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Abstract. Dispersal affects community dynamics and vegetation response to global
change. Understanding these effects requires descriptions of dispersal at local and regional
scales and statistical models that permit estimation. Classical models of dispersal describe
local or long-distance dispersal, but not both. The lack of statistical methods means..that
models have rarely been fitted to seed dispersal in closed forests. We present a mixture
model of dispersal that assumes a range of disperal patterns, both local’and  long distance.
The bivariate Student’s t or “2Dt” follows from an assumption that the distance parameter
in a Gaussian model varies randomly, thus having a density of its own. We use an inverse
approach to “compete” our mixture model against classical alternatives, using seed rain
databases from temperate broadleaf, temperate mixed-conifer, and tropical floodplain for-
ests. For most species, the 2Dt model fits dispersal data better than do classical models.
The superior fit results from the potential for a convex shape near the source tree and a
“fat tail.” Our parameter estimates have implications for community dynamics at local
scales, for vegetation responses to global change at regional scales, and for differences in
seed dispersal among biomes. The 2Dt model predicts that less seed travels beyond the
immediate crown influence (<5 m) than is predicted under a Gaussian model, but that more
seed travels longer distances (>30 m). Although Gaussian and exponential models predict
slow population spread in the face of environmental change, our dispersal estimates suggest
rapid spread. The preponderance of animal-dispersed and rare seed types in tropical forests
results in noisier patterns of dispersal than occur in temperate hardwood and conifer stands.

Key words: Bayesian analysis; dispersal kernel: exponential model; forest dynamics; gamma;
Gaussian model; migration; seed dispersal; seed shadow: Student’s t.

An understanding of dispersal is needed to assess
recruitment limitation in plant communities and to pre-
dict population, responses to global change (Schupp
1990, Bibbens et al. 1994, Pitelka et al. 1997, Clark et
al. 1998a). Dispersal is summarized by a “seed shad-
ow,” describing the density of juveniles with distance
from the parent. A seed shadow model consists of two
elements: (1) an estimate of fecundity, or the rate of
seed production, and (2) a dispersal “kernel,” or prob-
ability density, describing the scatter of that seed about
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the parent. The seed shadow is the product of these
two elements:

seed shadow = fecundity X dispersal kernel

(1)

Seed shadows describe movement at several spatial
scales. At fine scales, the fraction of seed that remains
near the parent vs. that dispersed broadly affects ag-
gregation and, thus, competition (Janzen 1970, Levin
1976, Geritz et al. 1984, Levin et al. 1984, Shmida and

..Ellner 1984, Augspurger and Franson  1988, Augspur-
ger and Kitajima 1992, Venable and Brown 1993, Hurtt
and Pacala 1996). At coarse scales, the seed shadow
determines whether colonization of new habitats occurs
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mostly from patch edges, where seed rain from nearby
adults is dense (Bjorkbom 1971, Hughes and Fahey
1988, Greene and Johnson 1989),  or from seed trav-
eling long distances -(Davis 1981, Ritchie and Mac-
Donald .1986? Fastie 1995). Plant migrations during.__  .__.
climate change may be controlled by the “tail” of the
kernel, with accelerating spread well in advance of the
population frontier (Kot et al. 1996, Clark 1998). Taken
together, these observations point to the need for an
understanding of dispersal both near parent crowns and
over long distances.

Two challenges stand in the way of predicting dis-
persal within natural communities. First is the need for
kernel models that accurately describe dispersal across
a range of spatial scales. The shapes of seed shadows
assumed by dispersal biologists, modelers, and theo-
rists reflect focus on a particular scale. Models applied
at a fine scale usually assume a kernel that is convex
near the source and platykurtic (e.g., the Gaussian ker-
nel in Fig. la), because this shape describes the influ-
ence of the nearby (and sometimes overhanging) can-
opy (Green 1983, Geritz et al. 1984, Ribbens et al.
1994, Clark &al. 19986). Seed density declines with
distance from the parent tree, slowly’ at first, and then
more rapidly beyond the crown edge. This “local” con-
vexity requires a kernel&r) having a negative second
derivative at the source, @flr)/dr2l+,  < 0, where r is
distance (Fig. la). Such dispersal kernels have been
used to estimate probabilities of finding safe sites (Jan-
zen 1970, Green 1983, Geritz et al. 1984), competition
within tree communities (Ribbens et al. 1994), and re-
cruitment limitation (Clark et al. 1998b).  The restricted
dispersal described by such kernels predicts species
compositions that can contrast with those from models

,, that assume global .dispersal  (Leishman et al. 1992,
Hurtt,and Pacala 1993, Ribbens et al. 1994, Clark and
Ji 1995).

Ecologists concerned with processes that operate at

FIG. 1. Comparison of the shapes of kernel
tails fitted to Acer rubrum seed rain. (a) Dif-
ferent models in an exponential family (Eq. 3)
predict convexity at the source (c > 1) or a fat
tail (c < l), but not both. Exponential and fat-
tailed kernels are more leptokurtic (more peaked
and fat tailed) than is the Gaussian. (b) The 2Dt
model (Eq. 7) predicts convexity at the source
and a fat tail. Note the log scale of the y-axes.

broad spatial scales, such as reforestation of habitat
fragments and population spread, commonly employ
models that are concave near the sou&  and leptokurtic
(“fat-tailed” in Fig. la). Exponexia  densities and -
power functions (Portnoy and Wi&on 1993, Willson
1993) are examples of models chosen principally for
the shape of the “tail” of the seed shadow, i.e., on seed
dispersed beyond the direct crown influence. Relatively
small differences in the shapes of tails can have large
effects on rates of population spread (Clark 1998). Pla-
tykurtic kernels estimated by dispersal biologists and
community ecologists are of little use at coarse scales,
whereas the leptokurtic models that appear more rea-
sonable at coarse scales are likewise poorly suited for
application at fine scales.

A second challenge has been the ,development  of
statistical methods for estimation and model testing.
Past efforts to describe the scatter of iced about parent
plants have enjoyed limited success. Observations from
isolated trees in open or edge situations (Bjorkbom
1971, Smith 1975, Carkin  et al. 1978, Gladstone 1979,
Holthuijzen and Sharik 1985, Lamont 1985, Johnson
1988, Greene and Johnson 1989, Guevara and Laborde
1993) are hard to generalize to closed forests, because
exposed crowns have higher seed production and are
subject to different dispersal conditions than are their
counterparts in closed stands (Ruth and Bemtsen 1955,
Fowells and Schubert 1956, Barrett 1966, Mair 1973).
Seed shadows are a black box in models of stand dy-
namics, because there are no obvious ways to measure
seed transport in closed canopies where seed shadows
of individual trees overlap (Houle 1992, Martinez-Ra-
mos and Soto-Castor 1993). Empirical approaches are
summarized by a collection of functions (reviewed by
Willson 1993) that are restricted in application to par-
ticular spatial scales and that yield inconsistent fits  to
data (Portnoy and Willson 1993). Although migration
in response to global change has been critical to species

.
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?rsistence, both past and present, seed dispersal has
:t to be incorporated in Dynamic Global Vegetation
lodels  (DGVMs),  because existing empirical models
‘e  not relevant at coarse scales (Pitelka et al. 1997,
lark et al. 1998a).
Mechanistic approaches represent an alternative’ap-

roach. Forces that act on an ensemble of seeds, in-
uding settling, diffusion, and advection (wind), are
le components of Gaussian plume models. Applica-
ons to forest community dynamics are limited thus
tr (we are aware of none), because solutions generally
;sume  simplistic boundary conditions (e.g., a point
nrrce) and constant wind profile. The distributed
u&e,  represented by a tree crown or by a stand of
ees contributing seed to an open field (Okubo and
evin 1989),  is responsible for the convex kernel shape
lose to that source. The “skip distance” predicted by
Gaussian plume model with an elevated point source
nd constant wind profile is not expected in real stands
rhere winds vary and crowns are broad. Relaxing the
isumption  of a constant wind profile requires many
ammeters that are difficult to obtain and are dependent
n specific--conditions (Sharpe and Fields 1982, An-
ersen 1991).
Inverse modeling represents a powerful methodol-

gy for estimating fecundity and dispersal (Ribbens et
i. 1994, Clark et al. 1998a, b). The approach uses the
Jatial pattern of seed recovered from seed traps and
dult  trees to statistically estimate the seed shadow.
lthough the transport of individual seeds is not ob-
zrved, the model of seed arrival in traps can be in-
erted to provide parameter estimates, to estimate
oodness-of-fit, and to propagate error. The method-
logy itself is quite general, accommodating a range
f assumptions regarding kernel shape and error dis-
ibution. Alternative views of dispersal are represented
y competing functional forms that can be compared
ased on field data.
Here, we integrate notions of dispersal that cut across

patial scales, and we determine the extent to which a
lassical  vs. a new model derived from this integrated
iew explains disPersa1 in three biomes. The novel as-
umption of our model is that of a seed shadow con-
tituting a continuous range of dispersal processes, in-
luding ones responsible for local (e.g., settling under
onditions of light winds) to long-distance (e.g., move-
rent by strong winds and transport by vertebrates) dis-
ersal. This assumption is incorporated by modifying
standard dispersal model to include a density of dis-

,ersal parameters, with the resultant, new seed shadow
eing a “continuous mixture.” The resultant mixture
rode1 has desirable features at both local (i.e., con-
exity near the source) and long (i.e., high kurtosis, or
fat tail) distances. We then apply an inverse approach

3 parameterize the model, and we “compete” this
lode1 against the classical alternatives using data as
rbitrator. Our tests are based on data from southern
ippalachian,  Sierra Nevada mixed-conifer, and Peru-

vian tropical floodplain forests. Comparisons demon-
strate commonalities and differences across these con-
trasting biomes.

A FIELD GUIDE TO SEED SHADOWS

A brief background summarizes differences among
the dispersal kernels used to model dispersal, devel-
opment of our new kernel, and inferences that can be
drawn from our competitions among kernels using an
inverse approach. We begin by describing a kernel in
two dimensions, because this is a source of confusion
in the literature.

A dispersal kernel in two  dimensions

A tree’s “seed shadow,” the flux of seeds at distance
r (in meters), is the product of seed production rate Q
(per year) and a density function, or kemelflr,  4):

s(r,  4) = Qifr, 4) (2)

where + is direction (e.g., radians), andflr,  4) is seed
density per square meter; Eq. 2 is a restatement of Eq.
1. We assume rotational symmetry, so direction 4 is
eventually suppressed; it is explicit initially to assure -
that we arrive at a proper normalization constant (a
scalar guaranteeing that all seeds land somewhere). The
probability that a seed originating at r = 0 falls on an
area of ground surface (or in a seed trap) with diameter
dr and subtending arc angle 8 is the integral

rcdr

I f
f(r’; +) d+ dr’ = 8

r 9 I

r + d r

r’f,(r’)dr’
r

= fhf(r,  4) dr. (3)

Note that integration offir,  4) over arc angle 8 yields
Br&(r). Integration over both 8 and r yields a dimen-
sionless fraction, which, upon multiplication by fecun-
dity, gives the annual seed flux (i.e., number of seeds
per year) to the area (0,  dr). This result is not the seed
shadow of Eq. 2, which is a density and has units of
number of seeds per square meter per year (Eq. l), but,
rather, the integration of it. The integration over 21r  is
2w-&,(r),  which is the marginal density for the random
variable r. Moments represent a convenient summary
of r and are solved in Appendix A. To simplify notation,
we hereafter represent Ar, 4) as fir).

A family of dispersal kernels

Many functional forms can be, and have been, used
to describe how offspring abundances vary with dis-
tance from the parent tree. We limit consideration here
to proper density functions. We do not consider power
functions, for example, because they contain a singu-
larity (infinite density at zero); they cannot be parame-
terized to yield finite moments.

Many previous models and the new model developed
here can be placed within the general context  of one
analyzed by Clark et al. (19986):



1 4 7 8 JAMES  S. CLARK ET AL. Ecology, Vol. 80, No. 5

f(r)  = dexp - ; =lo1 (4)

where a is a distance parameter (in meters), c is a
dimensionless shape parameter, N is the normalization
constant,

and

w = z”-‘P  dz

is the gamma function. The kernel can be concave at
the source and fat tailed (c.5 1) or convex at the source
and platykurtic (c > 1). The exponential (c = 1) is
most common:

f(r) = &exp -d .I 1 CW

Alternative kernels in this family include the Gaussian
cc  = 3,

f(r) = sexp - d ’ .
IO1

(5b)

Clark et al. (1998a) and various others; Ribbens et al.
(1994) use c = 3, and Kot et al. (1996) and Clark (1998)
use c = l/2. Kurtosis, summarized from the second and
fourth moments of the marginal density of r,

FR’ I-(6/c)I’(2/c)-=
I+ l-9(4/c)

(6)

(see Appendix A), tends to infinity as c tends to zero
and to zero as c becomes large. Thus, Eq. 4 accom-
modates the large kurtotsis that power functions at-
tempt to capture, while still qualifying as a proper den-
sity function.

There are two limitations of dispersal kernels based
on Eq. 4. First, although flexible (e.g., zero to infinite
kurtosis), th&eed  shadow can be either convex at the
source or leptokurtic, but not both (Fig. la). Second,
statistical models used to fit kernels from seed or seed-
ling data become unstable if estimation of a and c is
attempted simultaneously. For five stands analyzed by
Clark et al. (1998b),  it was necessary to assume a value
of c and then fit a. Ribbens et al. (1994) report similar
difficulties. A more flexible kernel is obtained with a
two-part model having “local” and “long-distance”
components. The likelihood for this two-part model is
ill-conditioned, however, prohibiting direct parameter
estimation of the long-distance component (Clark 1998).

THE RIGHT SHAPE NEAR AND FAR:
A CONTINUOUS MIXTURE

A kernel that accurately describes dispersal at both
local and long-distance scales is obtained by charac-

terizing the seed shadow as a composite process, sum-
marized by a continuous range of dispersal parameters
a. The Gaussian kernel (Eq. 5b) is a reasonable model
for a restricted set of conditions. The model fits field
data for most of the tree species that we tested, and
species differences in dispersal parameters a matched
closely the predictions based on fall velocities (Clark
et al. 1998b). Nonetheless, the model is most sensitive
to seeds dispersed over short distances, and it fails to
describe sporadic seed dispersed over long distances:
the tail of the kernel is essentially overlooked.

We modified the Gaussian kernel (Eq. 5b) by assum-
ing that it varies continuously with prevailing condi-
tions. For example, a small value of a might describe
the kernel for seed released during times of light winds,
whereas a large value might apply when winds are high,
or for seeds dispersed by frugivorous birds, primates,
or other vertebrates. Assuming then that a represents
a random variable, we require a density of a values,
call itfia), to describe the probability of a values dur-
ing seed release or transport. There are two restrictions
on our choice for densityfla).  First,-it must be flexible.
Second, it must have a form such that the product of
Aa) and fir 1 a) can be integrated to yield a new kernel
fir)  that incorporates variability in a. In other words,
we must be able to solve for the marginal densityflr)
that results from the jointly distributed random vari-
ables r and a.

We searched for a density f(a)  that is both flexible
and permits a solution to (marginal density for) Eq. 5b.
Such a solution is obtained by introducing a new vari-
able A, that is defined in terms of a and scaling pa-
rameter u,

where A is gamma-distributed with shape parameter p:

f(A;  p) = ‘s.

Writing Eq. 5b as a density fir IA)  conditioned on the
random variable A (which depends, in turn, on a), the
new kernel becomes

f(r (A)f(A)  dA  = ’ r2  P+l. (8)

7Fu1+-I 1U
1 1

A resealing of parameters would show this to be a
bivariate version of Student’s t distribution. The density
is two dimensional, because the normalization constant
includes the arc-wise integration. Rotational symmetry
suppresses arc angle, but the density is expressed per
square meter rather than per meter. We therefore refer
to this mixture as a “two-dimensional f”,(2Dt)  kernel.
It tends to a Gaussian as p becomes large, and to a
Cauchy  as p tends to zero.



Advantages of our 2Dt mixture over variants on Eq.
i are threefold. First, it has the right shape at local and
ong distances. Although convex at the source, it ac-
,ommodates both fat and exponentially bounded tails.
doments  <2p are finite (Appendix A); thus, all mo-
nents are finite in the Gaussian limit (p + co),  and all
Ire  infinite in the Cauchy limit (p + 0). Kurtosis (in-
rolving  the fourth moment) is finite for p > 2.

A second advantage of the 2Dt distribution is the
act that the density of IX  is obtained as a by-product
)f fitting the kernel itself. Rather than simply obtaining
jest  estimates of Q  and confidence intervals (e.g., Clark
t al. 19986),  we obtain a full density of dispersal val-
[es  with the variable change:

f(a)  = f(A)  2 = atifz(p)exp  - $, .
I I 1 1 (9)

:his  density can be viewed as a type of inverse x2.
/laments  of 01  can be expressed in terms of the mo-
aents  of the kernel itself:

Fe  =
2Piim

mr(ml2) *

‘hese moments are finite so long as the corresponding
.loments  of the kernel are finite. Thus, the mean of (Y
; 1.12 times as large as the mean dispersal distance.
‘he mode, which obtains at d lnAa)/da  = 0, is

d 2 u 0 lo  20 30 40 50 60
#amodc  =

2p+ 1’
Distance (m)

FIG. 2.
A third advantage of this mixture is the fact that the

The problem of est imating individual  seed shad-
ows when they overlap. The map shows individual trees (cir-

ensity of a represents a conjugate prior for Bayesian cles are scaled to relative diameter) and contours of seed
stimation of the’  traditional exponential family (e.g., density f i t ted by inverse modeling.  The contours represent
iaussian and exponential). Although there is no such the sum of seed contributions from many nearby trees and

-actable Bayesian approach for the mixture likelihood
thus are smoothed relative to individual seed shadows (lower
panel,  which shows a transect  along the dashed l ine in the

Iat we will fit numerically, the conjugate pair provides upper map).  The individual seed shadows in the lower panel
basis for rapid updating of exponential kernels from are estimated from total  seed rain.  The example here is from

eed release data (Appendix B). the temperate deciduous forest (Table 1).

We will see that the 2Dt density is flexible and varies
ubstantially among species. We interpret this’ density The statistical model includes the two elements of the
t terms of the mixture of processes that .might  con- seed shadow (fecundity and a kernel from Eq. l), to-
ibute  to dispersal. gether with a distribution of error.

ESTIMATION:~NVERTINGTHE SEED SHADOW Summed seed shadow model
The inverse problem presented by seed rain beneath Assume that overlapping seed shadows can be ex-

losed canopies is summarized in Fig. 2. Multiple seed pressed as the summed contributions from each tree.
>urces  contribute to a given location. The seed rain Each seed shadow (Eq. 1) depends on distance and on
-om  these multiple sources is a smoothed version of tree size. The distance effect is simply the kernelflr)
tdividual seed shadows, making it difficult to assign (Eq. 8). We assume that fecundity is proportional to
:covered seeds to specific sources. To avoid this prob- basal area b (see also Ribbens et al. 1994):
:m,  studies frequently focus on isolated trees in open
elds or parking lots, at forest edges, or along hedge- Q(b)  = Bh (10)
)ws.  We have noted that fecundities and transport at where B is a parameter, because it represents the sim-
lch locations are unrepresentative of closed canopies. plest assumption in light of few data. This assumption

happens that the problem illustrated by Fig. 2 can overestimates fecundity for old trees with senescing
e solved, in the sense that statistical estimates of the crowns, but more complex assumptions come’ at the
tdividual seed shadows can be obtained by inversion. cost of additional parameters. J. Clark (unpubZished

?
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Seed shadows for Carya  glabra

1

3 0
Distance (m)

6 0

.
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TABLE 1. Forest stands used to model dispersal.

Forest  type
(location)

Annual
precipitation Elevation Dominant species

(mm) b-4 Stand number, type (based on basal area)

Temperate mixed-conifer
(36”34’  N, 118”46’  W)

870

1090

1390

1000 2200

2200

Temperate deciduous 1900 790
(35’03’ N, 83”27’  W)

800

1600

1600

Tropical floodplain 2000 350
(1 lo54  S, 71”22’  W)

1,

2,

3,

4 ,

5,

1,

2,

3 ,

4 .

xeric ridge

cove hardwood

mixed oak

mixed oak

northern hardwood

Sierra Nevada mixed-
conifer

sequoia-mixed-conifer

Sierra Nevada mixed-
conifer

Sierra Nevada mixed-
conifer

Quercus spp., Pinus  rigida,  Acer
rubrum

Liriodendron tulipifera,  Quercus
spp., Acer rubrum

Quercus spp.,  Acer rubrum,  Catya
glabra

Quercus spp.,  Acer rubrum,  Nyssa
sylvatica

Betula  spp., Quercus spp., Tilia
americana

Abies concolor, Abies magnijca
var. shastensis, Sequoiadendron
giganteum

Sequoiadendron giganteum, Abies
concolor, Abies magnijca var.
shastensis

Calocedrus decurrens, Abies
concolor, Quercus kelloggii

Calocedrus decurrens, Quercus
kelloggii, Pinus  ponderosa

Otoba parvifolia;-Quararibea  witti

manuscript) is examining nonlinear fecundity models
for one of our data sets. In most cases, Eq. 10 fits the
data better than do more complex assumptions.

The model of seed rain is the sum of individual seed
shadows in Eq. 2. Using functional forms for Q (Eq.
10) andflr)  (Eq. 8), we write the summed model as

(11)

where 3(b, rj;  ‘pZ) is the seed density predicted at seed
trap j, based on an m-length vector of tree basal areas
b, an m X n matrix of distances r, and a vector of z
fitted parameters, which, for the 2Dt model in Eq. 8,
is qr  = [p, u, p]. We find parameter values that fit the
“sum” in Fig. 2, which, by implication, allows us to
draw the “individual seed shadows” that together de-
fine that sums..

Likelihood: data and distribution of error
Assuming a model, the likelihood of obtaining a data

set is the joint likelihood (i.e., product) of observing
each datum. Our data consist of mapped tree plots with
seed traps in three forests (Table 1). Stand composition,
dispersal biology, and data sets are described elsewhere
(Clark et al. 19986; M. Silman and J. Clark, unpub-

TABLE 2. Summary of data sets analyzed in this study.

lished manuscript; R. Kern et al., unpublished manu-
script). In brief, mapped stands include the location
(coordinates), diameter at breast height, and species of
each tree. The finite areas of our maps (Table 2) can
affect parameter estimates for the best dispersed spe-
cies (Betulu,  Liriodendron) only on our smallest plots,
those from the southern Appalachians (Clark et al.
1998b). Seeds were identified to the lowest possible
taxonomic unit and were expressed as density per year.
Each datum is the seed accumulation in one seed trap,
averaged over the duration of the study (Table 2).

Seed traps do not receive precisely the number of
seeds predicted by Eq. 11, but rather some stochastic
realization of it. The error distribution describes the
scatter of seed densit ies about the mean value predicted
by the seed shadow. Clark et al. (19986) used a negative
binomial, because seed rain was found to be more
clumped than a Poisson distribution. The negative bi-
nomial permits this clumping at the cost of an extra
fitted parameter. Because our mixture kernel introduces
a random variable (IX)  that tends to accommodate ad-
ditional variability, our attempts to fit the 2Dt kernel
with negative binomial error resulted in unstable pa-
rameter estimates. We therefore use the Poisson like-
lihood:

.

Area of each stand No. seed traps Area per seed trap
, - ’  Forest type No. stands (q) (ha) per stand Cm*) Duration (yr)

Temperate deciduous 5 0.36 20 0.18
Temperate mixed-conifer 4 1.0-2.5 0.25 i 354t
Tropic floodplain 1 2.25 :z 0.50 2

t Durations of seed collections were four years in stand 1 and three years in all  others. , ,z
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j-l S,!

where S is an n-length vector of observed seed densities
(seed trap counts), and sj is the observed density of
seed in trap j. Although we do not observe the travel
from trees to seed traps, the likelihood (Eq. 12) pro-
vides a means for “inverting” the problem and, thus,
estimating parameters.

Parameter estimation for the alternative dispersal
models (Eqs. 5a, b, 8) follows Clark et al. (19986). We
outline the approach for the 2Dt kernel, because similar
methodology applies to the exponential (5a) and Gauss-
ian (5b) models. Maximum likelihood (ML) estimates
for the parameter vector cp  = [a,  8, p] maximize the
likelihood of observing data set S (Eq. 12),  given the
model represented by Eq. 11. In numerically minimiz-
ing Eq. 12, we constrained our search for p estimates
on the interval (l/2,  lo), because a tendency for cor-
relation between parameters p and ‘u  in bootstrapped
estimates outside this range became severe. In most
cases, fitted p values tended to low values (l/2), in-
dicating a fat-tailed kernel. Less frequently, p tended
to high values, or a Gaussian kernel. We determined
95% confidence intervals on parameters, and we prop-
agated error through the seed shadow s(r)  and the den-
sity of OL values, Jo). We bootstrapped 500 estimates
on resamples (with replacement) from seed traps, and
we constructed corresponding s(r)  and fro) functions
for each resample. Our method is Efron and Tibshir-
ani’s (1993) “nonparametric” bootstrap; we sample di-
rectly from the data rather than from a parametric dis-
tribution. Confidence intervals are 95% quantiles of
each parameter and at l-m intervals forflr)  and j(o).
Clark et al. (1998b) found that bias-corrected and ac-
celerated confidence intervals (Efron and Tishirani
1993) did not differ substantially from simple boot-
strapped quantiles, so we report quantiles here. Con-
fidence intervals about the functions s(r) andflol)  prop-
agate parameter error and correlation through to the
confidence in the seed shadow and in the density of
dispersal variables.

We estimated $rameters  for one to several stands
for data sets having more than one stand (temperate
deciduous and temperate mixed-conifer). Some species
were too rare to obtain fits in all stands. In a few cases,
trees were so abundant that seed rain was too uniform
across plots to permit parameter estimates. Thus, each
fit is obtained on q 5 5 (temperate deciduous) or q 5
4 (temperate mixed-conifer) stands, with the likelihood

us,  I Q)  = qaq L(S,  1 Q). (13)

L(S,I  cp)  is the likelihood of the data observed in the
kth stand (Eq. 12). The vector of fitted parameters cp
depends on q and on one of several hypotheses that we
tested from our data. We report a weighted rZ  as a
goodness-of-fit index, where weights are variance es-

timates taken as the predicted mean for this Poisson
model.

Which model is best?

Hypothesis tests were used to assess parameter con-
sistency and to guide model selection. Data were used
to arbitrate among three competing models (Gaussian,
exponential, and 2Dt) on the basis of likelihoods. The
Gaussian model (parameter vector cp  = [p, IX])  is nested
within the 2Dt model, being obtained in the limit as p
becomes large. Although nested, the classical likeli-
hood ratio test with 1 df is not quite correct. Because
the Gaussian ,obtains  at the boundary p + 03,  the like-
lihood ratio is a mixture of x2 distributions having 0
and 1 df, each with probability l/2, the former being
a delta function centered on zero (Chernoff 1954).
Probabilities for our comparisons of Gaussian vs. 2Dt
use this mixed distribution.

The exponential model (parameter vector Q = [8, 011)
differs from the Gaussian only in the value of the ex-
ponent (c in Eq. 4), so the best fitting model is that
having the lowest -1n L. For comparing the “gener-
alized exponential” and 2Dt models, we treated pa-
rameter c in Eq. 4 as a fitted parameter to give param-
eter vector Q = [p, o, c]. These two models are not
nested, but they contain the same number of parameters
(3); the best fitting model is simply the one with the
lowest -In L. Our parameter search for c was bounded
on (1,4),  because parameter correlations became severe
for c < 1, and likelihoods were insensitive to values
of c > 4.

Hypothesis tests for goodness-of-fit

Hypothesis testing for the 2Dt kernel follows Clark
et al. (1998b). Provided that parameters (and the seed
shadows they represent) are consistent from stand to
stand, the most general parameter estimates come when
fitted simultaneously to all stands having sufficient
trees and seeds of a species. Three parameters represent
the fits obtained when all possible information is in-
cluded:

P3 = us  4  PI. (14)

The null model is simply the Poisson, where each seed
trap receives the mean density. The deviance

(15)

is distributed as x2 with 2 degrees of freedom, three
parameters for the fitted model minus one (the mean)
for the null Poisson.

Although Eq. 14 includes the maximum information
on the seed shadow for a species, we tested whether
dispersal differs among plots by comparing this “glob-
al” seed shadow with the likelihood of the data under
the hypothesis of q different seed shadows (i.e., a seed
shadow differs from plot to plot) with parameter vector
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P%+I = [P,,  . * * , Pqr  Ulr . . . 9 ug, PI. (16)

The hypothesis of q different seed shadows is tested
using the likelihood ratio test, where the deviance

TABLE 3. Goodness-of-fit for competing dispersal kernels.
Likelihoods for best fitting models are in boldface. Prob-
abilities for 2Dt (in parentheses) are for likelihood ratio
tests against the Gaussian model.

is asymptotically distributed as x2 with 2(q - 1) de-
grees of freedom (difference in the number of param-
eters for Eqs. 14 and 16). Cl&k et al. (19986) present
tests for fecundity differences among plots. For species
having significant differences in seed shadows among
stands (deviance 17), we fitted an additional model to
,determine whether dispersal was consistent among
plots. The parameter vector for stand-specific fecundity
fits is

Pp+*  = h * * * 9  pqr  w  PI. (18)

We tested for dispersal differences with the deviance

D,-, = -2 ln ;:ss’/F;i 1 (19)
4 q+*

for parameter vectors given by Eqs. 16 and 18 with q
- 1 degrees of freedom. Dispersal distance is judged
“inconsistent” among stands if plot-specific dispersal
parameters (Eq. 16) substantially improve the fit over
that obtained with a single, “global” dispersal param-
eter (Eq. 18). The null model for the  likelihood fitted
toEq.  18is

Dq+2  =
-2 ln L(S,  I PXq+I)I 1us, I fq9) (20)

which has q + 2 degrees of freedom, 2(q + 1) param-
eters for, the fitted model minus q means.

For some species having fecundity differences
among stands, we still report the “global” seed shadow
obtained for multiple stands. Large sample sizes could
always produce significant differences among stands,
but those differences should not obscure the search for
a general model. Although we report results for both
models, we fosus  on results of the global model.

\
RESULTS

The 2Dt model provided the best fit for most species
(Table 3). The cases in which the 2Dt did not outper-
form other models were mostly those for which con-
fident fits could not be obtained for any of the three
models. The Gaussian model provided the best fit most-
ly for animal-dispersed species (Cusfanea  dentutu,
Quercus spp., Quuraribeu witti, Supium  marmieri, and
Spondius mombin).  There were three exceptions in
which wind-dispersed species were best fit by the
Gaussian model (Tsugu  cunadensis, Abies magnificu
var. shastensis, and Pinus  ponderosu), two of which
(T. cukdensis  and P. ponderosu) did not significantly
improve on the null Poisson model and had low weight-
ed r* values (Table 4). The sole case in which a pla-
tykurtic model provided the best fit was for an animal-

-In L

Species 2Dt
Exponential

Gaussian family?
a) Temperate deciduous, wind-dispersed
Acer  rubrum 1059 1089

(<O.OOl)
Bet&a lenta 8155 8297

(CO.001)
Fraxinus americana 10s 227

(0.0039)
Liriodendron tulipi- 2250 4701

fera (<O.OOl)
Pinus  rigida 92.1 99.4

(0.00 1)
Tilia americana 765 890

(<O.OOl)
Tsuga canadensis 99.6 99.8

(0.297)

b) Temperate deciduous, animal-dispersed
Castanea dentata 15.9
Carya spp . 196

(<O.OOl)
Comus jlorida 122

(<O.OOl)
Nyssa sylvatica 493

(<O.OOl)
Quercus spp . 880

c) Temperate mixed-conifer
Abies concolor 983

(0.028)
Abies magnijca var. 557

shastensis
Pinus  lambertiana 31.1

(0.044)
Pinus  ponderosa 22.6
Sequoiadendron 109

giganteum (CO.001)

d) Tropical floodplain
Calycophyllum 281

spruceanum (<O.OOl)
Hyeronima laxijora 111

(<O.OOl)
Iriartea deltoidea 91.8
Quararibea witti 16.8

(0.12)
Sapium marmieri 80.8
Spondias mombin 3.42
Virola sebijera 18.0

(0.0089)
Number of wins* 14

15.9 17.8
260 2 1 5

180 138

745 580

880 933

985 997

557 571

32.5 31.7

22.6 22.5
139 119

322

129

91.8 88.7t
17.5 17.0

80.8 80.8t
3.42 3.07

20.8 19.0

8

1045

8196

10s

2250

95.9

824

99.6

295

121

4s
t The “exponential family” has c = 1 in all cases except

Iriartea deltoidea and Sapium marmieri, where c > 4 con-
stituted the best fit.

$ The total number of cases in which a model represented
the best fit.

8 Three wins with c = 1 and one win with c > 2.
$5
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TABLE 4. Parameter estimates for 2Dt model. For cases in which a single fecundity parameter fi did not provide a fit, the
seed shadow was fitted with a separate p  for each stand.

Species and
stand numbers

Parameter t  SE Ho: H,:
Fecundity p Poisson dispersal

(no. seeds/cm* Dispersal u
(dimenzonless)  57

Kurto- seed consis- Weight-
basal area) WI sis rain8 tent8 ed rz

a) Temperate deciduous, wind-dispersed
Acer rubrum  (1,  2, 3, 84.1 t  19.9

4, 5)
Betula lenta  (1, 2, 3, 4) 1084 i’318
Fraxinus americana 5 8.32 If: 4.51
Liriodendron tulipifera 73.0 t  13.5

(1,  2, 3, 4)
Pinus  rigida  1 2.19 c 5.94
Tilia americana (2, 5) 17.3 f 4.87
Tsuga  canadensis (I, 27.8 + 18.6

2, 4)

b) Temperate deciduous, animal-dispersed
Castanea dentata

1 5.63 ” 65.9
4 0.209 2 22.42

Carya glabra (1, 2, 3, 1.38 + 0.231
4, 5)

Cornus  florida
1 13.1 k 6.36
2 2.35 2 3.11
3 1.40 t 21.8
4 0.798 2 2.29

Nyssa sylvatica (1 , 2 , 9.82 t 2.50
3, 4)

Quercus
1 2 .24 t 0.369
2 1.30 ” 0.417
3 0.526 + 0.107
5 6.08 t 2.46

c) Temperate mixed-conifer
Abies concoEor  (1,2,3,4)
Abies magnifica  var.

shastensis (3, 4)
Pinus  lambertiana (3, 4)
Pinus  ponderosa 2
Sequoiadendron

giganteum (3, 4)

d) Tropical floodplain
Calycophyllum

spruceanum
Hyeronima laxi’ora
Iriartea deltoidea ---.,
Quararibea witti
Sapium marmieri
Spondias mombin
Virola sebifera

3.20 2 0.236 552 + 335
7.24 -c 0.704 7511 k 2372t

0.342 ” 0.110 175 2 346
0.145 c 0.0544 2645 ‘- 3528
0.632 2 0.0508 109 + 16.1

17.9 + 79.5

142! 102
0:24 It  O.i85
2.17 2 1.10

0.0438 + 0.127
1.17 2 21.0

602 -c  400t

777 t  734t
217 rt  627t
302 2 165t

18.6 -c  332
10.4 t  102t
1839 2 1980t

141 + 55.2

8.82 2 60.8

>lO

<OS

4.48 2 76.0 0.61 2 0.224

1.91 2 148

1893 2 751

195 ” 758 2.94 2 3.31

17.4 2 1401t 0.816 + 2.80
5378 2 2662 >I0
7.82 2 1100 co.5
6104 t 3373 >lO

996 2 246 >lO
163 2 366 1.82 + 4.01

co.5

co.5
co.5
co.5

CO.5
CO.5
co.5

CO.5

>I0

6.57 2 3.03
>lO

co.5
>lO
co.5

24.5 CQ

27.9 m
14.7 m
17.4 m

4.31 m
3.22 00
42.9 02

3.66 2

2.97 m

2.00 m

1.38 m

13.4 2

8.83 2.44
26.7 2

13.2 m
15.9 2
10.4 m

7.52 00

2.24 03
22.6 2
2.80 m ’
24.1 2
9.74 2
8.38 TV

0

:
0

:
0 . 9 0

0

0

0

0

0

0.00016
0.11

0

0

0

0.00ol7
0

0.012

0

0

0

0
0

0

0

0

0

0

8

0.017

0.035

0.86

0.95
0.37
0.98

0.74
0.56
0.41

0.95

0.82

0.63

0.92

0.63

0.92
0.48

0.84
0.22
0.98

0.97

0.83
0.27
0.28
0.42
0.97

0 0.91

t Fits for which correlation between parameters S and u exceeds 10.51.
$ P values for the null hypothesis that dispersal is independent of trees, using deviances in Eqs. 15 or 20, depending on

numbers of plots.
0 P values for the hypothesis that dispersal parameters u differ among plots, tested with the deviance given by Eq. 19.
Il,Model  instability for the sparse data precluded estimation of a fecundity parameter for Hyeronima ZaxiJlora.

dispersed species (Zriartea  deltoidea, c > 4), and the Good fits for the 2Dt model result from its potential
fit was marginal (weighted r2 = 0.158). The exponen- to admit large kurtosis. The few cases in which the
tial model  was the best fitting model in only one case Gaussian model provided the best fit were those for
(Acer rulirum),  and it provided as good a fit as the 2Dt which the shape parameter p tended to high (>  10) val-
model for two other wind-dispersed species (Fraxinus ues (Table 4), simply indicating the Gaussian limit of
americana and’ Lir iodendron tul ip i fera) . the 2Dt model as p becomes large. Thei2Dt  model
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a) Sequoiadendron giganteum seed shadow b) Density of c1  values (2Dt)

A

1 G a u s s i a n / l  OAM1

6 0 3 0 0 3 0 6 0 0 5 0 1 0 0

Distance (m)

FIG. 3. Demonstration of how the 2Dt model better describes seed rain data than does the Gaussian model for most of
the species that we analyzed. (a) The predicted seed shadows include the 2Dt model with dashed 95% confidence intervals
and the more platykurtic Gaussian fit. Insets demonstrate the observed and predicted values with the dashed line of agreement.
The likelihood ratio test for this comparison is included in Table 3. (b) The density of CL values (dispersal parameters) for
the seed shadow in (a) compared with the maximum likelihood (ML) estimate for the Gaussian model (aryow).

provided a better fit than the Gaussian in most cases, great as those of the more fecund, wind-dispersed spe-
cies (Fig. 5).because the convexity near the source captures the high

seed densities directly beneath canopies, whereas the
fat tail describes more distant travel. Sequoiadendron
giganreum  is a typical example (Fig. 3a, b). Like the
2Dt, the Gaussian model is convex at the source, but
‘it “splits the difference” between local and long-dis-
tance  dispersal, causing it to underestimate the source
and overestimate intermediate distances (Fig. 3a, in-
sets). The Sequoiadendron kernel implies a broad range
of OL values (Fig. 3b).

Fecundity variability among stands for the 2Dt mod-
el was similar to that obtained by Clark et al. (1998b)
for a Gaussian model, but dispersal variability among
stands for the 2Dt was consistently high. Species hav-
ing significant fecundity differences among stands
(Castanea,  Co?&, and Quercus) are dispersed by an-
imals. Unlike the Gaussian model, which rarely ob-
tained better fits for stand-specific (Y  estimates (Clark
et al. 1998b), only one species (Sequoiadendron) was

’ best described by a stand-specific estimate of u.
The correlation among species in fecundity and dis-

persal for temperate species (Clark et al. 19986) ap-
plies, to a lesser degree, across the three forest types
examined here (Fig. 4). Animal-dispersed species
(“temperate, animal” and most “tropical floodplain”
in Fig. 4) tended to have lower fecundity estimates and
lower modal dispersal than did wind-dispersed decid-
uous species.’ Mixed conifers had lower fecundities
than di& their wind-dispersed, deciduous counterparts
(Table 4). Although they generally had low fecundities,
the restricted dispersal of animal-dispersed species
meant that their seed densities near adult trees were as

Fig. 5 illustrates the fat tails that best describe seed
shadows for most species. Although convex near the
source, most kernels flatten with distance, approaching
zero more slowly than exponential (Fig. 1). Kurtosis

A Tropical floodplain ,, .?
0 Mixed conifer

0 Tempera te ,  w ind  ’

H  Temperate, animal

-m
1 I I111111,  4 , 111111,  I 1111111,  I I1U8188,  I I111111,  I I “mq
0.01 0.1 1 10 100 1000 10000

Fecundity p  (no. seedsvm-*  basal area- yr-‘)

FIG. 4. Fecundity parameter estimates (with 95% confi-
dence intervals) and modal dispersal parameters from the 2Dt
model. Note the log scales.

i
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FIG. 5. Maximum-likelihood seed-shadow
estimates. Confidence intervals are omitted for
clarity. Dashed lines indicate conifers. Note the
y-axis log scale.

Wind-dispersed
a )  T e m p e r a t e  d e c i d u o u s

z 1 0 0 0
0

c )  T e m p e r a t e  m i x e d - c o n i f e r

E
s

1 0 0

estimates for these fitted seed shadows are not finite
(Table 4). Densities of the dispersal parameterffoc)  are
likewise fat tailed (Fig. 6). Wind-dispersed types have
broad densities of OL ranging from 5 to 100 m, whereas
animal-dispersed types have values concentrated at
<lo m (Fig. 6, insets).

The flexibility of the 2Dt kernel, which allows for
superior fits in Table 3, is cause for instability when
data are sparse. Although Hyeronima loxifrora  was best
fitted by the 2Dt (Table 3), the model was unable to
resolve parameterestimates. Large accumulation near
a single adult tree appears as an outlier (insets in Fig.
7a). The “inflexibility” of the Gaussian model allowed
us to obtain stable parameter estimates for these data
(M. Silman and J. Clark, unpublished manuscript). The
2Dt,  however, finds a continuous range of parameters
to fit the scatter of data by trading off fecundity and
dispersal parameters. Negative correlation between p
and OL is responsible for wide confidence intervals on
the seed shadow (Fig. 7a) and for bimodal confidence
intervals onfla)  (Fig. 7b).

The 2Dt is unstable at extreme values of p.  Although
stabilized by our truncated search interval of l/2 I p
5 10, there was greater parameter correlation in this
model (Table 4) than for the Gaussian (Clark et al.
1998b: Table 3). Parameter p is especially susceptible,
because p can have a small effect on the likelihood,

60 60

1485

Animal-dispersed
.b)  T e m p e r a t e  d e c i d u o u s

Distance (m)

and it can be offset by trade-offs with u. This tendency
is reduced by adequate distribution of data and by suf-
ficiently long-term data sets to average over noise. Pa-
rameter correlation in the 2Dt model is greatest for
wind-dispersed taxa  (Table 4). Despite the tendency for
instability, parameter error does not translate into wide
confidence intervals on seed shadows and densities of
a (Fig. 6), due, in part, to correlations.

DISCUSSION

The inverse approach allows us to compete alter-
native views within a closed canopy, where we cannot
directly observe dispersal (Fig. 2). The method allows
“direct” comparisons. Rather than selecting models
based on how much better each does in comparison
with a null model known to be wrong, our likelihoods
for each model permit direct comparison.

Model competition arbitrated by three data sets sug-
gests a kernel that accommodates a range (mixture) of
processes that result in convexity near the source and
a fat tail (Figs. lb, 5). When given the choice between
models that assume the “right” shape at local scales
vs. long distances, the data choose the model that gets
both (2Dt)  for 14 of 26 species (Table 3). Competing
models did better than the 2Dt in cases in which no
model provided confident fits (Tsuga, Pinusponderosa,
and Spondias mombin  in Table 4). The, exceptions,

i
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I^\
: :
I I

Nyssa sylva  tica  1

500
1

I \ 0
Betula  lenta I \

Liriodendron tulipifera
Carya  glabra

60 40 20 0 20 40 60 20 0 20

Distance (m)

FIG. 6. Example of seed shadows and a densities (insets) with bootstrapped 95% confidence intervals. Animal-dispersed
species (right side) contrast with wind-dispersed species (left side) in having seed densities (and a parameter values) clustered
near sources.

where fits wer best for the Gaussian c3r a more pla-
\tykurtic distributi n (parameter c > 2 in Eq. 3),  oc-

curred mostly where seed densities were low (animal-
dispersed types) and data were of limited extent (two
or four years for temperate mixed-conifer and tropical
floodplain).

The tail is hard to estimate (Portnoy and Willson
1993, Clark et al. 19986, Turchin 1998). Extrapolating
a tail beyond the data is speculative; to do so from our
results would be inappropriate. Plots range from 60 to
150 m on a side, so our data include seeds traveling
well beyond direct crown influence. Although the fit is
most influenced by the high densities near the source,
the 2Dt model has the flexibility to fit these local den-
sities, while simultaneously responding to low densi-
ties at distance. Inflexible models (e.g., Gaussian) have
a tail shape that is controlled by the preponderance of
seed at short distances. Our model comparisons indi-

cate that a flexible kernel can be sensitive to tail shape,
and that a fat tail fits the data better than does the
alternative.

Data likewise preferred convexity at the source over
the concave exponential model. Although concave seed
shadows (exponential ,and power functions) are widely
used, we found only one case in which an exponential
model provided the best fit (Table 3). Concave models
are reasonable at distances beyond the immediate in-
fluence of the crown, but they performed worse than
the 2Dt model over the scales included here.

In summary, the 2Dt provides a better description of
data than do previous models. This flexibility is ob-
tained with few parameters. Our results suggest that,
in most cases, the parameter p might be fixed at a low
value (e.g., 1 or l/2), because it lends stab<lity to the
likelihood (Eq. 12). With p fixed and only two fitted
parameters, the 2Dt kernel is no more complex than

9
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a) Hyeronima laxiflora seed shadow

Observed

1487

0 , I ,
60 30 0 30 60 0 50 1 0 0

Distance (m)

FIG. 7. A fit demonstrating the tendency for model instability when data are sparse; a single seed trap accumulated large
densities (insets). Confidence intervals near the source range over several orders of magnitude due to negative parameter
correlation (a), and there is tendency for bimodality in the o parameter (b).

Gaussian or exponential models, This advantage of
simplicity is no reason to avoid more complex models.
Indeed, if and when large data sets come available, it
would be valuable to test mechanistic models with
more parameters. Because minimal models are a goal
of community and global ecology, however, simplicity
has advantages.

Dispersal in temperate vs. tropical forests
Our three data sets form continua in diversity and

in the importances of animal dispersal and l&as.  Our
mixed-conifer forest, with low diversity, few lianas,
and a preponderance of wind dispersal, contrasts with
the tropical floodplain, where diversity is high, lianas
are abundant, and dispersal is mostly by vertebrates.
The southern Appalachian forest is intermediate in both
respects.

Differenceslamong  biomes in tree diversity are re-
flected in seed diversity (Fig. 8a). High diversity in the
tropics means that any given species is rare. Mapped
plots contain fe>er  individuals of a species, so seed
traps represent less of the variability than they do in
our temperate forests. Most tree taxa are represented
by only one or two individuals per hectare, and most
seed taxa are present in a single trap. Frequency of
seed vs. rank abundance shows strong differences
among biomes (Fig. 8).

Diversity affects the sampling effort needed to es-
timate dispersal. In the tropics, dispersal could not be
estimated for host  taxa, because they were represented
by one seed. Seed richness (number of species per plot),
including unknown morphotypes, was 284 species on
this 2.25 ha plot. Of 72 tree species having at least one
individual >lO cm dbh, we obtained dispersal esti-
mates for seven species. By contrast, we obtained dis-
persal estimates for most species in mixed-conifer and

southern Appalachians. forests. We obtained few dis-
persal estimates for any taxa  having frequencies of < 10
traps (Fig. 8b-d):

Dispersal modes affect estimation. Seed traps are
most conducive to estimating wind (passive) dispersal.
Primary and secondary dispersal by vertebrates is spo-
radic, clumped, and, thus, unpredictable. Especially in
the tropics, animals (e.g., bats) consume fruits at roosts
that can be distant from the parent tree. Secondary
dispersal by scatterhoarding mammals is not described
by seed traps. The effect of vertebrate dispersal is ev-
ident in Fig. 8b, where most seed taxa  at frequencies
of ~20 seed traps are animal dispersed, and the ma-
jority originate from outside the 2.25-ha  plot. Seeds
from species that do not grow on the plot are rare for
the other two data sets (Fig. 8c, d).  The many lianas
in our tropical site are difficult to estimate, because the
seeds do not originate from a coherent canopy.

Learning from experience: Bayesian analysis
Dispersal characterization for many species will be

limited, for the near future, by data availability. Seed
rain is sporadic. Our best fits come from the study area
having six years of data from 100 seed traps (temperate
deciduous, Table 4). Such data sets are few. Fits for
our two other sites would improve with greater duration
of sampling, because interannual variability is high
(Ruth and Berntsen 1955, Curtis and Foiles 1961, Clark
et al., 1999). Correlations between dispersal and seed
fall velocity, and between dispersal and fecundity
(Clark et al. 19986; Fig. 4 in this study) provide insights
that can be broadly applied. Each new analysis might
build on previous results toward development of gen-
eral models.

Bayesian analysis can be used to develop dispersal
kernels, demonstrated here with an exampIe. The re-

1
i
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200 1.. a) All communities
--. tropical floodplain

0 10 20 30 40 50 60 70 80 9 0 100 110 120 130 1 4 0 1 5 0

b) Tropical floodplain
0 wind-dispersed taxa
X animal-dispersed taxa l

l significant fit :

0 10 2 0 3 0 4 0 5 0 60 7 0 8 0 9 0 100 110 120 130 140 150
R a n k  a b u n d a n c e

c) Temperate d) Temperate
mixed-conifer

FIG. 8. Frequency of seeds in seed traps plotted against rank abundance for the three data sets. Panel (a) shows all stands
and all sites. Panels (b-d) show rank abundances with dispersal vectors, showing seed types for which no trees occurred on
the plots, and types having significant fits to one or more dispersal models (indicated by asterisks). For the tropical floodplain
(b), most rare taxa  come from outside the plot. The temperate forest (c) supports a mixture of animal- and wind-dispersed
types. The mixed-conifer forest (d) includes almost exclusively wind-dispersed types. Note the y-axis log scale.

lationship between fall velocities and OL estimates
(Greene and Johnson 1989, Okubo and Levin 1989,
.Andersen 1991, Clark et al. 1998b)  suggests that seed
type provides initi,al information on the dispersal pa-
rameter. Therefore, we might exploit confident fits for
Pinus  tigida that result from six years of data in the
southern Appalachians as a prior for estimating P. lam-
bertiana and P. ponderosa. One could argue that this
prior is biased, because P. rigida  seeds are smaller (an
upward bias in ar),  or are released from lower heights
(a downward bias in 0~) than are P. lambertiana and P.
ponderosa seeds. We do not defend this particular
choice for the prior, as our concern here is simply to
demonstrate the approach. (Gelman et al. [ 19951  review
methods for checking the fit with data sets simulated
from the posterior density.) The normalized likelihood

where S is the new data set, andfla)  is a prior density
of a (here, based on P. rigida),  is rather broad for P.
lambertiana (Fig. 9a) and quite broad for P. ponderosa
(Fig. 9b). The breadths of these likelihoods do not re-
flect impossibly great dispersal. Rather, the noise in the
data tends to result in relatively flat likelihood surfaces.
P. ponderosa densities in clearcuts suggest dispersal
more restricted than that in Fig. 9b (Barrett 1966). By
contrast, the density for P. rigida  (used here as the
prior) is concentrated at short distances. The posterior
densities obtained from this Bayesian approach,

JpaIS) =f(a) X NL

probably represent more realistic descriptions for P.
lambertiana and P. ponderosa. For example, 95% of
the density for P. lambertiana decreases from (6.1,
76.9) (normalized likelihood) to (4.6; 31.4) (posterior
density of a).

Moreover, the functional forms used here are es-
pecially attractive for fitting the exponentiai family. For

3
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a) Pinus  lambertiana
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FIG. 9. Bayesian analysis of dispersal parameters using
estimates from Pinus rigida as a prior for P. lambertiana and
P. ponderosa.

direct estimation (i.e., seed release data), the density
for OL that derives from our assumptions (Eq. 9) is a
conjugate prior for the exponential family of kernels
(Eq. 4), thus providing an analytically tractable esti-
mation procedure (Appendix B).

Implications of the 2Dt kernel for
recruitment limitation

Theory and models suggest that diversity in plant
communities depends on the fraction of seed dispersed
beyond the influence of the parent plant (Janzen 1970,
Shmida and Ellner 1984, Clark and Ji 1995, Pacala et
al. 1997). The role of dispersal in many such models
can be traced to how it affects the balance between
intra- and interspecific competition. Seed remaining
close to the adultincreases  intraspecific competition,
both directly (inhibition by the parent ‘and sib com-
petition) and indirectly (frequency- or density-depen-
dent predation and pathogens). Distant dispersal con-
tributes more to interspecific competition. Coexistence
is promoted when restricted dispersal limits interspe-
cific competition below that which prevails in a “well-
mixed” community.

Although fitted to the same data sets, the 2Dt model
predicts a different balance between local and nonlocal
dispersal than do the Gaussian (Clark et al. 1998a) or
more platykurtic (Ribbens et al. 1994) kernels (Fig. 9).
The fraction of seed dispersed beyond radius R is given
by j; &,,.&r,  0) d0 dr. For the 2Dt kernel, that fraction is

In the limit as p becomes large, this tends to the Gauss-
ian result:

R2
exp - -i 01 .

a

Fig. 10 demonstrates substantial differences between
the predictions of these two models for our parameters.
For the same data sets, the Gaussian kernel substan-
tially overestimates the fraction dispersed beyond the
influence of 5 m radius crowns. The bias is severe for
poorly dispersed types and negligible for well-dis-
persed types (Fig. lob). The Gaussian kernel under-
estimates the fraction dispersed outside the patch sizes
typically employed in gap models (Fig. 10~).  Depend-
ing on the spatial scale, inaccurate kernel shapes will
bias the balance between intra- and interspecific com-
petition.

Implications for population spread
The shape of the tail controls population spread. A

shift in migration potential from diffusion to acceler-
ating spread occurs as the tail fattens beyond the ex-
ponential bound (Fig. 1; see Mollison 1972, Kot et al.
1996). The Gaussian model approaches zero rapidly
with distance, making migration a coherent, stepwise
process, paced by the dispersal parameter OL and the
rate of population increase. This coherent spread breaks
down for fat-tailed dispersal kernels, producing a noisy,
irregular, and accelerating spread (Lewis 1997, Clark
et al. 1998a). Clark et al. (1998a)  suggested that fat-
tailed dispersal kernels might explain the high rates of
spread of tree populations at the end of the Pleistocene
(>103  m/yr),  an explanation consistent with specula-
tions of previous authors (Davis 1987). Such rates are
consistent with observed dispersal (Clark 1998). Our
finding here that fat-tailed kernels actually provide the
best description’of dispersal in forest stands bolsters
the interpretation that population spread could be rapid
in response to climate changes in the past and future.
The shapes of these kernels suggest that predicting re-
sponses to future climate change (e.g., Leishman et al.
1992, Pitelka et al. 1997, Clark et al. 1998a) will de-
pend on understanding the processes that govern the
tail of the dispersal kernels, i.e., the tails of the OL dis-
tributions in Fig. 6.

C ONCLUSIONS

Finding a kernel that predicts more realistic patterns
and that fits the data better than do classical models
does not mean that we have fully acquired the tools
needed for analysis of dispersal at all scales. Our results
describe dispersal at local and “intermediate’* spatial
scales. We state parameter confidence, and we translate
that degree of confidence to the seed shadows them-
selves. That description helps us to interpret how seed
shadows influence community dynamics (Fig. 8), in-
cluding recruitment limitation (Ribbens et al. 1994,
Clark et al. 19986),  and the qualitative patterns of pop-
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ulation spread that might be expected with climate
change (Clark et al. 1998~).  Our results do not fully
resolve the need for dispersal data at regional scales,
because we cannot safely extrapolate a kernel para-
meterized at the 10*-m  scale to whole regions. For
many problems, however, including population spread,
such extrapolation is not as critical at it might first
appear. Clark (1998) found that the fat-tail kernels can
cause accelerating spread to rates exceeding lo*  m/yr,
even when the_Femel is truncated at 10” m. Although
this distance exseeds the sizes of mapped plots used
to parameterize our kernels, it demonstrates that “in-
finite tails” are not required for rapid spread. Seed
dispersal up to 10 km is plausible for many species
during severe storms and when transported by frugiv-
orous birds and bats,  corvids that  cache fagaceous nuts,
and large vertebrates, such as bears, elephants. rhinos,
foxes, and primates.

Just as important as the specific results relating to a
new model is the methodology for competing alter-
native models, as new data sets and mechanistic inter-
pretations become available. Our inverse approach is
not bound to the particular models that we analyzed
here, or’to a particular scale. Spatial relationships be-
tween offspring and parents can be used to translate
the composite pattern of seed rain to the forest floor
into seed shadows for individual plants (Fig. 2) and

018 110
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:e.
F IG.  10. Predicted fraction of seed dispersed

beyond radii of 5 m (a, b) and 30 m (c) for
Gaussian and 2Dt models with parameter p =
0.5. (a) Both models predict an increasing frac-
tion of seed beyond the 5-m radius with in-
creasing dispersal parameter (u or a). Symbols
represent actual fits for the two models. Solid
symbols are the 2Dt  model. Triangles represent
animal-dispersed seed, and circles represent
wind-dispersed seed. The Gaussian model ov-
erpredicts the fraction of seed traveling beyond
5 m (b) but underestimates the fraction traveling
beyond 30 m (c).

*
”

--:
_.._ “Y”.

distributions of dispersal parameters (Fig. 7). Such re-
lationships can be parameterized at much broader
scales than attempted here, including .ones  of relevance
for analysis of migration and forest recovery from frag-
mentation.
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APPENDIX A
MOMENTS AND INDICES DERIVED FROM THEM

To compare dispersal kernels, we require an index that
quantifies shape. Although the term “kurtosis” evokes this
notion of shape, there is no standard index that enjoys general
acceptance. In this Appendix, we summarize the concept and
propose a simple measure for the case at hand, i.e., a bivariate
dispersal kernel with rotational symmetry.

Kurtosis “can be vaguely defined as the location and scale-
free movement of probability mass from the shoulders of a
distribution to its center and tails” (Balanda and MacGillivray
1988: ill), and can be formalized in many ways (see also

M.osteller  and Tukey 1977). One class of measures is .based
on moments. Moments are expected values of powers of a
variable, which, in some sense, summarize distribution shape.
The mean, variance, skewness, and kurtosis involve the first
through fourth moments, respectively. The fourth central mo-
ment standardized for variance is the most common kurtosis
measure for univariate distributions, but it has an unclear
relationship to shape, and a given value can correspond to
more than one distribution. Moreover, the method used to
quantify a shift of mass from the shoulders to peak and tails
(scaling) affects the value. (The squared variance is the scal-
ing option often used for moment-based measures.) The prob-
lems are more complex for bivariate distributions, which in-
volve product moments. Despite absence of convention, there
is general agreement that kurtosis measures should be inde-
pendent of scale and location. Beyond these criteria, the index
needs to convey useful information regarding shape.

Here, we describe our moment-based index that is simple
and appropriate for this application (bivariate, rotationally
symmetric distributions in polar coordinates), that is scale
and location-invariant, and that allows comparisons with stan-
dard distributions (e.g., Gaussian, exponential). Our moment-
based method begins with one for bivariat,e  distributions
(Mardia 1970) included in a standard reference (Stuart and
Ord 1994),  but follows with an argument for simplification.
We solve for Mardia’s bivariate moments and then demon-
strate that the useful information for symmetric distributions
is fully summarized by the simpler (marginal) moments about
distance 

Shape measures for  bivariate  kernels
Mardia (1970) suggests a measure of kurtosis for the bi-

variate case:

k=!k?!?+ti+?k
IGO Pf P2olh2’

(A.11

where CL,,,”  is mth and nth central moment over two random
variables. This formula is typically applied (see examples in
Mardia 1970 and Stuart and Ord 1994) to distributions defined
on the Cartesian plane for random variables (x, y).  For the
2Dt case, we substitute ra = x2 + y*  in Eq. 8 and take moment
integrals to obtain the following complex expression:

x’“y”  dy  dr
[u + x*  + yqp+’

u(m+nv*r(y+(qr(p  - y)* (A 2) . .
=

nr(  P) . 1
_.,

The resulting kurtosis from the three terms of A.1 is ..,.,..

k(x,  y)  =
3(p  - 1) 3(p  - 1) 2(6 - 1)-+-+-.
p - 2 p - 2 p - 2

(A.3)

For instance, a Gaussian dispersal kernal (obtained in the limit
p + “) yields a value of 8 for the Cartesian coordinates (x, y).

The bivariate moments (Eq. A.2) for the rotationally sym-
metric kernels that dispersal biologists typically consider are
unnecessarily complex and redundant. The complexity of bi-
variate moments for the Cartesian locations x and y is un-
desirable, because (1) the variable r (distance from the source)
is meaningful, whereas location (x, y) is meaningful only
indirectly; and (2) the solution for r is simple, whereas the
moments of (x, y) can be complex (e.g., Stuart and Ord 1994).
The first of these two claims is borne out by the fact that
seed dispersal is usually reported as distance from the source,
not as Cartesian coordinates. The three terms in Eq. A.3 come
from the marginal distribution of X,  from the marginal dis-
tribution of y, and from cross products, respectively. Each
describes the same influence of shape parameter p, i.e., @ -
I)/@ - 2). We can learn from any one of these terms that
kurtosis is finite so long as p > 2, and that kurtosis declines
to an asymptote as p becomes large. Thus, a measure based
on bivariate moments is unnecessarily complex.

Given that bivariate moments add redundancy, but not in-
sight, we consider marginal (univariate) moments of distance
r. A simple kuitosis measure for rotationally symmetric dis-
tributions is obtained by first integrating the non-informative
arc angle out of existence and then solving the moment in-
tegral for the marginal density 2nfin(r):

Xrmf  (r, 0) d0  dr = 27~ rm+‘f2,,(r)  d r

p+,

I II+"
p+L a-c (A.4)

I- ul
The substitution v = r2/u yields

f

I

CL,  = l&p
vm/2

o (1 + Y)p+’  dv* *

Recognizing the integral expression as a beta function,
I
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1

,!

T
B(a,  b) =

Z,,+l

0 (1 + zY+b
dz = Nmb)

r(a + b)
we obtain a simple expression for the mth moment:

Because arguments of the beta function involve integers (mo-
ments), it is convenient to recast this result in terms of gamma
functions:

CLm  =
mumT(m/2)r@  - m/2)

w-9 .
Kurtosis is the first term of Eq. A. 1:

(A.5)

0) =!?I 2(P  - 1)=-
Wt>  p;

This compares with that for the exponential family:

k(r) = wdw~)
(exponential family) r2(4h)  . (A.6b)

Both are scale and location-invariate, involving only the di-
mensionless shape parameters p and c, respectively.

One aspect of our foregoing approach deserves mention.
Because r is the distance from the mean of a rotationally
symmetric density, Eq. A.4 represents “central” moments,
in the sense that they are taken about the mean of the dispersal
kernel. They are not centered on the mean of r, because those
moments would be hard to relate to the density symmetric
about r = 0. Because moments are centered on zero, rather
than the mean of r, odd moments are not zero; r is the distance

traveled in any direction (we begin the derivation of Eq. A.3
by integrating arc angle out of existence). Although the nu-
merical values of moments of r (Eq. A.6a)  differ from those
of (x, y) (Eq. A.3),  they summarize the same quantity. For
example, the existence of moments of r implies finite mo-
ments in Cartesian space (compare Eqs. A.2 and A.5).

The marginal moments of r (Eq. A.5) and the kurtosis
measure that is based on them (Eq. A.6) capture the essential
features of kernel shape. The simplicity and insight of Eq.
A.6 recommends it as a general shape measure for rotationally
symmetric dispersal kernels.

Shape comparisons
Eqs. A.6a and A.6b  allow comparison of kernel shape for

the two densities considered here. For the 2Dt density, mo-
ments smaller than 2p  are finite, and kurtosis tends to infinity
as p decreases to 2 (Eq. Al.6a).  Kurtosis asymptotes at 2 as
p becomes large (the Gaussian limit). Potentially large kur-
tosis results from the fact that the tail can be extremely fat,
precluding convergence of moment integrals. For the expo-
nential family, kurtosis is finite, tending to large values as c
tends to zero. Values are 2 and 3.33 for Gaussian (c = 2) and
exponential (c = l), respectively. Distributions that are more
peaked and fatter tailed than exponential have kurtosis mea-
sures B3.33. This value is important in migration studies,
because it represents the point at which traveling wave so-
lutions yield to accelerating spread (Mollison 1977). Other
kernels in the exponential family used to model dispersal
include c = 3 (Ribbens et al. 1994) and c = l/2 (Kot et al.
1996, Clark 1998),  with kurtosis values from Eq. A.6b of
1.70 and 9.43, respectively.

APPENDIX B
A BAYESIAN LINKTO  DIRECT KERNEL ESTIMATION

The likelihood of observine n seeds. each of which travelsThe inverse approach is applied to spatial patterns of seed
rain having a complex, distributed source. The model devel-
oped here can also be applied to the direct approach, in which
seeds are released and settling distances r are recorded (e.g.,
Augspurger and Franson 1987, Matlack 1987). We demon-
strate the connection between variability in a and kernel
shape, as represented by our densitiesf(a)  andf(r)  a), in a
Bayesian context. To simplify our likelihood, we assume that
all released seed is recovered. This assumption allows us to
write a likelihood based directly on the density of r, as op-
posed to a binomial (with some probability of recovery) with-
in whichf(r)  is embedded.

”distance r,,  is given by

f(rl4 = fi f(r,la)

C”

= 2wa~ P(2k)  exp I
and the marginal density is

03.2)

f(r) =
f9g-(p,)

2~p~r~(uc)r(p)u9
The ZDt%iodel  involves  a  conjugate  prior

Assume that seed is dispersed according to an exponential
kernel family. The sampling distribution is given by Eq. 4.
Assuming that the variable

A=:

is gamma distributed, we use the previous approach to obtain
the prior density of a: m .

f(a) cuf;= - e x p  -2,
aq+lr(p) I I

(B:l)

where u0  is our prior estimate of u.  Integrating Eq. 4 over
variability in a gives the marginal density for this exponential
family:

x

f(r) = f(alf(rla) da =
cup

2nB(2k, p)(u  + rcY
where P = 2lc  4  p.

where U,,  = uO + XL,  r; and Pa  = 2n/c  + p. The posterior
density is also inverse x2:

CUE

f (alr) = acp.+~r(p,)exP 03.3)

which has the same form as Eq. B. 1, thus showing Eq. B.l
to be a conjugate prior for the exponential family f (r I a). The
prior estimate of us has a contribution equivalent to l/n. It is
further evident from Eq. B.3 that the posterior becomes in-
creasingly peaked with increasing sample size, and the kernel
f(r) tends to the exponential family.

Example
A simple data set demonstrates application of the direct

method. Dispersal distances of Fraxinus americana seeds
were recorded from the point of release at a height of 4 m
on a calm day. Wind speeds during the experiment ranged
from 0 to 0.7 m/s and averaged 0.2 m/s. Seeds were released
three times in groups of five to produce the vector of radii
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FIG. Bl. Dispersal kernelf and Bayesian
posterior f(a 1 r) estimates after sequential ad-
dition of 5, 10, and 15 observations from data
in the Example. Prior estimates are indicated by
black arrows for these Gaussian (top panel, a)
and exponential (bottom panel, b) kernels.

& (22, 27;35,  53, 54, 64, 67, 36, 88, 92, 8, 10, 12, 15, data are added, posterior densities become increasingly
peaked, and dispersal kernels estimated from the posterior

Two examples are shown for parameter values of c = 2 mean show modest adjustment. Continuing to add data in this
(Fig. Bla) and c = 1 (Fig. Blb), updated after collection of manner rapidly leads to focused posterior density with tight
each of three data sets. Prior estimates of u,,  = 5’ were used confidence intervals.
for these examples, although results are insensitive to it. As


