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Abstract

Over the last few years the authors have been
involved in research aimed at developing a machine
vision system for locating and identifying surface defects
on materials. The particular problem being studied
involves locating surface defects on hardwood lumber
in a species independent manner. Obviously, the
accurate location and identification of defects is of
paramount importance in this system. In the machine
vision system that has been developed, initial hypotheses
generated by bottom-up processing for defect labeling
are verified using top-down processing. Thus, the label
verification greatly affects the accuracy of the system.
For this label verification, a rule-based approach, and
a k-nearest neighbor approach, and a neural network
approach have been implemented. An experimental
comparison of these approaches together with other
considerations have made the neural net approach the
preferred choice for doing the label verification in this
vision system.

1. Introduction
Over the last few years the authors have been

involved in research aimed at developing a machine
vision system for locating and identifying surface defects
on materials. The particular problem being studied
involves locating surface defects on hardwood lumber
in a species independent manner. Obviously, the
accurate location and identification of defects is of
paramount importance in this system. In the machine
vision system that has been developed, initial labeling
hypotheses generated by bottom-up processing are
verified using top-down processing. Thus, the label
verification operation greatly affects the accuracy of
the system. For this label verification, a rule-based
approach, and a k - nearest neighbor approach, and a
neural network approach have been implemented. These
approaches were tested and compared on the hardwood
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lumber inspection problem. In what follows the three
basic approaches will be described. The relative utility
of each will be presented. And finally, a description
of the test performed will be discussed.

The main function of the machine vision system is
to detect undesirable “defects” that can appear on the
surface of the material being inspected. Conceptually,
the vision system consists of two modules: the low-level
segmentation module and the high-level recognition
module [1]. The low-level module performs seg-
mentation of the input image into “homogeneous” regions
and extracts basic region properties from each of the
resultant regions.

The high-level module performs the scene analysis
task, i.e., recognizes defect areas. Basically, this module
consists of the following components: a focus of attention
mechanism, defect detection procedures, verification
using contextual information or spatial constraints, and
resolution of multiple labels. A focus of attention
mechanism is used to screen candidate regions in an
effort to determine the type or types of defect each
region might represent. Each defect detection procedure
is designed to detect a particular type of defect. Each
defect detection procedure operates completely inde-
pendent of the other defect detection procedures. Each
defect detection procedure consists of an initial labeling
step and a label verification step.

The initial labeling of regions is performed based
on the basic region properties, region adjacency
information, a priori knowledge about the defect type
under consideration, and, if needed, new features
extracted directly from the original image. This initial
labeling step produces the sets of connected regions,
called DEFECT_OBJECTs. A DEFECT_OBJECT is
a set of connected regions all of which have been
assigned the same defect label by a defect detection
procedure. The label verification step tries to verify
the assigned label of each DEFECT_OBJECT generated
in the initial labeling step. This step is necessitated
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by the fact that a segmented region in an image does
not usually correspond to a complete defect, i.e., typically
a defect is fragmented into several regions during
segmentation. At this stage of the processing a basic
property list is computed for each DEFECT_OBJECT.
The basic properties at the level of DEFECT_OBJECT
should be more representative of the actual defect than
those computed from the individual regions that comprise
a  DEFECT_OBJECT.  Bes ides  th i s  bas ic
DEFECT_OBJECT property list, additional features are
computed from the original image. All the features
are used to verify the labeling of a DEFECT_OBJECT.
Three classification methods for DEFECT_OBJECT
verification have been implemented and tested. These
include a rule-based approach, a k - nearest neighbor
approach, and a neural network approach. Each approach
is described in detail in the next section.

After defect detection procedures have been applied,
attempts are made to further verify the labeling of each
DEFECT_OBJECT by using spatial constraints among
adjacent DEFECT_OBJECTs. Finally, the high-level
module resolves instances where regions have been
assigned multiple defect labels. A region that has been
assigned multiple labels is assigned the label of a
DEFECT_OBJECT whose confidence value is the
highest among the confidence values of the
DEFECT_OBJECTs associated with this region. Each
DEFECT_OBJECT’s property list is used to calculate
a confidence value that the DEFECT_OBJECT has its
defect label. The way this confidence value is
determined depends on the approach used in the label
verification step. In the rule-based approach, the
confidence value of the DEFECT_OBJECT is computed
using Dempster’s rule of combination. In the k-nearest
neighbor approach, k1/k can be used as the confidence
value, where k1 is the number of nearest neighbors that
is the defect type of the DEFECT_OBJECT among
k - nearest neighbors. In the neural network approach,
this confidence value is determined by the output value
of the neural network corresponding to the defect type
of the DEFECT_OBJECT.

2. Classifiers for the Label Verification
Rule-based approaches and statistical approaches have

been widely used for designing pattern classifiers. In
addition, multilayer neural networks have begun to be
used as classifiers in various application areas.
Therefore, these three approaches have been tested in
the machine vision system for industrial inspection.
Among statistical approaches, a k - nearest neighbor
classifier was selected because it does not assume any
underlying distribution of data.

2.1 A Rule-Based Approach

In the rule-based approach, a series of rules or tests
are applied to each DEFECT_OBECT to be verified.
Each test generates confidence values that the
DEFECT_OBJECT is / is not the defect type based
on the test’s own criterion. The confidence value of
each test is determined by its own mapping function
that typically uses some parameters or thresholds. This
mapping function is a function of the DEFECT_OB-
JECT’s basic properties and possibly new features
extracted from the original image. Each defect detection
procedure has its own series of tests. Confidence
values generated by those tests are combined to yield
a final confidence or belief value for the defect type
using Dempster’s rule of combination [2]. Only if this
confidence value is greater than 0.5, is the
DEFECT_OBJECT’s assigned label verified.

2.2 A K-Nearest Neighbor Approach

The k - nearest neighbor classifier is a conventional
nonparametric classifier that provides good performance
for optimal values of k. In the k - nearest neighbor rule,
a test sample is assigned the class most frequently
represented among the k nearest training samples. If
two or more such classes exist, then the test sample
is assigned the class with minimum average distance
to it. It can be shown that the k - nearest neighbor rule
becomes the Bayes optimal decision rule as k goes to
infinity [3]. However, it is only in the limit as the
number of training samples goes to infinity that the
nearly optimal behavior of the k - nearest neighbor rule
is assured.

There arc at least two ways one can use the k - nearest
neighbor classifier to perform the label verification
operation. One way is to use a single k - nearest neighbor
classifier to classify all defect types. If there are N
defect types to be recognized, the k - nearest neighbor
classifier must be able to handle N+1 classes (one class
for normal surface). If this is the method employed,
each defect detection procedure will use this (N+1) -class
k - nearest neighbor classifier to verify the labels this
defect detection procedure has assigned. Hence the set
of features used to do the verification is fixed and
each defect detection procedure must extract these
features from each DEFECT_OBJECT it creates. A
defect detection procedure for recognizing defect type
i will verify the label it has assigned to a
DEFECT_OBJECT only if the k - nearest neighbor
classifier classifies this DEFECT_OBJECT as being of
defect type i.
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Another way the k - nearest neighbor classifier can be
used to do label verification is to use a number of
two-class k - nearest neighbor classified. If N defect
detection procedures are used to recognize N defect
types, then there would be N two-class k - nearest neighbor
classifiers employed. Each defect detection procedure
would have its own specially tailored classifier. If a
defect detection procedure is designed to recognize
defect type i, its k - nearest classifier would attempt to
determine whether a DEFECT_OBJECT is really of
defect type i or not really of defect type i. Having
such a special purpose k - nearest neighbor classifier
inside each defect detection procedure has a number
of advantages. Chief among these is that each defect
detection procedure can use its own special purpose
features without having to use the same feature set as
all the other defect detection procedures. It is
conjectured that this “pairwise” classifier should yield
better results than when only one (N+1) -class k - nearest
neighbor classifier is used.

2.3 A Neural Network Approach

In this approach, a multilayer feedforward artificial
neural network [4] is used as the classification method
instead of a k - nearest neighbor classifier. As in the
k - nearest neighbor classifier there are at least two ways
neural networks can be used to verify labels. One
way is to use only one network to make all the
verifications. As before, this approach requires all the
defect detection procedures to extract the same set of
features. It also means that if there are N defect types
to be recognized the neural network must be able to
handle N+1 classes (one class for normal surface). The
other approach is to use N two-class neural network
classifiers. The advantages of this approach are the
same as those described above for the set of two-class
k - nearest neighbor classifiers. It is believed that the
use of N two-class neural network classifiers will provide
better accuracy than the use of one (N+1) -class neural
network classifier, and as such is the recommended
approach for using neural networks.

Recently, it was shown [5,6] that the multilayer
perception, trained using back-propagation learning
algorithm [4], approximates the optimal discriminant
function defined by Bayesian theory, Specifically, the
outputs of the multilayer perception approximates a
posterion probability functions of the classes being
trained. How closely the multilayer perception
approximates a posteriori probabilities depends on the
architecture of the network and the functional form of
the underlying probability density function. It was also
shown that a multilayer perception with more than one
hidden layer has the capability of approximating any
continuous mapping to any desired degree of accuracy,
if a sufficient number of hidden neurons are provided

[7,8,9]. These results suggest that the asymptotic
behavior of the neural networks should be the same
as that of the k - nearest neighbor method [3].

Among multilayer perceptions with hidden layers, a
3-layer perception with one hidden layer is the least
complex. Further, the more hidden layers that are
used, the more difficult it is to choose an appropriate
number of nodes for each hidden layer. Therefore, a
3-layer feedforward artificial neural network has been
chosen as a classifier for use in the label verification
step employed in each defect detection procedure. Note
that 2-layer neural networks without a hidden layer
were excluded from the consideration because it is well
known [10] that they can form only linear decision
boundaries, not non-linear decision boundaries. The
number of hidden neurons is determined experimentally.
Enough hidden neurons must be provided so that
successful learning can be obtained from the training
set.

Weights in the network are obtained by using a
training set. The training set consists of feature vectors
computed from DEFECT_OBJECTs representing normal
surface and the various defect classes. If a training
sample belongs to a class i, then its desired output or
target value is 1 for output node i, and 0 for all other
output nodes. During training, weights are updated
after one training sample is presented. This process
is repeated until for each training sample, the difference
between every output value and its target value is less
than 0.1. (Actual target values used are 0.1 and 0.9
instead of 0 and 1, respectively, to prevent over-
learning.) After training is completed, an n - class neural
network classifier assigns class i to an input feature
vector if output node i of the neural network is the
highest of all the n output node values.

2.4. Comments on the Three Approaches

An advantage of the rule-based approach is that one
can subjectively set parameters or thresholds used in
each test to map the feature value obtained from the
test into a confidence value, and get moderate per-
formance even if no training data is available.
Obviously, it is very desirable to incorporate information
contained in training set by using it to fine-tune
parameter values. If a small amount of training data
is available, one can use it to tune the subjectively
established values. However, if the mount of training
data available is large, the ability to fine-tune parameter
values can be a complex problem if one attempts to
do this subjectively. This requires a significant amount
of effort in knowledge engineering, if not performed
automatically. Automatic setting of parameter values
would be possible but not easy. Hence, the applicability
of the method to industrial inspection is in doubt.
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If a large training set is available, then k - nearest
neighbor and neural network classifiers have a number
of advantages over the rule-based classification method.
Note that generating a large number of training samples
is not difficult in most industrial inspection problems.
These advantages include: 1) Both are robust and can
outperform conventional parametric classifiers when the
actual distribution of data is different from the assumed
distribution [11]. 2) The parameters or weights of the
neural network are determined automatically by a
learning algorithm based on a proper training set. The
k - nearest neighbor classifier also establishes the decision
boundary automatically based on a training set. 3)
Both allow incremental learning; that is, its classification
performance can be incrementally refined when new
training samples are added to the existing training
samples.

However, there are disadvantages in using these two
approaches as well. The k - nearest neighbor classifier
has a disadvantage in that it is difficult to find an
optimal value of k that produces the best performance
for a training set with a finite number of training
samples. On the other hand, the training of a neural
network typically requires a large number of presen-
tations of the training set. Another difficulty in using
neural networks is selection of the proper number of
hidden neurons. The number of hidden neurons must
be carefully selected by experimentation. If too few
hidden neurons are used, proper training is impeded.
If too many are used, there is a performance degradation
in generalization of the network, i.e., the network will
perform poorly on unknown samples, even if it works
perfectly on the training samples. Note that these
disadvantages for both approaches really only represent
computational problems in the training phase.

One advantage of the neural network classifier over
k - nearest neighbor classifier is the speed of classification.
The k - nearest neighbor classifier is computationally
complex. To classify a test sample, the k - nearest
neighbor classifier requires that the distances between
the test sample and each stored training sample be
computed. This computation is proportional to the
number of the training samples. This problem might
be overcome by using the nearest neighbor rule on an
“edited” and “condensed” set of an original training set
[12]. However, it is still not certain how much the
training set can be reduced without performance
degradation. On the other hand, the computational
complexity of the neural network classifier is propor-
tional to the number of weights. Hence, the neural
network classifier has an advantage in the computational
complexity and storage complexity over the k - nearest
neighbor classifier since a large number of training

samples should be available for these classifiers.
Furthermore, it allows parallel hardware implementation,
which can considerably speed up classification.

3. Experimental Comparison
3.1 Setup and Implementation

The performances of the vision system using the
three approaches (neural network, k - nearest neighbor,
and rule-based) in the label verification were evaluated
and compared in lumber inspection problem. The
software of the machine vision system was implemented
in FORTRAN 77 and C on the VAX 11/785 computer
system in the Spatial Data Analysis Laboratory at
Virginia Tech. This vision system was tested using
an extensive image data base of rough hardwood lumber.
The data base was created by digitizing a number of
rough hardwood lumber boards (over 160) from 4
species, i.e., cherry, red oak, yellow poplar, and maple.
An 8 inch by 8 inch area of each sample was selected
and scanned. This area was digitized using a 480x512x8
bits resolution black and white camera. The same
lighting conditions, camera settings, and viewing angle
were employed in creating the image of each sample.
Each image was shading corrected to remove any
nonuniformities in lighting or sensitivity across the
camera’s imaging array [13].

The image data base was partitioned into two sets.
One set of board images was used to construct a
training set that is used in the neural network and
k - nearest classification. The training set consisting of
100 samples was carefully constructed so that it includes
most variations of each defect type. Each sample is
a feature vector of a DEFECT_OBJECT verified in the
label verification step. Ten features are used as elements
of the feature vector. Each sample is known to belong
to one of five classes: clear wood (CW), splits/checks
(SP), holes (HL), wane (WN), and knots (KN). There
are 20 samples for each class. Samples for clear wood
are collected using DEFECT_OBJECTS that are actually
clear wood. The other set of the image data base was
used to test the performance of the system implemented
using each approach.

Table 1 shows the number of boards of each species
used in the training phase and the testing phase. Most
boards used in the testing were different from those
used in the training. Three cherry boards and two
maple boards were used in both the training and the
testing to obtain more test samples for holes and wane,
respectively. However, the DEFECT_OBJECTs used
in the training set was excluded in the performance
evaluation. This ensured the complete independence
between training and testing. In this table, the number
of segmentation-failures represents the number of boards
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whose images caused the complete failure in seg-
mentation process. Table 2 shows the number of
defects which appear on the boards that were used in
the testing. (Of course, the defects used in the training
phase were not counted in this table.)

Some comments are made as to how the three
approaches were actually implemented for the lumber
inspection system. Basic properties or features extracted
for a region or a DEFECT_OBJECT are area, average
gray level, center of mass, minimum bounding rectangle
(MBR), elongatedness, perimeter, compactness,
touch_background, and touch_image_boundary. The
MBR is useful to locate the region or DEFECT_OBJECT
in the original image or the segmented image. The
elongatedness feature is used to differentiate “long”
defects (e.g., splits/checks) from other defects. The
compactness feature is useful for finding compact
defects, e.g., holes. The perimeter feature is used to
calculate a region’s compactness. The touch_background
feature, indicating how much portion of a region’s
perimeter is touching material boundary, is a helpful
feature in finding wane since wane almost always
appears on the edge of a board. The touch_ima-
ge_boundary, indicating how much portion of a region’s
perimeter is touching image frame boundary, is useful
because a defect region can have an abnormal shape
when it is on the image boundary.

In the rule-based approach, the rules used in the
defect detection procedure designed to identify defect
type i attempt to determine whether a DEFECT_OBJECT
created by this detection procedure is really a defect
of type i or not really a defect of type i. As such
the exact rules used vary from one defect detection
procedure to another. In the k - nearest neighbor and
the neural network approaches, a single 5-class classifier
was used to classify all four defect types (one class
for clear wood). A single 5-class classifier was chosen
over the method using five 2-class classifiers due to
much simpler training. 10 input features of the classifier
are extracted for each DEFECT_OBJECT to be verified.
Defect detection procedure for recognizing defect type
i will verify the label it has assigned to a
DEFECT_OBJECT only if the classifier classifies this
DEFECT.OBJECT as being of defect type i. (The
neural network employed has 10 input neurons, 10
hidden neurons, and 5 output neurons. The number
of hidden neurons, 10, was determined experimentally.
This was the minimum number that allowed successful
learning on a training set. Successful training of the
neural network took about 1500 epochs on average,
i.e., an epoch is one presentation of the training set.)
A fast back-propagation learning scheme [1] was used
in this training. This learning scheme uses a steep
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sigmoid function and automatically reinitializes weights
of the network when the convergence of learning is
“very slow”.

The 10 features used in k - nearest neighbor and neural
net classifiers include area, average gray level, elon-
gatedness, compactness, touch_background, touch_i-
mage.boundary, a local contrast measure, gray-level
variance, absolute central moment, and average gradient
magnitude. Among these features, a local contrast
measure, gray-level variance, absolute central moment,
and average gradient magnitude are new features used
to gauge local contrast and texture characteristics. The
others are the basic features as given above.

3.2 Classification Performance

The capabilities of differentiating each defect type
from clear wood are shown in Table 3, 4, and 5. The
number of defects for each defect type in these tables
is the number of true defects. If more than half of
a true defect area is recognized as one or several defect
types, then this defect is assigned the most dominant
defect type among defect types associated. If no clear
wood area on a testing board is misclassified as being
a defect, then it is considered as the correct classification
of the class clear wood. If at least one clear wood
area is misclassified as being a defect, then it is
considered as the classification of the class clear wood
as the most dominant defect type among these incorrectly
labeled areas.

Note that the k - nearest approach is better than the
neural network approach in detecting defects except
knots. However, the k - nearest neighbor classifier has
a much higher false alarm rate than the neural network,
i.e., the k - nearest neighbor classifier misclassifies clear
wood as a defect more often than the neural network.
In particular, many of clear wood areas were confused
with knots. The parameters or thresholds used in the
rule-based approach were determined based on subjective
criteria, not based on the training set. This might be
the reason for the low detection accuracy of holes and
wane. The detection of these defect types would be
improved by fine tuning the thresholds used by each
test or rule in the label verification step of the
corresponding procedures. However, this process would
be tedious and time-consuming. On the other hand,
parameters or weights in the neural network can be
obtained automatically by the learning algorithm once
a training set is provided.

It is quite interesting to estimate the accuracy of the
above correct classification rates of the classifiers. The
confidence intervals for the true error rate of a classifier
can be estimated as follows. If the true but unknown
error rate of the classifier is ε, and if k of the n
independent, randomly selected test samples are mis-
classified, then k has the binomial distribution



Thus, the maximum likelihood estimate ε for ε is given
by the fraction of the test samples misclassified:

Since

where E {.} and Var {.} are expectation and variance
operators, respectively. Therefore, ε is unbiased. Given
ε and n, the confidence intervals of the error rate of
a classifier can be found using a table [3, p.75]. Table
6 shows 95 percent confidence intervals for error rates
of the three classifiers (n = 262).

4. Conclusion
As a classifier for use in automated industrial

inspection, rule-based approach, and k - nearest neighbor
approach, and neural network approach were discussed.
These approaches were implemented and tested for label
verification in the machine vision system for hardwood
lumber inspection. These test results together with
other considerations have led to the selection of neural
networks as the preferred method for doing the label
verification in this machine vision system.
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TABLE 1
The Number of Rough Boards of Each Species

Used in Training and Testing

Cherry Red Yellow Maple Total
Oak Poplar

# boards in the data base 41 52 26 48 167
# segmentation failure 2 4 1 3 10
# boards used in training 19 16 5 25 65
# boards used in testing 23 32 20 21 96

TABLE 2
The Number of Defects on Boards

of Each Species Used in Testing

Cherry Red Yellow Maple Total
Oak Poplar

Split/Check 9 11 5 2 27
Hole 28 4 0 1 33
Wane 1 8 5 3 17
Knot 24 25 22 18 89

TABLE 3
Differentiation of Each Class

Using the Neural Network Approach

Assigned Class
CW SP HL KN Total % CorrectWN

CW 86 3 1 0 6 96 89.6 %
True SP 5 21 0 0 1 27 77.7 %
Class HL 8 1 21 0 3 33 63.6 %

4 0 0 13 0 17 76.5 %
KN 14 2 0 2 71 89 79.8 %

Total 117 27 22 15 81 262

WN

Overall Correct Classification (%) 80.9 %
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TABLE 4
Differentiation of Each Class

Using the k - Nearest Neighbor Approach (k = 5)

Assigned Class
CW SP HL KN Total % CorrectWN

CW 56 2 1 0 37 96 58.3 %
True SP 4 22 1 0 0 27 81.5 %
Class HL 4 0 27 0 2 33 81.8 %

1 0 0 16 0 17 94.1 %
KN 15 3 4 3 64 89 71.9 %

Total 80 27 33 19 103 262

WN

Overall Correct Classification (%) 70.6 %

TABLE 5
Differentiation of Each Class

Using the Rule-Based Approach

Assigned Class

CW SP HL KN Total % CorrectWN

CW 72 7 5 0 12 96 75.0 %

True SP 2 20 0 0 5 27 74.1 %

Class HL 6 0 22 0 5 33 66.7 %
4 0 0 11 2 17 64.7 %

KN 20 0 2 0 67 89 75.2 %

Total 104 27 29 11 91 262

WN

Overall Correct Classification (%) 73.3 %

TABLE 6
95 Percent Confidence Intervals of

the Classification Error Rate

Classifier ε Confidence Interval

Neural Net 0.191 (0.15, 0.27)

K-Nearest Neighbor 0.294 (0.24, 0.37)

Rule-Based 0.267 (0.22, 0.35)
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