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Bayesian analysis differs from other topics in this book, so we approach it in a different way. Our gentle introduction 
is intended for the ecologist who might find either Bayesian or classical approaches useful, depending on the 
application at hand. So our chapter includes some comparisons, but they are not the insidious examples that rely on 
strange or unrealistic distributions to generate discord. Although most of this book is designed for the practitioner, 
providing the bridge from concept to software, Bayesian analysis still requires programming. Thus, although we 
cannot direct the reader to a broad range of software options, we adopt the general philosophy of this volume by 
providing a simple and practical introduction to a topic that is generally treated at a more advanced level in graduate 
statistic courses and beyond. 
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small sample sizes or strong prior opinions are less common than the impression 
left by some authors. We leave these arguments for others, but refer readers to 
the lively treatments in the Special Feature of Ecological Applications @ixon 
and Ellison 1996). Hilborn and Mange1 (1998) lay out the utility of Bayesian 
methods as part of a set of tools for analysis of ecological data. An overview of 
Bayesian statistics is givkn in Berger (in press). 

Bayesian analysis differs from other topics in this book, so we approach it in 
a different way. Our gentle introduction is intended for the ecologist who might 
find either Bayesian or classical approaches useful, depending on the application 
at hand. So our chapter includes some comparisons, but they are not the insidious 
examples that rely on strange or unrealistic distributions to generate discord. Al- 
though most of this book is designed for the practitioner, providing the bridge 
from concept to software, Bayesian analysis still requires programming. Thus, 
although we cannot direct the reader to a broad range of software options, we 
adopt the general philosophy of this volume by providing a simple and practical 
introduction to a topic that is generally treated at a more advanced level in gradu- 
ate statistics courses and beyond. 

We cannot go far using Bayesian methods without the routine application of 
calculus (including numerical methods that require an understanding thereof). 
Models with multiple parameters get complicated fast, but the conceptual back- 
ground laid by simpler models generally applies. Rather than attempt a broad 
survey that would risk losing the reader in technique, we limit this chapter to one 
sampling distribution (the binomial). This limited scope allows us to introduce a 
number of concepts (the basic elements of Bayesian methods, conjugacy, compar- 
ison with classical methods) that apply generally. Useful introductory texts in- 
clude Berry (1996), Lee (1989), and Box and Tiao (1973). 

17.2 The Basic Elements 

Bayesian statistics has two distinguishing characteristics: 

1. It combines, in a formal way, data h m  the experiment at hand with data from 
any other'experiment or information deemed relevant. 

2. It summarizes the analysis with a probability distribution that shows how well 
the various values of the parameter are supported by all of this information. 

For the purpose of illustrating concepts, we begin with a simple example. To 
understand the dynamics of plant populations, ecologists estimate survival from 
census data. Because annual rates tend to be high (often >95% per year for trees), from about 0.91 1 

it can be f i c u l t  to obtain data sufficient to make confident estimates (i.e., about twice as wf 

enough deaths). Information that is external to the study at hand can help to 
sharpen estimates. This Bayesian example combines census data from a typical 
field study with external information to evaluate survival of Acer rubnun trees in 
the southeq Appalachian Mountains (Wyckoff and Clark 2000). 

The probability density in figure 17.1A summarizes the analysis of tree sur- 
vival. The data include annual censuses of trees; the parameter of interest is the 









denominator cancel, leaving 

B(k+ 1 , n  - k +  1) 

B(*, a) is the beta function. The final step in equation 17.5 makes use of some 
well-known relationships among beta functions, gamma functions, and factorials 
that can be found in standard probability texts. 

The posterior in equation 17.5 is a beta density, f(8 [k) = B(k + 1, n - k + I), 

--- 

rior agrees with our intuitive estimate Wn (figure 17.2A). We can summarize our 
degree of confidence in 8 with quantiles that contain the central 100(1- a)% of 
the posterior. The right-hand side (figure 17.2B) is the cumulative distribution for 
the posterior showing 95% quantiles (dashed lines). 

Now consider how our noninfonnative (flat) prior affects the result. The uni- 
form prior density means that the posterior beta density (equation 17.5) has the 
same shape as the likelihood function (equation 17.3); the two differ only by a 
constant and, thus, contain the same information about the parameter 8. The nor- 
malized likelihood (divide the likelihood function by the denominator of equation 
17.1) coincides with the posterior in figure 17.2A. Because we had no prior in- 
sight, the census data governed the result. Before considering how the posterior 

method with a classical approach. 

17.3.2 comparison with a Classical Approach 

How does this Bayesian approach differ from a classical view? A.classical (fre- 
quentist) approach might involve fitting the parameter 8 to data and then deriving 
a probability statement (a P-value) based on a comparison of that result with 
some alternative null model. The maximum-likelihood (ML) estimate of 8 is that 
which maximizes the probability of the data set, assuming the model to be correct. 
By differentiating the likelihood of equation 17.3 with respect to 8, we find the 
ML estimate of 8 to be & = k/n. A classical confidence interval is based on the . 
comparison of this ML estimate with other possibIe values of the parameter using 

intervals"; ecologists do not use the Bayesian jargon "credible interval." To com- 
pare confidence intervals, we describe a "likelihood profile" approach. Likelihood 
profiles are being used inamsingly by ecologists; a full description of likelihood 



Bayesian Statistics 333 

profiles can be found in Hilborne and Mange1 (1997). The summary of likeli- 
hood profiles that follows illustrates the link between classical and Bayesian ap- 
proaches represented by the likelihood function. 

Within a classical context, a probability statement about an estimate requires 
some alternative hypothesis against which it can be compared. Because there 
might be many such alternatives, let's consider a broad range. This range is the 
basis for a classical confidence interval, which we obtain by constructing a likeli- 
hood profile. The method involves successively calculating two likelihoods for 
the same data set, one'for each competing hypothesis about 8 against the ML 
estimate, that is, the value obtaining most support from the data. The likelihood 
ratio (LR) is simply the ratio of the likelihoods of the two models, 

The deviance is the test statistic. It is twice the difference in log likelihoods 

and. is distributed as x2 with 1 degree of fkedom (there is one parameter at issue). 
The deviances increase (figure 17.3A) and associated P-values decrease (figure 
17.3B) as the hypothesized value of 8 deviates from the ML estimate (8 = 0.96). 

Figure 17.3 Classical confi- 
dence intervals for the exam- 
ple in figure 17.2A. The devi- 
ance (A) has a horizontal 
dashed line corresponding to 
likelihood profile values of P = 
0.05. The plot of P-values (B) 
includes the P = 0.025 horizon- 

- tal line and the 95% Bayesian 
confidence internal (vertical 
lines) from the example in fig- 
ure 17.2A. 

6) P values 
------------------- 
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We might conclude from this example that the data allow us to reject, at the a = 
0.05 level, the hypothesis that 8 lies outside the interval bounded by the horizontal 
dashed line at P = 0.025 in figure 17.3B. We can represent the same interval by 
the horizontal line through the deviance plot at 3.84 (figure 17.3A): the xz-value 
that yields P = 0.95 with 1 degree of freedom. For comparison, we include in 
figure 17.3B the Bayesian confidence interval obtained with a uniform prior in 
figure 17.2A (the vertical dashed lines in figure 17.3B). 

How different-are the interpretations derived from these approaches? The as- 
tute reader will note that the confidence intervals from the Bayesian (vertical 
lines in figure 17.3B) and the classical method (horizontal line in figure 17.3B) 
nearly coincide. Indeed, with large n, they converge. The lower limits are euiva- 
lent, and the upper limits differ slightly. If both methods yield the same confi- 
dence intervals, then how important is the distinction? From equation 17.1 (and 
17.5). we note that a uniform prior (a reflection of prior ignorance about 0) means 
that the posterior is simply a normalized likelihood function. Because the like- 
lihood and posterior bear the same shape (we cannot distinguish them in figure 
17.2A), they contain the same information about 8. The posterior is completely 
controlled by the data, without prior bias. And the posterior (normalized likeli- 
hood) yields about the same confidence interval as the likelihood profile. This 
example is general; with large sample size, a noninformative prior produces a 
confidence interval that converges with the classical one. 

Despite similarities, statisticians talk about these two confidence intervals in 
different ways. The classical confidence interval is taken to cover the fraction of 
repeated experiments in which the interval would contain the true value of the 
fixed parameter. If we were. to conduct a large number of identical experiments 
on survival of trees that are subject to the same set of risks, our survival estimate 
would fall above the dashed lines in figure 17.3A in 95% of those experiments. 
The Bayesian confidence interval represents our belief that the random parameter 
spans a certain interval. Here, survival is viewed as random with a density given 
in figure 17.2A. There are cases where the two approaches can yield importantly 
different answers (e.g., Cousins 1995). However, from a practical standpoint, it 
is worth remembering that much of the time the confidence intervals nearly coin- 

17.3.3 An Informed Prior 

For problems like tree survival, where estimates suffer from inadequate data, prior 
(external) knowledge about 8 can sharpen our inference. Wyckoff and Clark 
(2000) incorporated estimates obtained from U.S. Forest Service (USFS) invento- 
ries as prior estimates of survivorship. The USFS data might not provide the best 
estimate for Wyckoff and Clark's (2000) study site, because the data come from 
a broad region, but they do represent a prior estimate of survival that might be 
worth combi ig  with field data from their more restricted study area 

USFS data contained ko = 137 of no = 142 surviving Acer rubrum trees from 
the region that includes the study area of Wyckoff and Clark (2000). The Mor 
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density, likelihood function, and posterior density are compared in figure 17.2B. 
For convenience, the prior is taken to be a beta density, 

f(e) = Bfko, no) 
Note that the parameters of this density are simply the numbers of total and 
surviving trees. Because the prior from USFS data in equation 17.6 (shown in 
figure 17.2C) contains far more information about 8 than does the uniform one 
(figure 17.2A), the posterior in figure 17.2C is concentrated about the most proba- 
ble estimate (still 0 = 0.96) to a greater degree than in figure 17.2A. The posterior 
splits the difference between prior and likelihood, because it incorporates infor- 
mation from both. The greater information that results from the informed prior is 
reflected in the narrower confidence intervals shown on the right-hand side of 

our example, the weight of the prior evidence (n,, = 142) and of the new data 
(n = 137) are about the same. The exact solution for the posterior is the beta 
density with parameters obtained by summing the prior information and data: 

f(eIk)=B(k,+k, n,+n-&-k) 

Because the parameters in equation 17.7 are simply the sums of total and surviv- 
ing trees, it is clear that both contribute similar weight to the posterior. For a 
small sample size, an informed prior (no % n) dominates the posterior; the likeli- 
hood (i.e., the data) has minimal impact. With increasing sample size (n $= n,,), 
the likelihood dominates the prior, and the posterior approaches the likelihood. 
The example using a flat prior (figure 17.2A) is an extreme case, where the 
weight of the evidence is concentrated in the likelihood. Thus, the impact of 
the prior is felt most when sample size is low. With an increasing sample size, 
the posterior tends to normality, with the mean approaching the "true" value of 
go, and the parameter variance is determined by the curvature of the likelihood 
surface at OO. Thus, with a large sample size, the likelihood alone can be used to 
estimate the mode and curvature. Provided that the prior assigns nonzero proba- 
bility to the true value 8,,, the curvature increases with increasing n until the mass 
of the posterior is concentrated at the point go. 

One objection to Bayesian methods is that sllbjectivity may creep into the 
analysis through the choice of the prior. In the hope of reducing subjectivity, 
some practitioners recommend using a flat prior. As we have seen, this approach 
yields-a. posterior density of the parameter based on the data and on an initial 
belief that all values are equally probable. (The foregoing section explains simi- 
larities to a classical approach.) Although some strict subjectivist Bayesians might 
disagree, it is generally good practice to consider several different priors, repre- 
senting different evaluations of outside information, use them each to compute a 

data come from posterior, and compare the posteriors. Often the posteriors that result from differ- 
ent priors will be similar (Crome et al. 1996). Wyckoff and Clark (2000) deter- 
mined how fhe survival estimates changed when using priors obtained fiom dif- 
ferent data sources. In their analysis, changing the prior had little effect on the 
posterior, because there were not large discrepancies between the priors obtained 
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from different sources and the likelihood. But, in some cases, they can be quite 
different, meaning that people can disagree. Wolfson et al. (1996) provide an ex- 
ample of how sample size can be adjusted to ensure a decisive experimental 
outcome when different parties bring to a problem very different priors. A larger 
sample size might be needed to demonstrate an outcome that is at odds with 
strong prior evidence. 

17.3.5 Conjugacy 

If a probability statement about parameters is the only objective, then a Bayesian 
analysis can often be done without resorting to the mathematical details behind, say, 
equation 17.7. Indeed, increasing complexity, such as in the example that follows, 
demands a computer-intensive approach. Numerical techniques, such Markov 
Chain Monte Carlo (MCMC) simulation, are well suited to analyzing such models 
and calculating posterior distributions for the parameters of interest. Gelman et 
al. (1995) provide an introduction to these methods. The route to the posterior is 
intractable, and the nonparametric nature of the posterior means that it is not 
readily transported from one application to the next. 

Much ecological investigation is concerned with developing models for under- 
standing and prediction. Knowing the numerical techniques for extracting confi- 
dence intervals from high-dimensional posteriors is often not enough. The devel- 
opment of minimal models that permit transparent error propagation and analysis 

A special class of models is analytically tractable when the number of parame- 
ters is small and provides a powerful technique for data assimilation. It involves 
a special relationship between prior and likelihood termed conjugacy. A conjugate 
prior-likelihood pair is one for which application of Bayes' rule results in a poste- 
rior having the same forxn as the prior. Conjugate prior-likelihood pairs can be 
found for many lowdimensional problems. The beta-binomial is a common ex- 
ample: the prior (equation 17.6) and posterior (equation 17.7) have the same fonn, 
and only the parameter values are updated. There are a number of conjugate pairs 
(we mention the inq2-~aussian conjugate pair subsequently), and their use al- 
ways simplifies the analysis. Conjugacy is a valuable tool, because it permits an 
exact result that can be updated repeatedly. For example, a model of forest dy- 
namics can be implemented in fully parametric form. A standard model of this 
sort using, say, a ML (point) estimate of survival probability does not reflect the 
uncertainty described by figure 17.2B. The conjugate pair model allows us to 
draw survival estimates directly from equation 17.7, thus propagating uncertainty 
in the parameter estimate directly to the model output. Moreover, the next occa- 
sion to update the data set requires only a change in the parameters of equation 
17.7. Although their calculation requires some math, conjugate pairs provide the 
most transparent view of the relationship between priors and posteriors, and, 
when available, they provide a powerful way to assimilate data in ecological 
models. Of course, in the many cases where a conjugate pair is not available, the 
analysis must proceed numerically. 
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17.4 Bayesian Estimation in a Dynamic Model 

The methods outlined previously can be extended to more complex ecological pro- 
blems. Here we provide an example that uses the binomial sampling distribution 
to estimate the dynamics of seedlings. Ecologists typically study such dynamics 
by tagging every seedling in a study plot and, through censuses, determining 
survival probabilities. Such studies are so labor-intensive that few data sets exist 
(Clark et al. 1999). Moreover, the heavy loss of tags and faiIure to relocate seed- 
lings necessitate far more complex statistical models than investigators actually 
use to analyze such data. The folIowing example from Lavine et al. (in press) 
illustrates how the Bayesian approach can be implemented in a dynamic model 
to incorporate different types of error and, in the process, extract parameter esti- 
mates without the intensive labor required by the standard approach. The model 
is based on identification of only two classes of seedling age, and it uses local 
densities at each stage rather than individually tagged seedlings. 

Tree seedlings can be conveniently separated into a first-year class and a 
>first-year class, which is presumably less susceptible to mortality risks. A dy- 
namic model based on this two-stage classification is readily applied to field data, 
because the two classes of seedlings are distinguished by the presence of bud- 
scale scars on >first-year seedlings. The data consist of seedling densities of the 
two classes counted in 1-m2 quadrats. First-year and >first-year seedlings are 
termed New ( N )  and Old (O), respectively. Each class has its own survival proba- 
bility, ON and eO. The number of new seedlings entering the population in year j, 
N,, is determined by input of new seeds. The number of old seedlings, O,, is the 
sum of both new and old seedlings from last year that survived to this year. To 
simplify notation in the equations that follow we define the numbers of both 
classes that survivor to year j as 

Y, = Bin(N,t, @N) 

-q = BinfO,,,, 00) 

The first of these equations says that the number of survivors is a random variable 
drawn from a binomial distribution with parameters N,, (the number of potential 
survivors) and QN (the probability that any one individual survives). The total 
number of old seedlings is the sum of old and new seedlings that survived from 
year j - 1, 0, = X, + 4. In other words, the number of old seedlings is the sum of 
two binomial variates, each with its own survival probability. Data from one of 
the 1-m2 quadrates are shown in table 17.1. 

Table I Numbers of first-year (new) and >first-year (old) Acer d r u m  
seedlings censused in quadrate 9 from Lavine et al. (in press) 

1993 1994 1995 1996 1997 

Number of new seedlings. 4 
Number of old seedlings, 0, 
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In 1996 (call this year J] ,  one old seedling was observed We do not know 
whether this survivor was old or new in 1995 (year j - I). To estimate the two 
survival probabilities, we must enumerate the possibilities. As many as 1 or as 
few as 0 could have been old; the remaining 0 or 1 was new in 1995. From 1 old 
and 2 new in 1995, the probability (i.e., likelihood) that exactly 1 survived to 
become old seedlings in 1996 is 

This likelihood is the sum of two binomial probabilities. The summation from 
x=O to 1 adds the two ways we could observe one old seedling. If the old 
seedling was new last year (x = 0 in the summation), we have the probability that 
the single old individual died (the first binomial) times the probability that one 
of the two (0, - x = 1 - 0 = 1) N,, survived. Wvine et al. (in press) provide sim- 
ple rules for obtaining the summation limits.] By adding to this value the proba- 
bilities that would apply if a single OP1 survived (x= I), we obtain the total 
probability of obtaining the data. The likelihood function for the whole data set 
is the product over all Q quadrats and all T years, 

Q T 

f({ o ,~  I e0,e,) = n: L(O, I e,,, 8,) 
1=1 j=l 

In this particular likelihood, we treat each plot in each year as independent. [Lav- 
ine et al. (in press) relax this assumption]. 

Because of the number of parameters involved, calculating a posterior can re- 
quire some numerical tools. As written, the posterior can thus far be calculated 
exactly. Combining the likelihood of equation 17.8 with a flat prior results in a 
posterior density for 8, and e0 (figure 17.4A). The posterior shows how well each 
combination of (ON, go) is supported by the evidence. To examine ON only, we 

0 

This integration is necessary because parameters in complex models can often be 
correlated (a type of ill conditioning we mention subsequently). Because the two 
parameters are largely independent (there is little sign of correlation in figure 
17.4), the marginal density obtained from this integration might not be too differ- 
ent from a conditional density (at, say, the ML estimate of the other parameter). 

In the real world, other sources of error require parameterization. Because not 
all seedlings will be found in all years, there is random "findability," which can 
be thought of as the probability that a seedling is counted at all. In particular, 
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C) Marginal from MCMC 
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Figure 17.4 (A) Contour plot of the posterior density f(ON, 0010) shows that values near 
0.32 are the best support for both parameters. Marginal posterior densities for the survival 
parameters $ (B) and O0 (C) obtained by Gibbs sampling from the joint posterior density 
for the model that includes a fiadability error (Lavine et al. 2000) are in agreement with 
those obtained by the simpler model (A). 

new seedlings can be small and hard to find. If, for example, there is a Poisson 
distribution of new seedlings with parameter (mean value) h and a probability f 
that a new seedling is actually found, then the problem is too complex to pursue 
analytically. For the data set considered by Lavine et al. (in press), the marginal 
posteriors for the survival probabilities are shown in figure 17.4B,C. The marginal 
distributions are bumpy because they are obtained by numerically (Gibbs) sam- 
pling from a joint posterior having these extra parameters to accommodate addi- 
tional sources of error. Gibbs sampling is a MCMC technique that simulates a 
posterior and, in the process, accomplishes the integration described previously 
(without actually integrating anything; see Gelman et al. (1995) for an introduc- 
tion). The posteriors indicate that survival rates between 0.25 and 0.40 for both 
new and old seedlings are most likely. This result ran counter to our expectation 
that survival would be lower for new seedlings, but it may be explained by the 
fact that some seedlings may still emerge after the July censuses. Note too that 
the values do not greatly differ from those obtained from the simple model in 
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a single stand, and examine effects on a single cohort (Clark et al. 1999b). The 
lack of adequate data for parameter estimation results from the intense labor re- 
quired to census tagged seedlings. Comparing data sets obtained from tagged and 
untagged seedlings, Lavine et al. (in press) showed that this Bayesian approach 
provides only slightly less information than would the laborious practice of tag- 
ging all seedlings. Thus, the method makes it far easier to obtain much larger 

The seedling example demonstrates the common challenge: estimation is based 
on a dynamic process and a particular observation can be obtained in different ways. 
By enumerating all of the ways by which a particular observation might arise 
(equation 17.8), we can accommodate far more complex problems than could 
be approached using a simple sampling distribution (e.g., equation 17.3). With 
increasing model complexity, the possibility of ill-conditioning increases, 
whereby the model asks for more information than the data contain. The parame- 
ter trade-offs evident here can be detected by calculating correlation coefficients 
between pairs of parameters or by examining biplots of the posterior (figure 17.5). 
Figure 17.4A indicates almost no correlation between and ON, but parameter 
correlations do arise between some parameters when the model is expanded to 
include other types of error (Lavine et al. in press). Although ill conditioning 
arose here in the context of a posterior density, the problem must be considered 
in any data modeling exercise, not just in Bayesian analysis. 

17.5 Some Additional Ecological and Environmental Examples 

17.5.1 Incorporating Different Types of Data 

Population densities of bowhead whales are difficult to estimate, because the 
whales move from place to place and they are often underwater. The problems 
with counting whales motivated Rafkry and Zeh (1993) to use a Bayesian analy- 
sis that accommodates counts of whales both seen and heard as they migrate past 
Point Barrow, Alaska. The likelihood function comes from the counts in the 1988 
census. The prior takes into account the physical considerations related to loca- 
tions of observers and sonar arrays, visibility, the physics of sonar location, and 
the knowledge of bowhead migratory behavior. The posterior that combines this 
information suggests that the most likely number of bowhead whales is about 
7500, but that any size between 6500 and 9000 is reasonably well supported by 
the data. In listing the advantages of a Bayesian analysis, Raftery and Zeh (1993, 
pp, 166-168) state the following: 

"It enables us to use a realistic, scientifically relevant model, rather than forcing 
us to make artificially simple assumptions for the sake of mathematical tracts- 

"It permits us to incorporate the available external, or 'prior' information." 
"It makes elaboration and refinement of the underlying physical assumptions rela- 
tively straightforward." 
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"It is very hard to develop a non-Bayesian approach that takes account of all the 
impowt sources of error." 

17.5.2 External Evidence can Change the Inference 

Global warming of the oceans could have a large impact on fisheries and coastline 
management. Change in ocean temperature is difficult to document, because tem- 
perature varies with depth, and data sets of the duration needed to document the 
temperature rise are hard to obtain. An analysis of temperature measurements 
along the 24.S0N m s e c t  at a depth of 1000 m in the Atlantic Ocean suggest that 
a O.l°C warming occurred during the time between two voyages completed dur- 
ing the period 1957-1981 (Parilla et al. 1994). Lavine and Lozier (1999) reana- 
lyzed the data using Bayesian methods that allowed them to determine the historic 
trend in ocean temperatures and to incorporate additional data. The Bayesian 
approach allowed Lavine and Lozier to consider data from other voyages that 
were near the 24.5"N transect and thekby to reconstruct the temperature history 
through time. The temperature history revealed by the Bayesian approach re- 
vealed the following: 

1957 was an unusually cold year in the historical record at 1000 m and, thus, the 
"trend" resulted in large part to the fortuitous timing of the first voyage, 
Temperatures of isopycnals (surfaces of constant density) are much more constant 
over time than temperatures at fixed depth. 
The temperature fluctuations are likely due to vertical movement of isopycnals 
up and down past the fixed depth rather than to a simple increasing trend. 

Thus, incorporating the additional evidence brought perspective that changed our 
interpretation of long-term change in ocean temperatures. 

17.5.3 Parametric Empirical Bayes 

Parametric empirical Bayes is a term applied to models for data that arise from 
several sources of variability (see Ver Hoef 1996 for an ecological example). To 
understand why we say that parametric empirical Bayes is not truly Bayesian, we 
must discuss mixtures. To demonstrate both the utility of the method and its non- 
Bayesiah nature, we refer to a seed dispersal example of Clark et al. (1999), 
where both methods were used. 

Ecologists have long suspected that seed shadows might have long, "fat" tails, 
meaning that small numbers of seeds might be dispersed far from the parent 
plant (e.g., ~ortnoyand Wison 1993). Recent studies emphasizing how fat-tailed 
kernels produce patterns of spread that differ qualitatively from traditional models 
(Kot et al. 1996, Clark 1998, Lewis 1997, Clark et al. 2001) make it important 
to determine whether fat-tailed dispersal is common. Traditional dispersal kernels, 
such as Gaussian or exponential, have tails that approach zero rapidly. Unfortu- 
nately, kernels with fat tails are difficult to fit to data, and there have not been 
decisive tests among competing models (i.e., those that assume fat-tailed kernels 
versus those that do not). Mechanistic models of dispersal are hard to apply to 
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trees, because seeds emanate from broad and diffuse sources (tree crowns) and 
are released over time, as wind fields and animal dispersers vary. To determine 
whether seed dispersal data are best described by fat-tailed kernels, Clark et al. 
(1999a) used more empirical models and the method that is sometimes referred 
to as parametric empirical Bayes. 

Both Bayesian and parametric empirical Bayes involve densities of a parame- 
ter f(0) and a likelihood function f(8ldata). In the beta-binomial example, no 
matter how uncerfain we are about a parameter (summarized by the prior f(0) in 

measurements equation 17.4 or 17.6), the data themselves are assumed to have a binomial distri- 
bution (the likelihood f(datal9) in equation 17.3). The prior expresses our uncer- 
tainty about 8. Uncertainty diminishes as data accumulate. The posterior becomes 
concentrated at the value of 8 that describes the precise binomial distribution that 
"best" describes the data. 

Instead of the binomial of equation 17.3, the dispersal example of Clark et al. 
(1999a) uses the likelihood for a Gaussian (normal) kernel, f(r 18) = N(r 10, eZ), 
where 8 is a dispersion parameter, and r is a vector of dispersal distances (i.e., 
the "data"). A conjugate prior for th$ Gaussian likelihood is an inverse chi-square 
density for the parameter 0, f(0) = lnqZ(%, PO), which is shown as a dashed h e  
in figure 17.6B. The parameters uo and po determine the spread and shape of the 

m and, thus, the density. The results are insensitive to the precise shape of this prior in this exam- 
ple because it is given low weight, with parameters u,, = 25 and p = 1. 

:h more constant As in the beta-binomial example, application of Bayes' rule (ignoring the con- 
stant denominator in equation 17.2), 

f(O 1 r) a likelihood x prior = f (r 18) f (0;uo, pol 

yields a posterior having the same form (Inq2) as the prior, 

(the definition of conjugacy). From prior to posterior, only the parameter values 
change: the first parameter is increased by adding to it the squared observations, 
and the second parameter is increased by the sample size n. The combined effect 
is a posterior that is more "peaked" than the prior, which makes us more certain 
that we know which Gaussian kernel best describes the data. In figure 17.6% the 
posterior lies between the prior and likelihood. It is much closer to the likelihood 
than the prior, because the prior is "weak.." As with the beta-binomial example, 
our uncertainty about a parameter 8 does not affect our assumption about the 
distribution of data (the likelihood is Gaussian). 

1 traditional models Parametric empirical Bayes differs from true Bayes in that the variability in 8 
is assumed to affect the distribution of the data themselves and not just our under- 
standing of model parameters. Suppose that the Gaussian density (defined by a 

o rapidly, Unfortu- value for 0) describes dispersal for a given seed released from a particular canopy 
hete have not been location at a specific time. Because the canopy, seeds, and transport conditions 

oe fat-tailed kernels all vary, there might be a different Gaussian distribution for each seed (repre- 

re  hard to apply to sented by a density of values for 9). Unlike the Bayesian case, the density of 
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The analysis of Clark et al. (1999a) demonstrated the tendency of dispersal 
kernels to have long, fat tails (small values of the shape parameter p) (figure 
17.6C), which implied that the density of 8 values also had a long tail (figure 
17.6D). The mixture model provided a test among competing models, which can 
be represented by different values of the parameter p. Results suggest that the 
dispersion parameter of the Gaussian density can be viewed as sometimes having 
large values that correspond to times of high winds or dispersal by animal vectors 
(the tail of figure 17.6~). This variability can produce a fat-tailed kernel (solid 

. .....__. _ ........ _ line in figure 17.6C), which, in turn, suggests the plausibility of rapid population - spread (Clark 1998j.. 
In summary, although the term parametric empirical Bayes sounds Bayesian, 

it does not involve priors and posteriors. With large sample size, the Bayesian 
posterior converges to a point mass centered at a single value of 0. This posterior, 
in turn, implies a Gaussian dispersal kernel, regardless of whether the data better 
support the fatter-tailed two-dimensional t-distribution 2Dt (which, in fact, they 
did in the analysis by Clark et al. 1999a). Parametric empirical Bayes assumes 
the data are distributed as 2Dt, because the variability in 0 affects the actual 
process. The 2Dt does not converge to a Gaussian kernel with increased sample 
size, because the data are better described by the 2Dt. In other words, the poste- 
rior density of 0 in figure 17.6B would become increasing peaked with additional 
data, whereas we can expect the density of 0 in figure 17.6D to retain its spread. 

17.5.4 Classical Significance versus Bayesian Support 

Crome et al. (1996) compared a classical intervention analysis and a Bayesian 
approach to assess the impacts of logging on recapture rates of birds and small 
mammals in eastern Queensland. The likelihood of the data set is the product of 
two lognormal distributions, the joint probability'of observing a set of differences 
between the logged and unlogged sites before and after logging. This is the 
Before-After-Control-Impact-Pairs (BACIP) model of Stewart-Oaten et al. (1986, 
1992; see chapter 9). The Bayesian analysis included three priors, representing 
expectations about logging impact that ranged from a 25% reduction to a 25% 
increase in capture rates. Although the mean values differed by these percentages, 
the priors possessed broad overlap and thus did not represent large differences in 

because the notion of no logging effect in this context is silly. It would be 
to convince any ecologist that birds and mammals failed to notice that the trees 
had vanished. A nonsignificant result does not alter this view; rather, it points to 
the need for larger sample sizes to obtain a "significant" result. 

By contrast, Bayesian confidence intervals help sharpen our understanding of 
the logging impact. Due to broadly overlapping priors, the posteriors obtained for 
a given species did not show large differences. The authors refer to these similari- 
ties as examples of "concensus" among those bearing different prior views. Poste- 
riors suggest the degrees to which different species responded to the intervention 
and how those responses differed among habitats. 




