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Abstract. Estimation of tree growth is based on sparse observations of tree diameter, ring 
widths, or increments read from a dendrometer. From annual measurements on a few trees 
(e.g., increment cores) or sporadic measurements from many trees (e.g., diameter censuses on 
mapped plots), relationships with resources, tree size, and climate are extrapolated to whole 
stands. There has been no way to formally integrate different types of data and problems of 
estimation that result from (1) multiple sources of observation error, which frequently result in 
impossible estimates of negative growth, (2) the fact that data are typically sparse (a few trees 
or a few years), whereas inference is needed broadly (many trees over many years), (3) the fact 
that some unknown fraction of the variance is shared across the popUlation, and (4) the fact 
that growth rates of trees within competing stands are not independent. We develop a 
hierarchical Bayes state space model for tree growth that addresses all of these challenges, 
allowing for formal inference that is consistent with the available data and the assumption that 
growth is nonnegative. Prediction follows directly, incorporating the full uncertainty from 
inference with scenarios for "filling the gaps" for past growth rates and for future conditions 
affecting growth. An example involving multiple species and mUltiple stands with tree-ring 
data and up to 14 years of tree census data illustrates how different levels of information at the 
tree and stand level contribute to inference and prediction. 

Key words: Bayesian state space model; data assimilation; forest growth; hierarchical models; 
observation error; tree rings. 

INTRODUCTION 

Knowledge of tree growth is needed to understand 
population dynamics (Condit et aI. 1993, Fastie 1995, 
Frelich and Reich 1995, Clark and Clark 1999, Wyckoff 
and Clark 2002, 2005, Webster and Lorimer 2005), 
species interactions (Swetnam and Lynch 1993), carbon 
sequestration (DeLucia et al. 1999, Casperson et al. 
2000), forest response to climate change (Cook 1987, 
Graumlich et aI. 1989), and restoration (Pearson and 
Vitousek 200 1). Despite its importance, diameter growth 
estimates are limited due to the effort required for data 
collection and problems associated with inference. 
Estimates derive from any of three methods, diameter 
measurements, tree rings, and dendrometer bands, each 
with substantial uncertainty. The most common method 
involves measuring tree diameters repeatedly and 
calculating diamoter change by subtraction. This ap­
proach has the advantages that diameters can be 
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measured rapidly, and it can be used in environments 
where trees do not produce identifiable annual rings. 

There are several disadvantages to diameter measure­
ments. Although measurement is fast, nothing is learned 
until sufficient time has elapsed between observations to 
allow for a confident estimate of the increment; If 
interest focuses on individuals with particular growth 
characteristics, those individuals may not even be 
identifiable as such until years have passed. Because 
intervals between measurements can be long, annual 
growth rates are unknown. Instead, there is an 
interpolated average growth rate for the full interval 
(Biondi 1999). Long intervals may be needed, because 
diameter measurements have substantial error (Biging 
and Wensel 1988, Gregoire et al. 1990, Biondi 1999), 
enough that diameters are frequently observed to 
decrease (e.g., Clark and Clark 1999). Of course, growth 
occurs each year (even "missing rings" may not occur 
over the full circumference), so the apparent decline in 
diameter results from errors in the measurements 
themselves (the tape or caliper is not located at precisely 
the same height and orientation on the tree), from shrink 
and swell with changing bole moisture storage, or from 
changes in bark thickness that are unrelated to growth 
(common in pines and other thick-barked species). 
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Various ad hoc remedies (discarding intervals of 
negative growth, adding to each observation a constant 
increment to insure that all increments come out 
positive) introduce bias, even if one simply repeats 
measurements only on the trees observed to have 
negative increments (e.g., Clark and Clark 1999). In 
short, diameter must have increased over the interval, 
but any estimate of the increment would depend on 
whatever ad hoc is used to make negative increments 
come out positive. 

Two alternatives to periodic tape measurements are 
increment cores and dendrometer bands. They share the 
advantages that annual (or sub-annual) growth can be 
obtained. For increment cores, this growth rate applies to 
one radius of the tree, so several increment cores may be 
taken for each tree and averaged. The true area increment, 
i.e., integrated over the tree circumference, is not known. 
Further complications include the fact that trees may not 
have identifiable growth rings, that cores are time­
consuming to obtain and analyze, and that taking mUltiple 
cores simultaneously or over time may affect tree health. 
In temperate environments, growth rings range from 
being readily identifiable (e.g., many conifers and ring­
porous hardwoods) to those having rings that are often 
missed (e.g., many diffuse porous hardwoods). Like 
diameter measurements, dendrometer bands provide no 
information until an increment has accumulated, and the 
measurements depend on timing of observations, due to 
shrink and swell of the bole. The effort involved means 
that increment cores and dendrometer bands are usually 
obtained for sample individuals, not entire stands. 
However, without full information on all trees that reside 
within a known area, calculations of stand biomass 
increment rely on extrapolation. 

As with many ecological analyses, this one involves 
several types of information (increment cores and 
diameter measurements). In most cases, there is different 
information available for each individual, depending on 
when it was measured, if there is an increment core, and 
when the increment core was taken. In the data set we 
describe, some of the increment cores were obtained in 
1998, others in 2005 or 2006. Diameter measurements 
were obtained at irregular intervals. Stands were sampled 
in different years. Some trees have more than one 
increment core. If there is no increment core, how do we 
exploit information that might come from the full sample 
to make some probability statement about growth for a 
tree having only a few diameter measurements? If there is 
an increment core, how do we combine it with diameter 
measurements, both of which have error? 

The uncertainty associated with data suggests need for 
inference, i.e., estimates of diameter and growth with 
confidence envelopes. Available methods do not apply 
to this problem. For diameter measurements, we can 
expect to have no observations for most individuals and 
years, and errors are unknown. For increment measure­
ments, a fraction of trees and years may be represented. 
Growth rates vary among individuals, and this variation 

can be important (Lieberman and Lieberman 1985, 
Clark et al. 2003b). Sparse observations means that we 
would like to borrow information across all or part of 
the population as basis for "filling" the gaps. This need 
to share information is evident in regressions used for 
approximating a mean growth rate schedule for a 
population (Condit et al. 1993, Terborgh et al. 1997, 
Baker 2003). Regression methods that have been applied 
to this problem do not exploit the full data set (by fitting 
separate models for different classes of individuals) and 
they do not accommodate variability contributed by 
popUlation heterogeneity (by not estimating tree-to-tree 
differences). Moreover, previous regression approaches 
ignore the nonindependence of observations and the 
time series character of data (where multiple observa­
tions accumulate for the same individuals over time), of 
the process (diameter-age estimation based on static 
assumptions concerning canopy position), or of both. 

The challenges of inference carry through to prediction, 
which requires estimates of uncertainty in both diameter 
and growth rate. Due to the errors summarized above, the 
estimated confidence envelope for diameter in year t 

would overlap with that for year t + 1. A naive Monte 
Carlo simulation of tree growth based on such estimates 
(drawing at random from diameter sequences) would 
predict negative growth in many years. The need to avoid 
this unrealistic outcome has spawned various ad hoc 
methods (e.g., Lieberman and Lieberman 1985) that 
involve resampling data with constraints that do not yield 
a predictive interval, because they are not based on a 
consistent probability model for the process and data. 

In summary, methods are needed for combining 
information in a way that is consistent with knowledge 
that (1) growth is not negative, (2) some variation in 
growth is shared among years and across individuals, 
and (3) there are different types of observation errors 
associated with each data type. Moreover, given 
estimates of past growth, we need to know the 
uncertainty associated with potential for future growth. 
Often, the principle objective of growth estimation is the 
perspective it can provide on how stands may develop in 
the future. In light of the information available, to what 
extent can we predict growth trends? 

In this paper, we describe a general method for 
estimating tree growth where multiple, but incomplete, 
sources of information are available and for projecting 
that growth forward. We develop a Bayesian state space 
model of growth (Carlin et al. 1992, Calder et al. 2003, 
Clark and Bj~mstad 2004), conditioned on the fact that 
actual (and unknown) growth is nonnegative, that the 
rate of growth is potentially informed by observations of 
increment width and diameter measurements, and that 
observations will be sparse, both within individual 
sequences and across the stand. The Bayesian frame­
work allows exploitation of prior information on 
measurement errors and "borrowing strength" across 
the full data set(s), while responding to the amount, 
type, and observation errors associated with them. We 
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TABLE 1. Number of Quercus trees and sample sizes for each of the stands included in this analysis. 

Stand Cl C2 C3 C4 C5 CL CU Dl 02 Total 

Beginning year 1992 1992 1992 1992 1992 2000 2000 2000 1999 
Increment observed 379 282 294 346 80 300 255 938 0 2874t 
Diameter observed 874 204 571 789 112 1219 1081 1267 460 6577t 
Tree-years 3472 800 2016 2784 384 2992 2392 3344 1656 1984O§ 
Q. alba 12 0 0 0 1 0 0 229 65 307 
Q. coccinea 25 7 1 14 0 41 44 0 0 132 
Q·falcata 0 0 0 0 0 0 0 19 7 26 
Q. marilandica 10 0 0 0 0 0 0 20 0 30 
Q. phellos 0 0 0 0 0 0 1 18 71 90 
Q. montana 88 32 99 101 0 176 173 0 0 669 
Q. rubra 38 5 19 56 23 132 49 60 2 384 
Q. stellata 0 0 0 0 0 0 0 41 39 80 
Q. velutina 44 6 7 3 0 8 14 29 0 111 
Species uncertain 0 0 0 0 0 17 18 2 0 37 
Total trees 217 50 126 174 24 374 299 418 184 1866~ 

Notes: Sample sizes are for each of nine stands included in this analysis of Quercus. Stands are located at the Coweeta 
Hydrologic Lab (C in stand name) or the Duke Forest (0 in stand name). Beginning year is the year in which diameter 
measurements began; increment observed is the number of growth increments measured from increment cores; diameter observed is 
the number of diameters measured using a tape; tree-years is the total number of diameter estimates; and total trees is the total 
number of trees, not tree years. 

t Total = nl· 
t Total = nD. 
§ Total = n. 
~ Total = fIT. 

simultaneously provide estimates for every individual 
every year in the stand together with the stand, on 
average. 

DATA SETS 

Growth data come . from nine mapped stands in the 
southern Appalachians and Piedmont of North Carolina 
(Table I), established since 1991 for purposes of 
monitoring and experimental analysis of forest dynamics 
(Clark et at 1998, Beckage et al. 2000, Hille Ris Lambers 
et al. 2005, Ibanez et al. 2007). Multiple diameter 
measurements are available for all trees, obtained at 
intervals of one to four years. The measurements are 
made at breast height marked by a nail that holds a tag 
indicating the identifying tree number. Increment cores 
were obtained on a subset of trees in 1998 (Wyckoff and 
Clark 2002) and in 2005 (M. Wolosin, J. S. Clark, and 
M. Dietze, unpublished manuscript). The increment cores 
were oriented with a compass, and several cores were 
taken from some trees. Orientation of cores was done 
only for future reference in the event that a core is taken 
again from the same tree. Cores were mounted on a solid 
frame, finely sanded, and measured with a sliding stage 
micrometer. For purposes of demonstration we use data 
on six species of Quercus (Table 1). A full analysis of all 
species is reported: separately (M. Wolosin, J. S. Clark, 
and M. Dietze, unpublishedmanuscript). 

DATA MODELING 

M ode/jitting, 

Due to the fact that data will, typically be sparse, the 
model is developed to maximize the support that can be 
drawn across the full data set(s), while emphasizing the 
information for specific trees and years, when available. 

The level of uncertainty, as represented by a confidence 
envelope, reflects the combined information available 
for all individuals and years. Information from the full 
set of trees and years enters through the log mean 
growth rate ~o. Each individual is unique, with 
individual differences supported by a term for random 
individual effects ~ij, which draw on the fact that there 
can be multiple diameter and growth observations for 
specific individuals. There can be shared year-to-year 
variation due to climate, for example, which supports an 
estimate of fixed year effects ~t. By modeling each of 
these effects, we strike a balance between the data that 
can enter in one or more ways for each tree-year and the 
support that comes from the fact that some of the 
variation may be shared across the population and over 
time. Variation is not smoothed away: the degree of 
smoothing depends on the extent to which variation is 
shared across the data set, the size of the data set(s), and 
the weighting of data sets. We discuss weighting after 
introducing the model. 

Let D ij.t be the diameter in centimeters of tree i in 
stand j in year t, and Xij,t be the diameter increment 
added between year t and t + 1. We develop a model of 
growth (Fig. I) that exploits the information on overall 
tree growth, with log mean for the full population ~, 
random individual effects ~ij (how tree ij differs from the 
rest of the population), and fixed year effects ~t (there 
can be shared year-to-year variation due to, say, 
climate). Because growth must be positive, we model 
log increments, 

In(Xij,t) == In(Dij,t+l - Dij,t) = Jlij,t + Eij,t (I) 

as a linear equation with population log mean growth 
rate ~o, random individual effect ~ij, year effect ~h and 
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FIG. 1. Graphical representation of the model. The main process to be modeled is represented by the change in diameter 
("Process" box). For each tree and year there may be diameter data, increment data, or both ("Data" box). Diameter growth depends 
not only on data, but also on parameters ("Parameters" box), allowing for population heterogeneity ("Hyperparameters" box). 

process error Eij,t: 

Jlij,t = ~o + ~ij + ~t (2) 

(3) 

(4) 

"Process error" Eij.t is the extent to which main effects 
(mean, individual, and year) fail to describe diameter 
increment. Prior distributions are conjugate normal and 
inverse gamma, respectively: 

~o - 9{(b, vo) 

~t - 9{(0, Vt) 

(j2 - IG(a.,a2). (5) 

Random individual effects add an additional stage with 
variance having the prior 

Use of the inverse gamma prior for variances is 
discussed in Clark (2007). 

The beginning of the study is defined as the year when 
diameter data were first collected for the individual, lij. 

We define the end of the study Tij as the time when the 
most recent diameter data were collected (2006) or 
individual i in plot j dies, whichever comes first. We 
model the data on a tree-by-tree basis for all years 1 

between lij and T ij' Prediction beyond year T ij is 
discussed in the next section. 

Assimilation of multiple data types, combined with 
the constraint that growth is nonnegative is accom­
plished with Gaussian observation error on log diameter 

D (o) 
measurements ij,t' 

(6) 

and on growth increment, 

(7) 

(In cases where shrinkage of cores due to moisture loss 
introduces bias, a parameter can be added to accom­
modate it in the model for increment core data; see 
Appendix.) Thus, the latent state variable Dij,t is 
conditionally dependent on observations that might be 
available for diameter D~~;, for the growth increment 
X&~l, or both, and on the unknown states Dij,t-l and 
Dij,t+h which will also be modeled. A full discussion of 
this structure is contained in Clark (2007). 
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Nonindependence of data is accommodated by the 
stochastic treatment of the underlying process. We are 
jointly modeling growth of interacting plants. It has long 
been known that growth rates of competing plants 
cannot be treated ' as independent observations (e.g., 
Mitchell-OIds 1987). A simple analysis of mUltiple 
interacting trees would violate this most fundamental 
assumption about the distribution of data. Our hierar­
chical approach accommodates correlations among 
observations (both within and among trees), because 
those relationships are taken up at the process stage. 
Consider a single tree-year for which there are both 
increment and diameter data. Here is their joint 
probability (conditioned on the rest of the model): 

[D(O) X(o) D 1 _ [(0) (0)1 ] ( ) P ij,t' ij,t' ij,' - P Dij,t 'Xij,t Dij,t p Dij,t 

= p[D&~: IDij,t]p[x~:lIDij,t]P(Dij,t) 

= 9l(ln[D~~:llln(Dij,t), w) 
X 9(( In[X~~:lIln(Dij,t+l - Dij,,) , v) 

X 9(( In(Dij,t+l - Djj,t)lJ.1ij,tI c:Jl). 

The densities in the last line are, respectively, diameter 
data model, increment data model, and process model. 
The two data models are connected by way of their 
relationship to the process model. If Dij.t is not 
stochastic, we cannot claim that the two data types 
bring new information. Each is just a deterministic 
transform of the other. Placing independent data models 
on each would be inconsistent. This incorrect assump­
tion is implicit if we replace the third factor (a density) 
with a constant value. Once we admit uncertainty in Dij,t 
we allow for the possibility of conditional independence 
between data typeS! both data types-might have errors 
that are independent (conditional on Dij,I)' because 
errors in measuring tree rings are unrelated to errors in 
measurements of tree diameter, 

Stochasticity in our process model includes process 
error and random effects (Eqs. 1-4). The random effects 
could be spatial; involving inter-tree distances. If such an 
effect were evident, we could have included part of this 
interdependence as' a fixed effect, using a competitive 
index involVing size and distance. Had we included such 
a fixed effect, we would still want to explore additional 
random effects that are not accommodated by such 
indices~ We did not include such effects in this model, 
because there are no trends in diameter increments in 
our data that are correlated with distances among trees 
or locationS'. within· stands. Clark (2007) provides an 
example showing how the spatial random effect can be 
modeled with Bayesian. kriging. Although there is no 
spatial pattern in. random effects for these data, 
variation among' individuals cannot be ignored. Here, 
the vuiation is large, albeit not well described by simple 

spatial relationships. The fact that random effects are 
nonspatial (no evidence of a crowding effect on growth) 
is not surprising. With few exceptions, all trees in this 
analysis are crowded. Had we analyzed a data set with a 
range of crowing levels we would expect to see a spatial 
trend in random effects. 

Prior parameter values allow for a weighting of the 
mUltiple data types, and they admit knowledge of the 
approximate ranges of variability in measurements to be 
expected. Priors for observation errors are conjugate 
inverse gamma: 

(8a) 

(8b) 

There is a natural weighting that comes from measure­
ment errors. To see this, consider the conditional 
posterior for a growth increment X ij,l = Dij,l+l - Dij,t, 
for which there exist an increment measurement and 
diameter measurements for year t and t + 1: 

p(Xij,t···) ex 9l(ln(xij.t)lJ.1ij.t, cr )~( In[X~:;JIln(Xij.t), v) 
X 9l(D&~:IDij.t, w )9l(D~~:+1IDjj.t+h w). 

(9a) 

By contrast, the conditional posterior for a growth year 
with no observations is 

For a tree increment with both types of observations 
(Eq. 9a), (1) diameter measurements D&~] will have large 
impact if their variance w is small (Eq. 6), (2) increment 
measurements X~:: will have large impact if their 
variance v is small (Eq. 7), and (3) the degree to which 
the estimate will be influenced by the full data set will 
increase with decreasing variance c?- (Eqs. 1 and 2). 
Prior information not only informs these estimates, but 
it also weights their contributions. We select priors that 
bring in what is known about the measurement errors w 
and v, but weight both to insure that measurements 
dominate over the population model (Eqs. 1 and 2). In 
other words, we want the relationship between wand v 
to reflect what is known about errors in both 
observations, while insuring that both carry much more 
weight than 0

2
. This is a subjective decision to 

emphasize blending of data, rather than smoothing 
over variability. With this approach the process model 
has most impact for tree years having no data. From 
multiple measurements of trees and increment cores 
(e.g., Wyckoff and Clark 2005; M. Wolosin, J. S. Clark, 
and M. Dietze, unpublished manuscript) we know 
standard deviations are approximately 1 em and 0.01 
cm, respectively. Varian,ces are on a log scale in the 
model, reflecting the fact that errors proportionately 
increase with tree diameter and decrease with increment 
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width (values ~ 1). Diameter measurements with an 
error variance of 1 cm have a variance on log error from 
0.0004 (50 cm diameter trees) to 0.01 (10 cm diameter 
trees). Increment measurements with an error variance 
of 0.0001 (standard deviation of 0.01 cm) have a 
variance on log increment from 0.001 (0.3 cm incre­
ment) to 0.01 (0.1 cm increment). Thus, informative 
priors can be centered on 0.001 to 0.01 for both types of 
data. We used priors for these variances with mean 
values of 0.01 (v) and 0.001 (w). Posteriors are 
insensitive to the precise values of these priors. We then 
weight these variances such that each is 10 times the 
number of observations: 

as = 10nI 

a6 = O.OI(as - I) 

ag = 0.OOI(a7 - I) 

where nI and no are the number of increment and 
diameter observations, respectively (Table 1). This 
weighting is based on moment matching (Clark 2007). 
By contrast, we use a large prior mean on dl of 1, and 
weight it to be 100 times less than the number of tree 
years: 

n = L)Tij - tij) = 19840 
ij 

al = n/IOO 

a2 = al - 1. 

Because n is large, we effectively downweight the 
population model (Eqs. 1 and 2) to insure minimal 
smoothing. This will dominant for tree years for which 
there are no observations (Eq. 9b). 

Other priors are proper, but noninformative. The 
prior on log mean growth rate has mean and variance b 
=-2 (i.e., a prior mean growth rate of e-2 = 0.13 cm/yr) 
and Vo = 1 X 107/n. This prior is I X 107 times weaker 
than the sample size (total number of tree years). The 
prior mean for the variance of random effects 't2 was set 
to an arbitrary value of 1, and weighted roughly 0.0 I of 
the data. This is accomplished with a3 = nT/l00, where 
nTjs the number of trees (Table 1). Year effects ~t have 
prior mean zero and Vt = 1. Posterior distributions were 
not influenced by the mean values selected for ~, ~, and 
Ji" because priors were weak. 

An.alysis of the model is accomplished by Gibbs 
sampling (Gelfand and Smith 1990), implementation of 
which is discussed in the Appendix. 

Prediction 

We use a Bayesian prediction framework to forecast 
growth several years ahead. The predictive density for 
diameter one year ahead is represented by the integral 

P(Dij,Tij+ll{ D~~;}, {x1~:}, ~*) 

= II p(Dij.Tij+ll{D1~1},{xi)~:}'~;ij+l,e) 

where 

X p( el{ D~~l}, {x~~:} )P(~;ij+ll~*)ded~;ij+1 
(10) 

e = [{Dij,t }, {J.!ij,t} , ~o, {~ij}' {~t}, cr, 't2 , W, v] 

is the set of parameters and latent variables estimated 
from the model, and pee I {Dt;}, {X1~:}) is the joint 
posterior, conditioned on all diameter and increment data. 
To simplify notation, we have omitted the prior parameter 
values from the left hand side of Eq. 10. This predictive 
distribution mixes over the uncertainty in parameter 
estimates (the inner integral is taken over the posterior), 
and over the uncertainty in the scenario for the year Tij+ 
1. The scenario is expressed in terms of the effect for the 
upcoming year, ~;,Tij+I' the uncertainty of which is 
described by density P(~;,Ti+l I ~*) and written condition­
ally to remind us that the prediction will depend on 
whatever assumptions ~* went into the construction of 
this scenario. The outer integral incorporates this scenario 
uncertainty (Draper et al. 1999, Clark 2007). The scenario 
could involve assumptions about growth conditions in 
future years, expressed in terms of the density 
P(~;,Tij+1 I ~*). In fact, we do not actually solve this 
integral, but rather use Monte Carlo simulation. Using the 
same approach, we can predict further ahead, expecting 
the uncertainty to increase as we consider years further 
into the future. This uncertainty magnifies if we allow that 
the uncertainty in growing conditions (the scenario 
~;,Tr+k' where k is taken in years) might likewise increase. 
Be~use we expect predictive capacity to decline, we limit 
predictions to a lead time of k = 10 yr. 

RESULTS 

Several parameters describe a population-wide pat­
tern in the data. In this analysis of 10 Quercus species 
(Table 1), all parameters are well identified, as indicated 
by narrow credible intervals (Table 2). Error parameter 
estimates reflect priors. The informative prior insures 
that the posterior estimate of cr2 is centered at the large 
value of 1. Large weights on wand v insure that they 
dominate for individuals and years with observations. 
The standard deviation for random individual effects 't 

had a posterior mean of 0.536, substantially lower than 
the prior mean value, and selected to be non-informa­
tive. 

There is substantial shared variation represented by 
year effects (Fig. 2). The range of these estimates (-0.2 
to 0.2) is roughly the magnitUde of random individual 
effects. Posterior estimates indicate trends across years. 
Such clear evidence of temporal coherence suggests 
covariates (e.g., climate), which can be readily included 
in the regression part of the model (M. Wolosin, J. S. 
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TABLE 2. Parameter estimates for the model of data sets in Table 1. 

Credible interval 

Parameter Prior parameter values Posterior mean Bayesian SE 2.5% 97.5% 

~o 
(J 

t 

JW 
.jV 

b = -2, Vo = 504 
al = 198.4, a2 = 197.4 
a3 = 18.7, a4 = 17.7 
a7 = 65770, as = 6.58 
a5 = 24780, a6 = 247.8 

-2.10 
0.945 
0.536 
0.0316 
0.224 

Clark, and M. Dietze, unpublished manuscript). To 
determine whether this trend came from incorporating 
data sets spanning different intervals, we analyzed 
stands spanning just the full 14 years and found that 
the trend persisted. 

Because our goal focuses on predicting missing and 
future values for growth, we do not include covariates in 
Eqs. 1 and 2 (we do so in J. S. Clark, M. Dietze, I. 
Ibanez, S. LaDeau, and M. Wolosin, unpublished 
manuscript). With more complex models, we can 
entertain model selection, which is typically done using 
an index that incorporates goodness of fit and penalty 
for model complexity. There are no generally accepted 
model selection techniques, and there are reasons to 
minimize the role, of formal model selection (Clark 2005, 
Clark and Gelfand 2006). We include one technique 
here, predictive loss (Gelfand and Ghosh 1998), which is 
discussed for ecological applications by Clark (2007) 
and for state-space models in particular by Clark and 
Bj~rnstad (2004). The index is described in the 
Appendix. 

It is no surprise that the model predicts the data well 
(Fig. 3), because data are highly weighted (Data 
Modeling). The slight tendency for the data cloud to 
have a shallower slope than 1: 1 in Fig. 3 is the familiar 
"regression to the mean" effect, whereby there is at least 
some smoothing brought in by Eqs. 1 and 2 tending to 
smooth over extreme high and low values. It is 
important to emphasize again, that this is simply an 
effect of the weighting in the model: we could fit the data 
even more closely by applying still more weight to data 
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over Eqs. 1 and 2. There is a limit to how "good" the fit 
can be, determined by the level of disagreement between 
the two data types. If there were only one data type, we 
could fit the data precisely. Again, the goal is to predict 
missing data and not to necessarily find a simple model 
that fits every observation. For model selection, one 
might consider the criterion Dm for this model vs. one 
with, say covariates. Because there are multiple data sets 
(two, in this case), there can be multiple Dm values to 
consider (Fig. 3). 

The ways in which multiple data sets inform the 
analysis is best illustrated with concrete examples. In 
Fig. 4, we present estimates of both diameter and growth 
rate for example trees having different levels of 
information and ' agreement. Trees differ in terms of 
estimated growth rate as indicated by the slopes of 
diameter estimates at left and the different rates shown 
at right. Tight credible intervals indicate confident 
estimates for trees where there is substantial data of 
both types, and these data tend to "agree" on the rate of 
growth of that individual. All possibilities are illustrated 
in Fig. 4. A Q. rubra tree (Fig. 4a) has especially tight 
credible intervals on diameter, because there are no 
increment data to contradict diameter data, and the tree 
is growing at a rate close to the overall population. A 
different Q. rubra tree (Fig. 4b) shows tight predictive 
intervals on growth rate until the growth increment data 
end in 1998, at which point predictive intervals widen. A 
Q. alba tree (Fig. 4c) has only two diameter measure­
ments, meaning that estimates rely heavily on the full 
population, which has large uncertainty. Fig. 4d, e 

I 
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I 
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I 
2004 

I 
2006 

FIG, 2. Posterior densities for each year effect, with a solid line connecting the posterior means, show a trend from negative to 
p(>sitiveover the course of the study, 1993-2006. With the exception of drought years in the early 2000s, recent growth rates tend to 
be higher than during;the 1990s. The log-transformed year effect was originally measured in em. 
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FIG. 3. Observations and predictive means for all tree-years in which at least one observation was available. (a) The predictive 
loss values for diameter data are Gm=25.8, Pm=30.5, and Dm =56.1; and (b) for diameter increment data are Gm =489, Pm=2786, 
and Dm = 3275. Log-transformed diameter and diameter increment were originally measured in cm. Definitions of variables: Dm, 
predictive loss; Gm , predictive mean; Pm, predictive variance. 

contrasts situations where there is substantial data of 
both types, one where they agree (Fig. 4d) and one 
where diameter data imply faster growth than increment 
data (Fig. 4e). Fig. 4f shows an example where diameter 
data decline over all measurements, and growth rates are 
predicted to be low, but positive. 

Due to relatively small error terms, predictive 
intervals for further growth do not expand much beyond 
the credible intervals for the fitted data set (Fig. 5). We 
used two scenarios for predictions, both assuming that 
year effects continue with the same mean, one with the 
standard deviation remaining constant 

(lla) 

and another with the standard deviation increasing 
linearly with lead time k 

where the variance in year effects is taken over the 
posterior estimates all years. The variances in Eqs. 
lla, b simply use the variance among estimates of Pt 
from the analysis, i.e., var[Pt1. Because year effects were 
relatively small in this data set, the two scenarios did not 
show much difference and only that for Eq. lla is 
presented. Of course, there are many scenarios that 
could be examined~ this example is for demonstration. 

Parameter error makes an inconsequential contribution 
to both credible and predictive intervals. This result 

implies that collecting more data, in an effort to sharpen 
estimates of parameters in Table 2, would not improve 
predictive capacity, as has been previously demonstrated 
for dispersal (Clark et al. 2003a) and demographic rates 
(Clark 2(03). However, it would improve estimates of 
diameter and growth rate for the individual trees (Fig. 4), 
providing observations for tree years that do not currently 
have them. In other words, the principle value of 
collecting more data would be to fill gaps in past growth 
rates, rather than improving parameter estimates. 

The variation among individuals is large indicating 
the importance of allowing for individual level variation 
in the model (Fig. 6). This means that much of the 
variability is structured among individuals. In other 
words, population variability exceeds variation in time, 
a result that can contrast with fecundity, where the 
opposite can be the case (Clark et al. 2004). 

DISCUSSION 

Tree growth represents an important archive of 
environmental variation, population dynamics, and 
species interactions. The portioning of growth variation 
within and among individuals, and its relationship to 
local crowding and resources and to regional climate 
fluctuation, can only be understood with models that 
accommodate variability in the underlying growth 
process. Models must also allow proper treatment of 
the ways in which different data types relate to growth. 
There is general agreement that valuable growth 
infonnation can come from mUltiple sources. Tree ring 
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FIG. 4. Diameter and growth rates (diameter increment) for example trees having different amounts and combinations of 
observations (open circles) over sample years. Predictive intervals of diameter (left) and growth rate (right) are indicated by the 
predictive median (solid lines) and 95% predictive intervals (dashed lines). Diameter increments are on a log scale. The label for 
each panel consists of the stand designation from Table 1 followed by the nominal tree number. 

data should not be analyzed in isolation of diameter 
measurement data. There has been no consistent method 
to combine these sources that allows for their different 
types of errors and for realistic assumptions about the 
growth process, such as growth must be positive, some 
variation is shared among individuals across years (e.g., 
climate variation), other variation is associated with 
specific individuals (e.g., genotype and local microsites), 
and there will be residual "process error." 

Advantages of the approach 

The modeling strategy developed here allows for full 
assimilation of increment and diameter information as 
basis for inference and prediction of tree growth. The 
approach works for either data type alone, or they can be 
combined in a manner that is consistent with how tree 
growth occurs and with how observations are obtained, a 
goal that has previously only been addressed informally 
(e.g., Biondi 1999). Credible and predictive intervals 
provide intuitive interpretations for how much is known 
about each individual and year (Fig. 4). This is especially 
important in light of the fact that tree growth data will 

typically be sparse. Even the large mapped tree plots 
involving tens of thousands of individuals (e.g., Condit et 
al. 1993) have observations only for a subset of years. The 
flexible method described here admits distributional 
assumptions that are transparent and tailored to the 
specific relationships. The "negative growth" that is 
commonly observed (e.g., Fig. 4f), especially when 
diameter observations at taken at frequent intervals (e.g., 
Clark and Clark 1999), is fully accommodated by the 
model, which allows that growth must be nonnegative, and 
both process and observations are uncertain. Our only 
assumption is that diameter in year t lies somewhere 
between that of years t - 1 and t + 1. Within that interval, 
growth conditionally depends on both types of observa­
tions (if available), population, individual, year effects, and 
uncertainty. It provides inference (Fig. 4) and prediction 
(Figs. 4 and 5) at both the individual (Lieberman and 
Lieberman 1985, Baker 2(03) and the stand scale (Condit 
etal. 1993, Terborghetal. 1997) by integrating over the full 
uncertainty associated with observation errors and growth 
rates of all trees in all stands. Predictions follow in a 
consistent fashion from data (Fig. 5). 
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nominal tree number. 

The capacity to identify where the uncertainty lies can 
guide research. For the example included here, param­
eter error is not an important source of uncertainty, so 
collecting more data will not narrow the predictive 
interval for many trees, only those for which few data 
are already available, i.e., by filling in data gaps. The 
widths of credible intervals are largely controlled by 
errors in data and the process, not in the estimates of 
parameters themselves. 

Although not taken up here, our approach allows for 
a wide range of options. It readily admits covariates, 
including crown class observations, such as those used 
by Clark and Clark (1999), Baker (2003), and Wyckoff 
and Clark (2005). We could just as easily have modeled 
stands and species independently, or we could have 
included terms for one or both in Eqs. 1 and 2. For 
example, random stand effects could be included in the 
same fashion as random individual effects. The latter 
approach is used by Clark et al. (J. S. Clark, I. Ibanez, S. 
LaDeau, and M. Wolosin, unpublished manuscript) in an 
extension for tree allocation. 

Relationship to traditional methods 
for tree growth time series 

Although our approach appears to overlap with 
tradition methods applied to tree ring time series, they 

are more complementary than overlapping. The practice 
of cross-dating increment cores from different or the 
same trees can be especially important and productive in 
environments where interannual variability is large and 
caused by climate (there is synchronicity across the 
population at some spatial scale). In our analysis, this 
source of variation would be taken up by year effects, ~t. 
A difference here is that we estimate the year effects 
along with all other parameters of the model, so we have 
an explicit credible interval for each year. Our approach 
can be applied just as readily to cross-dated series as it is 
to non-crossdated series. 

Several types of modeling are often applied to tree ring 
data for purposes of highlighting (or removing) specific 
scales of variation. Autoregressive (AR) models are a 
common example (Cook 1987). There are several points 
to make here. First, our model is effectively an AR(1) 
model (an AR model of lag I) due to the fact that we are 
modeling increments. Second, fixed year effects are used 
here in preference to autoregression. We adopt this 
approach, because we wanted year effects to take up 
interannual forcing, whether or not it is correlated from 
year to year. For example, climate variation might be 
sometimes autocorrelated (e.g., multiyear droughts, 
decadal trends in temperature) and sometimes not. The 
fixed effects included in our model accommodate both. 
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Indeed, we can inspect the posterior estimates of year 
effects to determine if autocorrelation exists (they do in 
the example provided here). Likewise, interannual 
climate variation' can itself be included in the model 
(M: Wolosin, 1. S. Clark, and M. Dietze, unpublished 
manuscript). Finally, because our emphasis is on short­
term effects, as. opposed to decade- to century-scale 
climate variation:, we have not analyzed particular scales 
of variation in the data. Nonetheless, the simple 
regression at the :core of our model is flexible to a wide 
range of assumptions. These could include diameter 
and/or age cOV3nates, if we· wished to model reductions 
in ring width, that can occur with size or age (e.g., 
Swetnam and Lynch 1993)~ The common practice in 
deB<irochronology of removing long-term trends, due to 
tree size or age, caD be readily incorporated into Eq. 2. 
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APPENDIX 

Tree growth inference and prediction (Ecological Archives A017-077-Al). 


