dity process. To construct a confidence interval on fe- 
cundity that accommodates variability, it must be in- 
cluded in the model. 

Inverse methods based on classical statistics (Rib- 
bens et al. 1994, Clark et al. 1999b) do not allow for 
variability in fecundity (process variability). The Pois- 
son sampling distribution is not related to fecundity. It 
does not enter the model at the same place as fecundity, 
and it has a different structure. Because the seed-trap 
sampling distribution is the only place that recognizes 
stochasticity, variability in fecundity will be assumed 
(in the model) to arise after dispersal. By contrast, Eq. 
1 describes process variability that is lognormal-low 
(but positive) values most years, with occasional high 
production. If we propagate that variability to seed- 
trap counts, we could imagine a sampling distribution 
more dispersed than Poisson (i.e., conditionally Pois- 
son, albeit marginally overdispersed). However, a more 
dispersed sampling distribution for seed traps (e.g., 
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Clark et al. [I9981 used a negative binomial) does not 
permit identification of additional parameters. The 
shape parameter for the sampling distribution simply 
trades off with other parameters (Clark et al. 1999b). 
The fact that we cannot include process variability E ,  

suggests that parameter estimates could be biased. We 
will show here that the bias is large. 

2) Time-series considerations. -Because seed pro- 
duction may be correlated over time, the independent 
errors (white-noise) assumption of Eq. 1 is unrealistic. 
Thus, even if we could include process variability in 
fecundity, we still require a structure that accommo- 
dates the autoregressive nature of seed production. In 
other words, Eq. 1 needs a time component, y,, = p,, 
+ E,,, where the stochastic term allows autocorrelation. 

3) Individual effects.-The masting phenomenon 
concerns both individual differences and time. Eqs. 1 
and 2 assume that the same fecundity relationship ap- 
plies to all individuals of a given diameter. We cannot 
infer variability among individuals if we assume that 
they are identical. A random component for "individ- 
ual effects," p,, might now look like this: y,, = p,, + 
p, + E,,. This is termed a "mixed model." 

4) Inflexible process model. -The allometric model 
does not allow for the fact that trees produce no seeds 
until maturity, that production can then increase rapidly 
(LaDeau and Clark 2001), and that it subsequently de- 
clines with age (Downs and McQuilkin 1944). In prin- 
ciple, we can add more parameters. In practice, even 
large data sets from stands containing large trees do 
not permit identification of additional parameters. Nei- 
ther Ribbens et al. (1994) nor Clark et al. (1998,1999b) 
resolved both parameters in Eq. 2; in both cases, pa- 
rameter a, was fixed. 

5) Gender.-Because seeds may not be observed on 
a tree for many reasons, we cannot use the regression 
approach to identify the sex ratio of dioecious species. 

6) Inability to assimilate evidence.-Point 5 is one 
aspect of a broader limitation: both seed-trap and status 
observations could contribute insight on tree fecundity. 
Eq. 1 requires counts of seeds on trees, which cannot 
be obtained, and it accommodates neither of the vari- 
ables that can be observed. The inverse approach ac- 
commodates only seeds in traps. 

A study that reports direct observations of seed pro- 
duction of forest-grown trees (Abbott 1974) demon- 
strates the challenges. Seven Acer rubrurn trees were 
felled, and seeds were removed and weighed. Subsam- 
ples were counted. Total fecundity was estimated based 
on sample masses. These estimates from closed-canopy 
conditions show a relationship between fecundity and 
diameter, with the smallest individual supporting 
-12000 seeds and the largest individual (33-cm di- 
ameter) having nearly lo6 (Fig. I). 

Most aspects of fecundity cannot be determined from 
this destructive harvest. The snapshot view gives no 
indication of interannual effects. We do not know if 
the year 1971 is representative, if there is autocorre- 

lation, or if there are higher-order effects (e.g., mast- 
ing). Of course, all trees were selected for this study 
because seeds were evident. We do not know size of 
maturation or sex ratio, because those estimates would 
require sampling that is blind as to reproductive status. 
We cannot separate size effects from individual ef- 
fects-if size effects explain Fig. 1, then we infer a 
dramatic increase in fecundity at 25-cm diameter. Al- 
ternatively, individual differences might explain the 
scatter in Fig. 1. Because there is a single year of data, 
we cannot assess correlations among individuals or 
through time. 

The superimposed schedule for A. rubrum estimated 
in the southern Appalachians contrasts the limitations 
of seed-rain estimates obtained from a classical frame- 
work. Due to high interannual variability, Clark et al. 
(1999~)  found that nearly five years of data, pooled 
across years, were needed to estimate a single fecundity 
parameter. Because more parameters are not identifi- 
able, the fecundity schedule is unrealistic over much 
of the size range, increasing too slowly for small trees 
and too fast for large trees (Fig. 1). Thus, we require 
extensive data to estimate a single parameter, with no 
prospect for inferring size and covariate effects, au- 
tocorrelation, synchronicity, and tree-to-tree correla- 
tion. 

A hierarchical Bayes structure 

Our model relates seed production to the two types 
of data ecologists typically collect. Seed traps provide 
information on fecundity, provided we link those data 
to the individual trees. Status observations constrain 
estimates based on seed traps, because they provide 
explicit information on individuals. We employ a hi- 
erarchical Bayes structure that allows us to combine 
these different data types. It consists of (1) process 
models, (2) data models, and (3) parameter models. 
The full hierarchical structure can be represented in 
terms of these three stages: 

p (parameters I data, priors) 

cc p(data I process, data parameters) (3a) 

x  process I process parameters) (3b) 

x p (parameters I priors) ( 3 ~ )  

(Gelfand and Smith 1990, Wikle et al. 2003). The left- 
hand side of Eq. 3 is a joint distribution of "unob- 
servable~" (parameters and latent variables), including 
those related to the process of interest and those that 
allow for additional sources of stochasticity (uncer- 
tainty and variability). 

Our model structure is designed to quantify com- 
ponents of fecundity that have long been recognized. 
This motivation contrasts with one that would test for 
hypothetical factors and, consequently, focus on model 
selection to identify the lowest-dimensional model. Our 
process models for seed production, maturation, and 
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FIG. 2. Model structure for hierarchical Bayes analysis based on Eq. 3. Boxes contain model elements. Sources of 
stochasticity are in italics. 

dispersal (3b) are simple and isolate factors that are 
well-known. They describe conditional fecundity, re- 
productive status, and dispersal (Fig. 2: "Process" 
stage). The conditional fecundity schedule is the seed 
production of a tree, conditioned on the events that it 
is mature and (for dioecious species) female. 

Because it has long been recognized that masting 
contributes to fecundity patterns, we estimate the ef- 
fects of time and individuals. This requires a nonlinear 
mixed model with longitudinal structure. The model is 
"mixed" because there is a population-level relation- 
ship between diameter and seed production (fixed ef- 
fects) and additional variability among individuals 
(random effects). Thus, we allow heterogeneity in the 
diameter-fecundity relationship and interannual vari- 
ability, including autocorrelation. The longitudinal 
structure allows that each tree's schedule is a time se- 
ries representing a single observation. We develop the 
simplest possible model that includes these effects. 

Due to the nature of observations, there are two ad- 
ditional process models that link seed production of 
trees to observations of tree status (maturation sched- 
ule) and seed counts in traps (dispersal). The matura- 
tion schedule describes the increasing probability of 
maturation with diameter and the sex ratio. The dis- 
persal process distributes tree production to seed traps; 
it is spatial and based on maps of trees and seed traps. 

I I Observation error I Seed data: I 

Again, we incorporate the simplest possible process 
models that are consistent with observations, a sigmoid 
increase in maturation status (e.g., LaDeau and Clark 
200 l), one parameter for gender, and one parameter for 
the dispersal model (Clark et al. 1999b). 

Data models (Eq. 3a) relate the processes of con- 
ditional fecundity, maturation, and dispersal to obser- 
vations (Fig. 2: "Data" stage). The data model for tree 
status assigns probabilities to each type of observation 
(seeds not observed, seeds present, male flowers pre- 
sent and no seeds) conditioned on the true state of the 
tree (immature, female and mature, male and mature). 
This is a model for recognition error. The data model 
for seed rain relates the seed density predicted for a 
spatial location to seed counts based on the collecting 
area of traps and sampling stochasticity. Again, we 
emphasize simplicity, with one parameter for recog- 
nition probability. No new parameters are required for 
the Poisson sampling distribution of seed traps. Param- 
eter models (Eq. 3c) allow for stochasticity and consist 
of priors and hyperpriors (Fig. 2: "Parameter" stage). 
Individual effects represent an additional stage ("Hy- 
perparameter" stage), which we might choose to label 
as a level "3d." 

sample from Tree size data Observed tree status: 
seed rain Sample 

A 
recognition probability 
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Model complexity 
There are two reasons why we do not pursue model 

selection. First, despite the high dimensionality de- 
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manded by our approach, ours is, in fact, a "minimal 
model," including only basic features of fecundity 
schedules and processes that link those schedules to 
different data types. Complexity in our model comes 
from a large number of latent variables represented by 
seed production by every tree, in every year. We are 
not "testing" for individual or temporal effects; the 
effects are well known and the basis for a large liter- 
ature on masting. Their quantification is critical for 
understanding how fecundity varies among individuals 
and over time. Estimation has been the challenge, and 
it is our focus. Despite the unavoidable complexity 
represented by estimating seed production by every 
tree every year, our parsimonious modeling strategy 
involves only 10 population-level parameters per spe- 
cies. We will see that, for many species, temporal ef- 
fects overwhelm all other factors. For these species, 
model selection would say that we can ignore all other 
effects (including tree size). Our goal is to "see 
through" the large variability contributed by such ef- 
fects and determine their relative importances. In a sim- 
ilar vein, Lange et al. (1992) analyze responses of HIV 
progress to treatment, the clinicial question, despite the 
fact that simpler models would "explain" the data. 

Second, there is no consensus on model-selection 
methods for hierarchical models (Gelfand and Dey 
1994). Many have been proposed, and all generate some 
debate (e.g., Spiegelhalter et al. 2002). Again, because 
we are not attempting to "test" for size, year, or indi- 
vidual effects, but rather to quantify their contributions, 
we focus on parameterization of this minimal model. 

Process and parameter models 

[a,, a l lT is the vector of parameters for "fixed effects," 
1 is the Ti X 1 vector of ones, PI are individual random 
effects, and Xi is the covariance matrix for seed pro- 
duction across years. 

Population heterogeneity enters as random effects 
(Laird and Ware 1982, Lange et al. 1992). The param- 
eter vector cw applies to the whole population and op- 
erates on the "fixed effects" in X,. The random effect 
of individual i is described by P,. Thus, we assume that 
the size effects are consistent in shape (parameter a,), 
but can vary individually in strength (parameter Pi). 
Because each individual is represented by a small range 
of diameter change, we did not include individual ef- 
fects on shape parameter a , .  

We additionally provide for autocorrelation (e.g., 
Lindsey 1999: 106). For individual i, the covariance 
matrix with autoregressive (AR(1)) structure is 

with total variance a< and autocorrelation p. Note that 
the covariance matrix depends on individual i only in 
dimension (two individuals with the same sampling 
duration Ti have the same covariance matrix). In our 
implementation, estimates of a%nd p apply to the full 
population. Together, the random effects and autore- 
gression capture variability and fulfill assumptions that 
fecundities are conditionally independent (they are 
marginally dependent). The general structure for this 
portion of the model follows Laird and Ware (1982; 

To exploit both types of data, we express fecundity gee Lange et at. [I9921 for a Markov-chain Monte Carlo 

in terms of a maturation schedule 0, i.e., the probability (MCMC) implementation). 

of being in the reproductive state, and conditional fe- Parameter models fill out the fecundity submodel. 

cundity, i.e., the production of seed given that an in- The effects PZ are distributed with 

dividual is reproductive. Fecundity is the product of mean zero and variance T ~ ,  ,(PI, . . . , P , , ~ T ~ )  = 

these two quantities, F = 010'. l l ~ ,  N(P,~O,T~),  the prior for which is inverse gamma 

To account for the range of stochastic sources ex- I G ( T ~ I ~ , ,  b,) and defines the third stage that makes the 

pected to influence fecundity, we develop a mixed mod- fecundity submodel hierarchical. Parameters for fixed 

el with fixed and random effects for repeated measures effects have prior N2(a I C, V,), with mean vector c and 

with autocorrelated Let T, be the number of Parameter matrix The variance u2 

in the fecundity series for tree i. The likelihood for the has an inverse gamma (IG) 

ith tree is a multivariate normal of dimension T,: prior (Appendix). 
The second process model describes maturation. Let 

NT,(YI I xIa + l P z ,  2,). (4) Q, be the status of tree i, assuming values of zero (not 

Here, y, is the TI x 1 vector of annual seed production Yet Or One (mature). The probability of 

for the ith tree, to distinguish it from the seed produc- 
tion of the ith tree in year t ,  designated as y,,. Xi is the P(QJ = Bernoulli(Q, 1 0,) (7) 
T, X 2 design matrix: 

increases with tree diameter. A gamma cumulative-dis- 
tribution (CGam) function describes this schedule: 

( 5 )  0,, = CGam(lOdit; a,, b,). (8) 

The fraction of females for dioecious species is de- 
where diI is log diameter for the ith tree in year t, cw = scribed by parameter +. Tree status Qi does not have 
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a time subscript, because observations were not taken ~ ( q ) =  fl vei n (1 -v8,) 
each year, and a single status value was assigned to r,q,= 1 i,q,=O 

each tree. This assumption should not be applied for rn 

long time series, where many trees would change status = n Bernoulli(q, I v8,). 
r = l  

(1 la) 
during the course of the study. 

The third process model is dispersal. The expected Dioecious plants can be recognized as male and re- 
number of seeds to arrive at location j is determined productive (q = 2), female and reproductive (q, = I), 
by the seeds contributed by each tree- We use a two- or unknown (q, = 0). The fraction of females is 4 ,  and 
dimensional Student's t density (2Dt), the sex ratio (fema1es:males) is 4/(1 - 4). The like- 

lihood is taken over the three classes: 
101 

for distance ri, (m) between seed trap j and tree i and 
m 

= n Multinom(qi 1 2, w) 
dispersal parameter u (m2), because it describes well the r =  1 

pattern of dispersal for a large number of species (Clark 
et al. 1999b). Rotational symmetry means that direction 
is suppressed, and the density has units of m-2. The 
fraction of seed that is deposited in a trap of area A is 
approximately l, JTr) dr  = flr)A. The "degrees-of-free- 
dom" parameter determines rare long-distance dispersal, 
and is not well identified by data. We use a value of 3, 
which describes dispersal well for distances up to 100 m. 

Data models 
The two data models involve different observation 

errors. Data models translate the underlying processes 
to the data that are observed. 

Tree status.-Tree status is observed with error; if 
seeds are observed, then maturity is certain. But seeds 
may be missed, because they are obscure in the canopy, 
seed production can be low, or the timing of observations 
may not coincide with visible seeds on trees. Begin with 
a monecious species; the population consists of mature 
and immature individuals. Let qi represent the event that 
an individual is identified as reproductive (qi = 1) or not 
(q, = 0), Q, be the corresponding status of the tree (mature 
and immature, respectively), and let v be the probability 
that a mature individual will be recognized as such. The 
probabilities associated with status are p(Q, = 1) = 8 and 
p(Qi = 0) = 1 - 8 (Eq. 8). Then p(qil Q, = 1) = Ber- 
noulli(q, I v). We assume that p(qi = 1 1 Qi = 0) = 0, and 
p(qi = 0 1 Q, = 0) = 1 (observers do not invent seeds). 
Thus, we are concerned with the probabilities for correct 
identifications p(qi = 1 1 Qi = 1) = v and "mistakes" p(q, 
= 0 1 Qi = 1) = 1 - V. With these assumptions we have 
the following probabilities for observations: 

For a monecious species, the likelihood for the entire 
data set is the following: 

with the vector of probabilities w having elements w ,  
= v40i, W? = v(1 - 4)Oi, and w, = 1 - w ,  - w,. Note 
that if males cannot be recognized as such, the like- 
lihood collapses to p(q) = IIi4r=1 v40i lli,q,=O 1 - 
v40i, and v and 4 are not independently identifiable. 
We assume that the same recognition errors apply to 
males and females. 

Seed rain.-The annual seed density observed in 
seed trap j in year t is conditionally Poisson: 

with expected seed rain A~,iy,) determined by the full 
set of trees that contribute seed to trap j in year t. Pi 
is the number of years contributing seed to trap j. This 
expectation is the product of the collection area of the 
trap, a known constant Aj, and the expected seed amval 
per unit area, g,(yJ. The expected contribution from 
tree i to seeds in trap j depends on the probability that 
it is mature, which increases with diameter, described 
by 8, the probability that it is correctly identified as 
such v, (for dioecious species) the probability that it is 
female 4 ,  and the production of seed conditioned on 
reproductive status, y,. The fraction of that seed that 
falls in seed trap j is approximately Jlrv)Aj, where_fTro) 
is the density of seed per square meter (Eq. 9). The 
expected seed per unit area in year t is 

and 6 ,  contributes information from tree status obser- 
vations: 

In other words, the expected contribution from tree i 
to the jth trap in year t is is 10Yr*f(r,j) if seeds are 
observed on the tree (qi = I), and 1OYi1(1 - v) f(rv) if 
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it is identified as a male (qi = 2), the factor (1 - v) a genus, with species effects summarized by the source 
representing the probability that seeds were present de- strength parameter a, and heterogeneity summarized 
spite not having been observed (in which case the tree by variance T? Thus, estimates can "borrow" infor- 
is actually female). For indeterminant trees (q, = 0), mation from the combined data from related species 
the expectation is the product of 1OvLYf(r,) and the event for most parameters, while allowing for departures that 
that it is mature O,,, it is female +, and it was not can be due to species differences or individual effects 
recognized as seed bearing, despite being so (1 - v) (see Appendix). 
divided by the probability that q, = 0. 

Priors and convergence 

The full model Most statisticians would agree that prior parameter 
values should incorporate existing knowledge. Some Combining data, process, and parameter models we 
ecologists are suspicious of informative priors. For have the joint posterior: 
statisticians, we apply realistic prior mean values. 

~ ( a ,  By a 2 ,  P, Y, T ~ ,  a,, b,IX, S, q, . . .) However, we neutralize these values by ensuring that 
the spread of prior densities is sufficiently large as to - 

1 1  n 

FI II Pois[sjtlAjgj(ytl u, a,, b,, +. V)I 
make them noninformative; they do not have discern- 

t = ~  j=1 able impact on results. We recognize that many stat- 
isticians would disagree with this omission of some 
well-established information on fecundity. 

Our "most informative" priors enter the regression 
and maturation aspects of the model. For the regression, 
prior means are c = [2, 0.5IT. The prior covariance 
matrix, V, = Diag(1000, 1) renders the first prior mean- 

m ingless, but, had our sample sizes been small, would 
x N 2 ( a  1 C, Vo) n N(Pi 10, 7')Gam(a2 1 a,, b,) 

i= I have provided some weight to the second. The value 
c, = 0.5 reflects the fact that fecundity cannot increase 

X Unif (p I - 1, 1) in step with diameter indefinitely. Although given a 

X Gam(a, I a,, b,)Gam(b, I a,, b,)Gam(u I a,, b,,) modest prior variance of 1, this prior mean is swamped 
by data (this effect is evident even from marginal pos- 

X Unif (v 1 0, 1)Unif (+ I 0, 1) teriors given in the Appendix). The gamma parameters 

X IG(T'I~,,  b,) (15) 

where ellipses (" . . . ") represent prior parameter val- 
ues. Deterministic elements are Eqs. 5, 6, 8, 9, 11, 13, 
and 14. The monoecious case uses the Bernoulli like- 
lihood Eq. 1 l a  and the dioecious uses Eq. 1 lb. 

This high-dimensional posterior is intractable-we 
cannot solve it, but we can simulate it using MCMC. 
The basic structure is a Gibbs sampler (Gelfand and 
Smith 1990), within which we embed Metropolis and 
Metropolis-Hastings steps (Hastings 1970). The Gibbs 
sampler involves alternately sampling from conditional 
posteriors. Not all conditionals are available, so Me- 
tropolis and Metropolis-Hastings steps are used in these 
cases. The algorithms and prior parameter values are 
provided in the Appendix. Parameter estimates for spe- 
cies having seeds that could not be confidently differ- 
entiated were fitted as combined data sets followed by 
extraction of species effects based on tree-by-tree es- 
timates of y, and pi. This was the case for Acer, Carya, 
Magnolia, Pinus, Quercus, and Ulmus. Although seeds 
of most of these species can often be identified to the 
species level, substantial numbers of indistinguishable 
seeds made our approach preferable. The analysis al- 

for maturation status contain a hint of prior knowledge. 
For a,, a,lb, = 0.210.1 gives a prior mean of 2. For b,, 
a,lb, = 0.111 gives a prior mean of 0.1. Together, these 
prior means imply a "half" maturation at 20 cm. But 
the low values of prior parameters imply prior vari- 
ances that are too large to affect estimates. 

The prior dispersal parameter has gamma prior val- 
ues of a,lb, = 110.01 implying a prior mean of 100 
m2, but, again, has a variance too large to affect esti- 
mates. Variance prior parameters for inverse gamma 
distributions are 0.01. The uniform priors on the full 
range of possible values for p, v, and + are noninfor- 
mative. 

Convergence can be difficult to assess for high-di- 
mensional models (e.g., Carlin and Louis 2000). De- 
spite the high dimensionality of our model, the MCMC 
is quite stable. Stability of the algorithm derives from 
the fact that combinations of seed traps constrain es- 
timates for nearby trees. There are limited combina- 
tions of seed-trap estimates that could "satisfy" seed- 
rain data, with seed traps most influenced by nearby 
trees. Tree-status estimates add further constraints. To 
build confidence in convergence, we initialized mul- 
tiple chains from dispersed values. Each "chain" rep- 

lows this separation of morphologically similar seeds resents a simulation. Slowest to converge are the latent 
based on the individual effects assigned to each tree variables represented by individual seed-production 
that can be re-aggregated post hoc. It relies on the rates for stands having high stem density for a species. 
assumption that most parameters will be similar within It is not possible to monitor every latent parameter. 
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TABLE 1. Stands sampled for fecundity estimates in two regions in North Carolina, USA. 

Elevation Map area No. seed No. years, 
Stand Setting, vegetation (m) (ha) traps, n T 

Southern Appalachians 
C1 ridgetop oak-pitch pine 
C2 cove hardwood 
C3 mixed oak 
C4 mixed oak 
C5 northern hardwoods 
CL cove hardwood 
CU mixed oak 

Piedmont 
DB pine-oak-bottomland hardwood 
DH pine-oak 

However, we monitored chains for individuals selected 
at random, and we calculated Gelman and Rubin's 
(1992) scale-reduction factor. For typical stem densi- 
ties, convergence was satisfactory by 1000 iterations. 
We discarded a burn-in (preconvergence values; Gel- 
man et al. 1995) of >2000 iterations for most species 
and up to 15 000 iterations for species that occurred at 
especially high densities. 

Predictions and forecasts 

The approach is used to predict fecundity for as-yet- 
unobserved trees, stands, and years and to forecast 
ahead seed production. Let y @ )  be the estimate of log 
conditional fecundity for the ith individual in year t at 
the gth step of the MCMC chain, and 09) be the mat- 
uration probability for an individual of log diameter di, 
calculated from the gth estimates of a, and be. Then 
the posterior distribution of fecundity estimates is as- 
sembled from 

To predict fecundities we incorporate posterior infor- 
mation on parameter uncertainty and process variabil- 
ity. If the tree in question is one for which data have 
been collected up through year t, we have the one-step- 
ahead fecundity forecast, 

with the lag-1 autoregressive [AR(l)] process, 

The individual effect is contained in the deterministic 
part of the model, because we have estimated it for the 
individual at hand. Our predictive distribution is ob- 
tained by marginalizing over the posterior for fecundity 
parameters and over the stochastic term, which includes 
process variability and serial correlation. This process 
integrates the stochasticity contributed by parameter 
uncertainty and by variability. 

For an individual and year selected at random, in- 
dividual effects become part of the stochastic term (we 
do not have an individual estimate P I ) .  Moreover, lack 
of previous fecundity estimates means that we cannot 

use the estimate of autocorrelation to constrain the fore- 
cast; thus, 

where the variability terms are 

Note that this zero mean noise term has variance con- 
tributed by the process variability and by individual 
effects. 

Our study involves mapped stands that span a range 
of environmental settings. Stands are located in two 
regions, the southern Appalachians and the Piedmont 
of central North Carolina (Table 1). Sampled stands 
range in area from 0.64 to 4.1 ha. Southern Appalachian 
sites include mixed oak (at several elevations), cove 
hardwoods, mixed hemlock, ridgetop pitch pine, and 
northern hardwoods. Piedmont sites are mixed pine and 
hardwood (Table 1). 

Two data types include seed traps and status esti- 
mates. Seed traps were deployed in mapped stands. 
Traps 0.42 X 0.42 m (square) or 0.40-m diameter 
(round) are supported by pvc pipes at a height of 1.2 
m. Traps have wire covers (to minimize rodent losses) 
and hardware cloth that suspends seeds above trap ba- 
ses. Holes in trap bases provide drainage. Collection 
efficiencies of traps are reported in Clark et al. (1998). 
Collection periods began in 1991 (fire Coweeta 
stands), 1998 (Duke Forest stand DH), 1999 (DB), and 
2000 (Coweeta CL and CU) (Table 1). Seeds are re- 
covered from traps 3 to 12 times annually, sorted, iden- 
tified, counted, and archived at the Duke University 
Phytotron. 

To determine reproductive status, trees were visited 
during flowering and fruiting seasons and in winter. For 
many trees, reproductive status is uncertain, because 
failure to observe seeds does not mean that trees are 
immature. In our study regions, dioecious species in- 
clude Acer rubrum, Nyssa sylvatica, and Fraxiizus amer- 
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TABLE 2. Data-set characteristics and posterior mean parameter estimates with 95% confidence credible intervals (upper 
and lower bounds are listed below mean estimates), by type of tree seed dispersal mechanism. 

Total no. Log likelihood 

Tree Trap Seed Tree reproductive 
Tree species No. plots No. trees years years rain status 

Taxa with wind-dispersed seed 
Acer spp. 9 4774 22 172 1830 -5430 - 12 460 

Betula lenta 5 50 536 1020 - 8665 -238 

Carpinus caroliniana 2 188 658 504 - 166 - 96 

Fraxinus aniericana 5 808 2954 1084 - 1040 - 242 

Liquidambar styraciflua 2 1303 41 18 504 - 959 -539 

Liriodendron tulipifera 8 862 2982 1610 - 5767 - 847 

Oxydendrum arboreum 7 617 3743 1490 - 4870 - 1222 

Pinus spp. 

Tilia americana 2 76 836 440 - 1000 -1  

Ulmus spp. 2 1027 3265 504 - 947 -360 

Taxa with animal-dispersed seed 
Carya spp. 9 1010 4032 1830 - 609 -851 

Cercis canadensis 2 286 504 875 - 195 -352 

Nyssa sylvatica 8 1305 6190 1610 - 1243 - 274 

Quercus 9 1623 8936 1830 -3629 - 2607 

Robinia pseudo-acacia 6 102 528 1160 -3 1 -1 

Total 1 6 740 72 485 21 277 

Note: See Table 3 for taxa fitted to more than one species. 
For population-level parameter estimates, a,, a,, and o' are regression parameters; p = autocorrelation; .r? = variance 

for individual effects; p, = dispersal parameter; a,, be = maturation parameters; 4 = female fraction (dioecious species); and 
v = recognition success. 
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TABLE 2. Extended. 

Population-level parameter estimatest 
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TABLE 3. Species-level parameters with 95% credible intervals (upper and lower bounds in 
parentheses) for taxa fitted at the genus level to more than one species (see Appendix for 
description of species-level estimates). 

Tree 
species 

Acer rubrum 
A. saccharum 
Pinus rigida 
P. taeda 
P. echinata 
Ulmus ind. 
U. alata 
U.  rubra 
U .  americana 
Carya ind. 
C.  tornentosa 
C.  glabra 
Magnolia acuminata 
M. Fraseri 
Qzrercus alba 
Q.  coccinea 
Q. falcata 
Q.  marylandica 
Q.  phellos 
Q.  prinus 
Q.  rubra 
Q. stellata 
Q.  velufina 
Q. ind. 

icana. On each occasion, individual trees were scored 
as reproductive, not reproductive, or uncertain. Dioe- 
cious species were identified as males if they flowered 
but did not bear fruit, and as females otherwise. For A. 
rubrum, flower morphology was used as an additional 
check, but could only be used if flowers could be 
reached. There are uncertainties in all identifications, 
quantification of which is one goal of this analysis. 

We obtained estimates of all parameters and latent 
variables in Fig. 2 for 20 species. Other species present 
on our plots for which trees, seeds, or both were too 
rare to provide estimates included Acer barbatirm (DB, 
DH), Ostrya virginiana (DB, DH), Sassafras albidum 
(Cl), Betula alleghaniensis (CS), Juglans nigra (DB), 
Juniperus virginiana (DB, DH), Prunus serotina (DB, 
DH), Morus rubra (DB, DH),  Fagus grandifolia (DB, 
C l ,  C5) (see Table 1 for stand code). 

Observations 

This analysis involves unusually large data sets 
(72 485 tree-years and 21 277 trap-years) and many es- 
timates. There are 200 parameters, 10 for each species 
that describe "population-level" processes and sto- 
chasticity (Tables 2 and 3). There are an additional 
16740 parameters, describing random individual ef- 
fects (one for every tree in the data set), and 72485 
latent variables (one for every tree, every year). Be- 
cause space admits only a small subset of our analysis, 

we provide detail for one species and consider key 
relationships for others. Acer rubrum is the example, 
because trees and seeds are abundant on all plots, and 
it is dioecious. Convergence is discussed in the Ap- 
pendix. Seed rain varied widely among traps and years 
(Fig. 3). Acer rtibrum and A. saccharum have mor- 
phologically similar seeds and were fitted together (Ap- 
pendix). Acer seeds and trees occurred at all nine 
stands, with a total of 4774 trees, 22 172 tree-years, 
371 traps, 1830 trap-years, and 21 383 seeds. Of 4631 
A. rubrum trees, 575 were identified as male, 439 as 
female, and 3617 as indeterminate. The remaining 140 
A. saccharum trees included in this fit were primarily 
in plot C5, and only two individuals were identified as 
reproductive. For A. rubrum, bright-red flowers and 
fruits were apparent, so most large trees could be rec- 
ognized as reproductive; indeterminate trees were 
mostly small. 

Seed-trap evidence for masting was weak for A. rub- 
rum: the serial correlation (using detrended series) for 
traps from stands having the longest collections of 11 
years (Cl-Cj)  were slightly negative, and they tended 
to be positive again at lags of two or three years (Fig. 
4). All but the highest-elevation stand showed seed fail- 
ure in 1996 followed by high production the following 
year (Fig. 3a). Year-to-year variation in Acer seed rain, 
summarized by coefficients of variation among years for 
the five stands, were 1.71, 0.79, 0.737, 0.954, and 1.10. 

Parameter estimates 
For A. rubrum, the fitted model consists of the joint 

posterior taken over 10 parameters (Tables 2 and 3), 
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a) Seed-trap data b, Tree-status data the scale, where most values lie, but, of course, omits :;I DB .' .. 1: 1 linear plot includes these observations (Fig. 5b). A his- 
traps that accumulated no seed in a given year. The ,-'. 

0 .  . . . :-- 
- o togram of diameters identified as female is compared 

with the appropriate model prediction 8,+v, i.e., the 
probability of being mature, female, and correctly rec- 

.. : . ' . '  . . . - ognized as such (Fig. 5c). The complement, 1 - 0,+v, . I . . is the total probability for trees identified as male or 
indeterminate. 

Although all estimates are marginally dependent, 
many are most influenced by subsets of the data. The 
log likelihoods for the two data sets in Fig. 5 reflect 
not only the model fit, but also the relative amounts of 
tree years and trap years. For A. rubrum, there are far 

20 ~ 2 , -  /'I O2 more tree years than trap years, as reflected in large 

log likelihoods for tree-status observations. This im- 

1 C1 

0 

PI -1 

.*_____---------._..~---..________ 
___-.-. --------  - - -  .------ 

: ------• 
0 -1- , 1 I I I I 

$ 
1992 1996 2000 0 20 40 60 80 100 

_ * _ - - e m - - - -  -----.---_________. 
Seed year Tree diameter (cm) :.--.----- 

FIG. 3. Two types of data used in this analysis shown for -1 1 , . , . s i 

Acer. (a) Mean seed rain for all traps (solid lines) and the 
range of observations (dashed lines). Stand codes are as in 
Table 1. (b) Frequency distributions for three kinds of tree 
status. Small trees tend to be indeterminate (solid histograms, _.---.__ 
upside down), because they are not mature. Large indeter- 
minate trees tend to result from recognition failure. Trees 
identified as male (thin lines) or female (heavy lines) are 
shown as overlapping histograms. -1 

0 2 4 6 8 10 

4774 individual effects (P,), and 22 172 latent seed pro- Liig (Y) 
duction rates (y,) for a total of 26 956 estimates. Like- FIG. 4. Autocorrelation in seed-trap data (solid line) and 
lihoods taken at the ~oster ior  mean show relative con- in individual-tree fecundity estimates (dashed lines) for Acer. 
tributions of the two iata sets to the fitted model. Visual For trees, autocorrelations are taken for log,, posterior mean 

fecundity. The central dashed line is the median tree. The summaries of observed seed-tra~ outer dashed lines bound 9546 of the posterior means taken 
counts s,, plotted against predicted Poisson means over a11 individuals. Series were detrended prior to analysis. 
Ajg,(y,). The log plot (Fig. 5a) shows the low end of Stand codes are as in Table 1. 
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b) Seed traps (log scale). 
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c) Tree status 

I I I I 1 t r I I I I 1  - 
0 200 400 600 800 0 1 2 3 0 20 40 6.0 80 100 

No. observed seeds per trap Tree diameter (cm) 

FIG. 5. Comparison of model predictions and observations for Acer. Panels (a) and (b) show seed-trap data [log-log plot 
in panel (b)], with each dot indicating an annual seed density for a given trap. (c) Tree maturation-status observations are 
summarized as histograms and compared with the fitted model 8+v, the asymptote representing the product of female fraction 
4 and recognition success v, and the sigmoid curve representing the maturation schedule 0. Log likelihoods for data sets are 
taken at the posterior mean. 

balance of tree vs. trap information does not mean that 
tree data are the dominant influence on all parameters. 
Tree data have most direct impact on parameters de- 
scribing maturation status, female fraction, and rec- 
ognition error. The recognition error is strongly af- 
fected by the fraction of large trees that are assigned 
a particular status. The "asymptote" of the fitted status 
model shows this relationship (Fig. 5c). Seed data also 
affect this fit, but indirectly. For example, a seed trap 
that collects copious seed near an indeterminate indi- 
vidual lends support to the possibility that it is an un- 
recognized female. The probability of this tree-status 
observation is conditionally $0(1 - v), so the estimates 
of 4 and 0 would tend to be increased by this obser- 
vation, while the estimate of the recognition probability 
v would tend to be reduced. Likewise, a trap that col- 
lects few seed near a recognized female would have 
larger effect on estimates of the dispersal parameter u 
and conditional fecundity y,  than would a tree of un- 
known status-we know it to be mature, so low seed 
accumulation is attributed to low production or limited 
dispersal. 

While the widths of credible intervals for all param- 
eters in Tables 2 and 3 asymptotically decline with 
sample size, those of the latent variables y, do not. 
Estimates of a series yi are not equally influenced by 

all traps, but rather by those nearby. Increasing the size 
of data set (adding more trees and traps) would be 
expected to change estimates of y, only indirectly, by 
way of information those additional data confer on pop- 
ulation parameters in Tables 2 and 3. With data sets as 
large as those used here, confidence envelopes on y, 
are not expected to change appreciably with additional 
data. 

Population parameters for most species are identi- 
fiable, as indicated by narrow confidence envelopes 
(Tables 2 and 3) and by weak parameter correlations, 
because data sets are large. For A. rubrum, a subsample 
of 120 evenly spaced Markov-chain Monte Carlo 
(MCMC) samples (to overstep inherent autocorrelation 
in the Markov chain) illustrates that only a, and b,  (r 
= 0.936) showed strong correlation (Fig. 6). This cor- 
relation is expected, because they together determine 
the mean and variance of the cumulative gamma func- 
tion 0. Unlike the normal distribution, the mean and 
variance for the gamma are not described by indepen- 
dent parameters. Thus, we would not draw independent 
inference on these parameters, but such inference is not 
our goal. The only other combination showing corre- 
lation, the regression parameters a, and a, (r = 
-0.786), is also reasonable as the natural tendency for 
a regression slope and intercept. Again, as independent 



August 2004 COMPETITION-COLONIZATION OF TREES 429 

FIG. 6. A sample of Markov-chain Monte Carlo steps for all combinations of Acer parameters in Tables 2 and 3. Correlations 
are near zero for all parameter pairs except regression parameters ( a ,  and a , )  and maturation parameters (a, and b,) (see 
Results: Parameter estimates). 

inference on these parameters is not the goal, this cor- no male Nyssa trees were identified as such, we draw 
relation is not of great consequence. inference on the composite parameter v+, which has a 

Recognition success.-Recognition success ranged posterior mean of 0.378, with a 95% CI of [0.316, 
from 0 (no reproductive individuals were identified as 0.4521. Of 1305 Nyssa trees, 15 were identified as fe- 
such for Robinia and Tilia) to 90% (Acer rubrum)(Fig. male. However, on large trees, fruits were obvious. If 
7b). In addition to A. rubrum, species tending to have a large fraction of the indeterminate large trees are 
high recognition success include Betula (conspicuous males, then the female fraction may be near 40%. For 
catkins), Carya (large nuts), and Liriodendron (carpels Fraxinus, v+ = 0.234, with a 95% CI of [0.185,0.282]. 
that persist into winter when foliage is absent). For the Of 808 trees, 22 trees were identified as female and 2 
most part, low recognition success results from low trees as male. Because Fraxinus seeds are not con- 
seed production in dense stands (e.g., Cornus) or dif- spicuous, the estimate of v+ is heavily influenced by 
ficulty recognizing small- to moderate-size fruits in tall, seed-rain data. 
dense canopies. Mat~rration schedule. -Although maturation param- 

Female fraction.-Of the three dioecious species, A. eters showed positive correlation (see above), the ratio 
rubrum data provided confident parameter estimates of a,lb, is identifiable (Fig 7c), and varied widely among 
female fraction, and Fraxinus a id  Nyssa data provided species. This ratio represents the diameter at which the 
insight, but not confident estimates. Acer yielded con- cumulative gamma function is equal to 0.5, but it is 
fident estimates, because conspicuous red seeds and not the diameter at which half the population is repro- 
flowers made for easy recognition (Fig. 7b) and, thus, ductively mature. Moreover, this is a "population-lev- 
substantial numbers of male identifications. Females el" parameter. Because random individual effects are 
comprised nearly half the population (Fig. 7a). Because included in the regression for y,, there is no need to 
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also include random individual effects in 0. The pa- 
rameter 0 has two roles. First, it allows individual- 
status observations as a multiplier for the conditional 
fecundity schedule y,,. Second, it adds flexibility to the 
diameter:fecundity relationship at small diameters. Pa- 
rameter identifiability is important, but the precise val- 
ues are of consequence only in terms of the product Fit 
= 0 ,  X 10~~1. 

Conditional fecundity.-The log regression param- 
eters a, and a, describe the shape of the log-linear 
regression of seed production with diameter, having 
most influence as trees become large. The shape of the 
fecundity:diameter relationship for small trees is con- 
trolled primarily by 8; the smaller the diameter at which 
8 approaches 1, the smaller the diameter at which a, 
becomes influential. Betula and Liriodendron had high 

estimates of a, and, thus, tend to have high fecundity 
for a given diameter (Tables 2 and 3). 

Most species had shape parameter estimates 0 < a, 
< 1 (Tables 2 and 3), indicating that, as trees become 
large, there is a tendency for seed production to "de- 
celerate. " Because of the large number of observations, 
estimates were not sensitive to prior parameter values. 
Carpinus and Pinus had estimates near 1, indicating 
weak tendency for fecundity to saturate at large di- 
ameters, whereas Betula had estimates near 0, indi- 
cating a tendency to saturate. Obviously, this parameter 
depends on the numbers of large trees in the data set. 
Although most trees are small, small trees do not con- 
trol shape at large diameters. Small trees principally 
influence shape through 0. Thus, the shape parameter 
a, is sensitive to large trees. 
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Individual efects.-Species with high r2 estimates 
indicate individual differences in how fecundity chang- 
es with diameter. Although this parameter appears in 
the regression for conditional fecundity, it effectively 
absorbs individual effects on maturation, because 0 is 
restricted to population effects. Individual effects are 
especially large for Nyssa, Ulmus, Tsuga, Pinus, and 
Magnolia (Fig. 8a). 

Serial autocorrelation. -The year-to-year correla- 
tions in fecundity were identifiable and ranged widely 
among species (Fig. 8b), from extremely negative (Liq- 
uidambar, Cornus, Betula) to extremely positive (Ox- 
ydertdrum). Detrended fecundity series for most species 
have negative lag- 1 correlation. 

Fecztndity schedules: size and year efSects 

Posterior estimates for individual trees demonstrate 
large interannual variation. Posterior means for Lir- 
iodendron trees are shown at left in Fig. 9, with 95% 
confidence intervals for a random sample of five trees 
above. Across the full population over all years, -95% 
of fecundities F,, are bounded by the 95% prediction 
interval for the population. This relation is represented 
in the lower left panel of Fig. 9 by the fact that most 
posterior mean values lie within the population pre- 
diction interval, PI. The range of variation is large: 
some estimates exceed lo6. 

The relative contributions of stochasticity sources 
are shown in Fig. 9b. The posterior median estimate 
of the diameter effect (solid line in Fig. 9b) is embed- 
ded within three pairs of dashed lines that bound dif- 
ferent sources of stochasticity, each at the 95% level. 
The inner pair bounds the population mean response 
fii = hi X lW+&ldl, which takes cognizance of uncer- 
tainty in the parameter estimates a,, a,, a,, and b,. This 
interval is the closest analogy to the credible interval 
that would be constructed as part of a non-hierarchical 
model. 

The second pair of dashed lines combines the pa- 
rameter uncertainty for the mean responses with in- 
dividual effects and describes population heterogene- 
ity. This response is pi = hi X 10ao+Bl+aldl where the 
variance includes that contributed by individual effects 
pi - NO, T2). The individual effects are also shown 
(short solid lines) to indicate how each tree contributes 
to the overall fit. 

The outermost pair of lines is the 95% PI for the full 
response, including process misspecification, i.e., P i  + 
ci - N(0, ii2 + e2). This is the combination of individual 
effects, parameter uncertainty, and process variability, 
and it constitutes the prediction interval (PI) for fe- 
cundity of a tree and year selected at random (Eqs. 19 
and 20). 

The sources of stochasticity constitute differently to 
fecundity schedules. For this example, parameter un- 
certainty is small, because we have large data sets. This 
low parameter uncertainty translates to a narrow PI on 
the mean fecundity process for a given diameter tree 

8. The narrow PIS do not mean that we can expect 
informative predictions for a random tree and year, be- 
cause there are larger year-to-year effects, included in 
02, and large individual variation r2. 

Plotted by year, the variation for Acer shows patterns 
of synchronicity for subsets of the population (Fig. 10: 
upper panels). The crop failure in 1996 observed in 
seed traps (Fig. 3) applies to the full population (Fig. 
10). The exception at stand C5 results from A. sac- 
charurn-most trees of this species occur on C5, and 
three trees on this plot had high seed production in 
1996. Few A. rubrum individuals had good seed years 
two years running. Most experienced high fecundity in 
1997, suggestive of reserves available that year due to 
low production the year before. Any synchronizing ef- 
fect this event may have had appears to have been 
transient. The additional series that appear in 2000 and 
2001 represent stands added that year (stands CL, CU, 
DB, and DH, Table 1). 

The degree of synchronicity among individuals is 
illustrated by a histogram of pairwise correlations (Fig. 
1 I). While synchronicity among a substantial part of 
the population is high (e.g., >0.6), much of the pop- 
ulation behaves more-or-less independently (the mode 
of the histogram is near 0). The synchronized individ- 
uals are not necessarily the largest ones. We found no 
tendency for high correlations to be clustered at high 
diameters. 

Plotted against diameter, individual fecundity series 
show how the diameter effect is obscured by individual 
differences and interannual variation (Fig. 10: lower 
panels). The excursions to high values are emphasized 
in this figure, because the dominant low values overlap. 
The dashed lines in the lower panels of Fig. 10 show 
the upper bound of the 95%PI for fecundity; 2.5% of 
all values lies above this line. Thus, a relatively small 
number of years dominate the total seed rain. 

Although populations vary in terms of their levels 
of heterogeneity, on balance, within-population vari- 
ability tends to be large (Fig. 12). For many species 
the variability among individuals of similar diameter 
spanned more than an order of magnitude; some in- 
dividuals contribute disproportionately to overall fe- 
cundity. For example, Nyssa had an estimate of r2 near- 
ly half as large as u2, and, for Ulmus, they were ap- 
proximately equal (Tables 2 and 3). Ulmus estimates 
come from relatively short 3- and 4 y r  data sets. Larger 
data sets might reduce the estimate of within-popula- 
tion variability. Nonetheless, even within heteroge- 
neous populations, random effects of individuals (sum- 
marized by r2) tend to be smaller than process variance 
u'. For most species u2 is one to two orders of mag- 
nitude larger than r2 due to year-to-year variability (Fig. 
12). 

Species relationships 

The large interannual variability described by a' and, 
to a lesser degree, population heterogeneity r2, means 
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set of Liriodendron fecundity values (linear scale) plotted against diameter (a, bottom). (b) The 95% confidence intervals 
for three sources of stochasticity. The population "mean" response (solid line) is bounded by the inner 95% confidence 
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FIG. 10. Posterior mean individual fecundities plotted by year (upper graphs) and by diameter (lower graphs) for Acer. 

Credible intervals for individual years are omitted, but examples are included for Acer in the Appendix. There is one curve 
for each of the 4774 trees. Dashed lines on the lower panels bound 95% credible intervals. 

that fecundity schedules (Fig. 12) and seed shadows of 
different species broadly overlap (Fig. 13). This large 
variability overwhelms differences in fecundity among 
sites. We constructed full fecundity schedules for all 
plots, but none showed appreciable differences. There 
are three implications. First, this broad overlap in Fig. 
13 does not indicate that there are no differences among 
species. A traditional interpretation of the confidence 
envelopes might lead us to say that species "are not 
significantly different." The wide prediction intervals 
here include variability, not just parameter uncertainty. 
Despite broad overlap, large populations will explore 
these different envelopes, so the traditional concept of 
"significance" is not appropriate here. 

FIG. 1 1. A histogram of pairwise correlations among trees 
for plot C l ,  illustrating the degree of synchronicity among 
individuals. 

Second, a typical reaction to wide confidence en- 
velopes is to conclude that we have no information. 
The "true" value might lie anywhere within the en- 
velope, so we can infer little from the analysis. Again, 
this interpretation would be misguided. The prediction 
intervals reported here inform us about population var- 
iability. We have confidence in the fits themselves, to 
the extent that parameters are identifiable (Tables 2 and 
3). But the mean response does not summarize the pop- 
ulation heterogeneity, which overlaps broadly among 
species. 

In light of the first two points, the third implication 
is that within-population variability tends to over- 
whelm differences in species mean responses. More- 
over, there is no tendency for the combined effects of 
fecundity and dispersal to suggest that colonization is 
related to successional status (Fig. 13). 

Evaluation 

We cannot evaluate results using direct comparisons 
with seed production, because direct counts would re- 
quire a destructive harvest before seeds are released 
(Fig. 1). Insights are available from comparisons in- 
volving several lines of evidence and from other meth- 
ods. The method of scaling densities of seeds in traps 
by crown area does not account for effects of dispersal, 
and it is difficult to obtain large sample sizes. It does 
provide a rough guide for seeds that have limited dis- 
persal. A study from the southern Appalachians 
(Greenberg and Parresol 2002) reports average esti- 
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FIG. 13. Colonization capacity, as influenced by the number of seeds dispersed over distance by a 25 cm diameter tree. 

The 95% prediction intervals are for parameter uncertainty plus individual effects (inner dashed lines) and with process 
variability (outer dashed lines). Note x-axis logarithmic scale. 

mates for oak species included here (Fig. 14). White 
oak had especially high estimates of fecundity, F,  per 
squaremeter of basalarea, B: FIB = 4216 seeds/m2. Re- 
maining species ranged from FIB = 1274 to-2807 
seeds/m2. In these units we obtain estimates of FIB = 
0 (d; ri,,h,) X 10aofaldlB = 6 X 1052B-0715; the last step 
comes from converting d (in centimeter) to B (in square 
meters) and inserting parameter estimates from Table 
2. For relevant diameters we obtain values of 1485 
seeds/m2 (a 70-cm tree) to 1627 seeds/m"a 30-cm tree), 
which fall in the center of the range estimated by 
Greenberg and Parresol (2002) for the red oak group 
(our plots contained few white oaks). By contrast, the 
maximum-likelihood (ML) approach of Clark et al. 
(1999b) produces estimates of 5260 to 60 800 seeds/ 
m2 basal area, values that both this analysis and Green- 
berg and Parresol's (2002) data suggest are up to two 
orders of magnitude too high (Fig. 14). The classical 
analysis of Clark et al. (1999b) only includes the first 
six years of data used in our analysis, but the longer 
data set included here does not explain our lower fe- 
cundity estimates, as the early years did not have sub- 
stantially lower seed rain than the additional years in- 
cluded here. 

The large overestimates of fecundity obtained by 
previous ML approaches probably apply to all species 
examined here. They derive from inflexibility of the 
one-parameter fecundity schedule and inappropriate 
treatment of stochasticity in this nonlinear model. The 
flexible model that results from integrating the satu- 
rating maturation status 0 with the log-linear condi- 
tional fecundity schedule allows for the steep rise in 
seed production at small diameters, where most of the 
data lie, and for the tendency to slow at larger diam- 
eters. Fits are dominated by the large numbers of small 
trees that describe exponential increase with diameter 
that does not apply to large trees. 

Inappropriate treatment of stochasticity affects pa- 
rameter estimates. Because the traditional method 
could not accommodate lognormal variation at the level 
of individuals, it is strongly affected by high seed years. 
The relatively infrequent high seed years inflates the 
estimate of mean fecundity. Our lognormal stochastic- 
ity on conditional fecundity and individual effects pro- 
vide for these excursions. For example, the estimate of 
lo6 seeds on a single red maple tree (Fig. 1) is fully 
compatible with our model for specific individuals and 
years (Fig. lo), but it is orders of magnitude higher 
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FIG. 14. Comparison of fecundity schedules obtained here 
(HB, dotted lines) with those from a maximum-likelihood, 
(ML, solid lines), approach (Clark et al. 1999b), and traps 
below isolated trees (GP, dashed lines; Greenberg and Par- 
rasol 2002). Dashed lines are 95% confidence intervals that 
result from parameter uncertainty in population-level param- 
eters. The ML method shows predicted mean responses for 
four different stands used in this study. Parameter uncertainty 
is the only source of stochasticity in the fecundity schedule 
using the classical method. The bias from previous methods 
results, in part, from inflexibility (see text). 

than the mean response (Fig. 12). Using hierarchical 
Bayes we obtained fecundity estimates much lower 
than those using the classical model for all species 
(Clark et al. 1999b). 

Not only fecundity, but also dispersal parameters (u) 
appear to be overestimated by previous classical meth- 
ods. In this analysis, estimates of la are typically much 
lower than those obtained by the classical method of 
Clark et al. (1999b), suggesting that proper treatment 
of stochasticity is necessary. 

Contrary to the colonization-competition hypothe- 
sis, which postulates a specific relationship between 
successional status and colonization ability, we find 
both no such trend and broad species overlap (Figs. 12 
and 13). Our results do not show strong evidence for 
trade-offs that might derive from a combination of col- 
onization-competition and successional niches. Our re- 
sults suggest a mechanism that may be more general. 
We focus on two assumptions of theoretical models 
that our results demonstrate to be unrealistic, i.e., that 
individuals are identical, and that process variability 

can be ignored. We emphasize the widely appreciated 
fact that variability can be a key ingredient for coex- 
istence, with estimates of variability within populations 
(T*) and over time (a2) that is unrelated to the standard 
explanatory variables. This variability dominates not 
only colonization (Fig. 13), but also competition (Clark 
et al. 2003). 

Populations persist if gains offset losses. High di- 
versity is possible for groups of species with long life- 
spans and variable recruitment, provided that recruit- 
ment is not closely correlated among species (Comins 
and Noble 1985, Warner and Chesson 1985, Chesson 
2000, Hixon et al. 2002). Disproportionate gains during 
episodes that favor recruitment can offset low mortality 
losses of long-lived adults. Variability is not enough 
to promote coexistence. Species differences (trade- 
offs) are implicit for this "storage effect," because lack 
of differences means high correlation in how they re- 
spond to variability. If one species is always more suc- 
cessful than another species under one set of circum- 
stances, coexistence requires alternative circumstances 
where others can succeed. The challenge comes in iden- 
tifying the ways in which species can be sufficiently 
different to ensure that these correlations are weak, so 
that variability shifts the advantages among species. 

Our results highlight the role of random individual 
and temporal effects (RITES). It is illustrated with an 
example of two species that coexist in both of our study 
regions, but we could have chosen others. Consider 
first the classical approach. We might begin by param- 
eterizing recruitment capacity (Fig. 15: upper left) and 
response to a common limiting resource, e.g., light 
(Fig. 15: upper right) (Clark et al. 2003). The fitted 
model from such an analysis shows that Liriodendron 
has the growth advantage at all light levels. As long 
as light is the variable that limits success, Liriodendron 
will dominate. Because Acer is not rare, we search for 
other circumstances in which it can dominate. For col- 
onization, we find that it has a higher capacity to reach 
sites nearby than does Liriodendron, but Liriodendron 
still has the advantage at most distances beyond the 
immediate canopy of the parent (Fig. 15, upper left). 
It has higher fecundity than Acer and, by virtue of high 
success at distance, may even obtain many sites near 
parent Acer trees. So it still does not look good for 
Acer. Clearly, we can continue in this fashion, search- 
ing for circumstances where Acer has the upper hand. 
There are many possibilities beyond those included in 
Fig. 15. Because all species truly are different, it is 
likely that only by giving up too soon will we fail to 
identify those circumstances. Once we find them, they 
can be our explanation for coexistence. Regardless of 
what they are, we can agree that they will contribute. 
For example, we estimate higher low-light survival for 
Acer rubrzrm than for Liriodendron (Beckage and Clark 
2003), and this relationship appears important in di- 
versity of northeastern temperate forests (Pacala et al. 
1996). 
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FIG. 15. Comparison of tree species coexistence using traditional model estimates (top panels) and with hierarchical 
Bayes (bottom panels). Dashed lines bound 95% confidence intervals that include process variability and individual effects. 
In panel (b), Acer rubrum has greater colonization at shorter distances (leftmost distribution). In (b), areas of overlay between 
the two species appear dark. 

We speculate that RITES might contribute to diver- 
sity regardless of whether or not Acer ever has the 
average upper hand. We find large variability in terms 
of which species has the advantage due to population 
heterogeneity (random individual effects) and large 
temporal variability. For example, our model predicts 
that seed densities near a tree, for a tree and year se- 
lected at random, can range from 0 to >I00 seeds/m2 

(Fig. 15: lower left). Observations show these predic- 
tions to be accurate; even beneath trees of species with 
high average fecundities we may collect no seeds in 
many traps for a given year and a given individual. 
Much of the variability in fecundity is subsequently 
damped, because recruitment of many species will be 
unsuccessful at low light. In other words, the corre- 
lation among species, in terms of recruitment success, 
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will be greater than the correlation we observe in seed 
production. Nonetheless, the importance of "good seed 
years" for successful establishment is well known, and 
the massive stochasticity described by variance a* (Ta- 
ble 2) combined with low correlation among species 
may contribute to diversity. 

The contribution of random temporal effects may be 
less efficacious than that of random individual effects, 
which have prolonged impacts-populations consist of 
individual differences that persist throughout the life- 
time. At a given light level, large variability within 
populations makes for broad overlap among species 
(Fig. 15: lower right)(Clark et al. 2003). We do not 
need to search for new axes where Acer has a deter- 
ministic advantage, because Acer can often have an 
advantage along the axes we have already examined. 
For both colonization-competition and successional 
niches, random effects at the individual level and pro- 
cess variability over time (RITEs) provide a massive 
source of stochasticity that can have low correlation 
among species at any given time and place. This sto- 
chasticity is not explained by additional resources that 
could have been measured, but were not included in 
the model. For example, soil moisture did not account 
for the broad overlap in light responses shown in Fig. 
16 (Clark et al. 2003). Pacala et al. (1996) did not 
include nutrient availability in their model, because it 
did not explain recruitment patterns. We are now ex- 
amining this mechanism in simulation (J. S. Clark, M. 
Dietze, S. Govindarajan, and F? Agarwal, unpublished 
manuscript). 

The potential stabilizing effect of RITEs, seemingly 
without trade-offs, does not imply that it occurs in few 
dimensions. The massive process and population-level 
stochasticity parameterized here stands in for processes 
that are unknown, not measurable, or both (Clark et al. 
2003). Instead, these results demonstrate that low- 
dimensional models based on variables that are readily 
measured (resource responses, life history, and so 
forth) may not make the dominant contribution to co- 
existence. They will often be overwhelmed by factors 
that are not measurable and, unless properly accom- 
modated by inference, not accurately represented in 
ecological models. If we could know and quantify all 
factors that contribute stochasticity, the model would 
be deterministic, and it would involve many dimen- 
sions that describe how individuals differ and environ- 
ments vary. 

Nor does this explanation imply that trade-offs play 
no role in coexistence. Long-recognized differences be- 
tween early- and late-successional species (Connell and 
Slatyer 1977, Huston and Smith 1987, Wright et al. 
2003) support the notion that the successional niche 
explains coexistence of these two "classes" of species 
(Pacala and Rees 1998, Bolker and Pacala 1999). Beta 
diversity across landscapes depends on some clear 
physiological adaptations to moisture availability, 
drought, and nutrients (Pastor et al. 1987). On the other 

hand, these attributes may not be sufficient to explain 
coexistence of species that share late-successional hab- 
itats or that share specific soil types (i.e., alpha diver- 
sity). The large stochasticity in terms of RITEs that we 
parameterize may contribute. 

The broad overlap we find is not expected to cause 
"neutral drift." Random effects illustrated in Fig. 16 
might seem like "equalizing mechanisms" (Chesson 
2000), because they seem to increase similarity among 
species and, thus, should slow competitive exclusion 
(Hubbell 200 1). If intraspecific variability does pro- 
mote coexistence by spreading the advantages among 
individuals, this effect could be "stabilizing" by pro- 
moting diversity, rather than simply slowing its decay. 
Our results may help to square the observation that 
dynamics show stability (Clark and McLachlan 2003) 
with the observation that trade-offs are often not ap- 
parent (Hubbell 200 1). 

The contribution of RITES can be overlooked due 
to their omission at the two critical stages. First, the- 
oretical models do not include them. Many ecological 
models admit stochasticity. Individual-based models 
have stochastic births and deaths (individuals are dis- 
crete), but demographic stochasticity is more restricted 
and operates differently than the variability estimated 
here. For example, models that allow demographic sto- 
chasticity do not include variability in how individuals 
in a given state (size, age, location, . . . ) respond. They 
are "individual-based" models, but they do not allow 
random individual effects. 

Ecological models that do not track individuals are 
often implemented with stochastic parameters with in- 
terannual variability. The assumption of noise in a pa- 
rameter that is drawn each time step and applied to the 
full population does not allow for the differences 
among individuals that causes broad overlap. Random 
individual effects are structured in a different way, be- 
cause there are advantaged and disadvantaged individ- 
uals that remain so throughout out their lifetimes. 

It is impossible to identify the mechanism when it 
is assumed not to exist. The stochasticity parameterized 
in Fig. 15 is not parameter error. Pacala et al. (1996) 
introduced to stand simulators the important concept 
of "error analysis" (Lande 1988). However, parameter 
error is an insignificant contribution to the processes 
we estimate. Moreover, unless sample sizes are small, 
that parameter error is small relative to individual ef- 
fects and process variability (Fig. 11 and Clark et al. 
2003), and it has a different structure. Parameter error 
is an important consideration (e.g., we incorporate that 
here with other sources of stochasticity), but it does 
not address variability in the process or rnisspecifica- 
tion of the model. 

Theory that lacks random individual effects is only 
part of the reason this simple mechanism has been over- 
looked. The second critical stage involves the statistical 
models used to estimate life histories and trophic re- 
lationships. Empirical studies have not parameterized 
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the massive contribution of RITES, because models that Population variation 
include them are not amenable to classical methods (see 
also Clark 2003, Clark et al. 2003). Most careful studies 
of seed production note this large variability among 
individuals and years (e.g., Downs and McQuilkin 
1944, Koenig and Knops 2000, Greenberg an Parresol 
2002). That stochasticity is not transferred to models 
that ecologists use to evaluate mechanisms of coexis- 
tence. Even for simple deterministic processes, infer- 
ence can entail high-dimensional models. This high 
dimensionality leads us to mention several other as- 
pects of model complexity. 

So many parameters? 

Clark et al. (2003) point out that most sources of 
variability in many ecological data sets will be un- 
known. This reality motivates models that have few 
deterministic elements. The deterministic elements of 
our fecundity model include only tree size and dispersal 
(Fig 2). Nonetheless, the sources of variation that go 
beyond these relationships cannot be ignored (e.g., Fig. 
14). To accommodate the factors that impact data on 
fecundity schedules required nearly 10"arameter es- 
timates. The high dimensionality was needed to allow 
for the unknowns, such as sampling errors, and obser- 
vation errors, and variability in fecundity that is related 
to year and time. To estimate 10 parameters related to 
fecundity for a given species, we also had to estimate 
seed production by every tree, every year. Obviously, 
there is a trade-off in terms of deterministic process 
and stochasticity. Deterministic relationships are de- 
sired for the quantifiable relationships. Stochasticity 
allows us to accommodate the ones that cannot be mea- 
sured. Hierarchical Bayes provides a common frame- 
work. Such high-dimensional models will inevitably 
become more common in the environmental sciences. 
For example, weather prediction models can require 
106 parameters (e.g., Bengtsson et al. 2003). 

Uncertainty in fecundity schedules 

Our estimates of recognition success near 50% (Fig. 
7) are consistent with Chapman et al.'s (1992) evidence 
that variation among observer seed counts in tree 
crowns is large. Our results contrast with short-term 
observations that have been used to parameterize sim- 
ple allometric relations between tree diameter and re- 
productive output-counting errors are large (Fig. 7), 
there is large fluctuation from year to year (Fig. 10) 
and among individuals (Figs. 11 and 12), and the al- 
lometric relationship itself changes with tree size. Size- 
fecundity relationships reported for tropical trees (e.g., 
Thomas 1996) may yield distinctive patterns because 
variability is muted there. Some authors suggest that 
seed production may be more variable at low latitudes 
(e.g., Koenig and Knops 2000). These apparent re- 
gional differences can be resolved if future studies es- 
timate recognition errors as part of the analysis, which 
is straightforward with our approach (Fig. 7). 

Patterns of temporal variability in seed production 
are the basis for hypotheses regarding masting. Com- 
mon indices include coefficients of variation among 
years (e.g., Kelly 1994, Herrera et al. 1998, Kelly and 
Sork 2002) and serial autocorrelation (Koenig and 
Knops 2000). A full time-series analysis of posterior 
fecundity estimates is beyond the scope of this paper, 
as it involves nearly lo5 estimates (it is taken up else- 
where). Here we simply point out two general consid- 
erations. First, previous analyses of seed density (e.g., 
in seed traps) will find substantially less variability than 
occurs for the trees themselves due to the spatial av- 
eraging of overlapping seed shadows. Although the co- 
efficients of variation we find for seeds are similar to 
those reported for other studies, we find that the year- 
to-year variability for individual trees spans several 
orders of magnitude (Figs. 9 and 12). Similar large 
variation has been estimated from direct seed estimates 
(Koenig et al. 1994). Large potential differences that 
have motivated the search for "bimodality" (e.g., Her- 
rera et al. 1998, Koenig and Knops 2000) are consistent 
with large eruptions that are characteristic of all species 
we analyzed (Fig. 10). 

Second, high interannual variation combined with 
large individual variation means that effective popu- 
lation sizes are often small and highly dynamic. We 
further find that masting does not engage the full pop- 
ulation. While many individuals are roughly synchro- 
nized, other individuals and subsets of populations are 
out of phase. Effective population sizes range widely 
from year to year. Our model predicts Sharp's (1958) 
view that, even during mast years, only a subset of the 
population may produce a large seed crop. Interannual 
and individual posterior fecundity estimates provide a 
basis for a full analysis of effective population sizes 
and how they shift in space and time (J. S. Clark, M. 
Dietze, S. Govindarajan, and F? Agarwal, rinpublished 
manuscript). 
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APPENDIX 
Markov-chain Monte Carlo algorithms, together with prior parameter values, marginal posteriors, a discussion of conver- 

gence, and examples using Acer rubrum are available in ESA's Electronic Data Archive: Ecological Archives M074-010-Al. 


