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Abstract: This paper presents a growth model for dominant-height and site-quality estimations for Pyrenean oak
(Quercus pyrenaica Willd.) stands. The Bertalanffy–Richards function is used with the generalized algebraic difference
approach to derive a dynamic site equation. This allows dominant-height and site-index estimations in a compatible
way, using any desirable base age and allowing estimations to be time independent, which are important properties for
site models. The database contains all possible height-growth intervals. The model is fitted considering residual
autocorrelation, giving more efficient parameter estimates. Finally, the model behavior is analyzed by calculating error
statistics from dominant-height and site-index estimations at different ages.

Résumé : Cet article présente un modèle de croissance pour estimer la hauteur dominante et la qualité de station de
peuplement de chêne tauzin (Quercus pyrenaica Willd.). On utilise la fonction de Bertalanffy–Richards avec la méthode
des différences algébriques généralisée pour obtenir une équation dynamique du site. On obtient ainsi des estimations
de la hauteur dominante et de l’indice de qualité de station de façon compatible, pour un âge de référence choisi et in-
dépendamment de la période d’estimation qui sont d’importantes propriétés des modèles de croissance. La base de don-
nées est structurée, considérant tous les possibles intervalles de croissance. Le modèle est ajusté en tenant compte de
l’autocorrélation des résidus, ce qui fournit des estimations plus efficientes des paramètres. Finalement, la précision du
modèle est évaluée en calculant les erreurs statistiques provenant des estimations de la hauteur dominante et de l’indice
de qualité de station à différents âges.
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Site quality directly affects stand growth as well as stand
yield, hence determination of site quality is critical for forest
management (Hägglund 1981). Dominant height growth mod-
eling is central in the development of forest stand growth
and yield models, and dominant tree height is commonly
used as a measure of site quality. In forestry, we consider
that site quality expresses the total wood yield potential (Avery
and Burkhart 1994; Hägglund 1981; Ortega and Montero
1988). According to several authors such as Jones (1969),
Kreutzer (1978), and Hägglund (1981), site-quality evalua-
tion can be made using three different approaches or meth-
ods, that is, based on stand biometric characteristics, on
environmental factors, or on the species composition of the
forest. The first method estimates site quality based on pa-
rameters related to stand yield and growth. In this approach,
factors such as the dominant height at a base age or the max-
imal stand volume growth are considered intrinsic because

they are attributes of the stand. In contrast, ecological and
floristic characteristics are considered extrinsic.

In the present article, site-quality assessment is based on
biometric criteria, using stand dominant height and age. Those
variables are extensively used and easy to measure (Avery
and Burkhart 1994; Curtis 1964; Hägglund 1981). Site index
corresponds to the stand dominant height at a particular age
considered the reference age and is the most widely used in-
dicator of site quality. In such a way, productivity estimation
is specific to a site index. Then, it is possible to classify the
yield potential of a stand. The site-index estimation involves,
therefore, the projection of actual height to the reference or
base age. The use of height-growth equations as a function
of tree age allows one to estimate the dominant height (hd)
development through time (t) and thus determine site index
(SI) based on the general expression SI = f(hd, t).

Growth results from the interaction of biological processes
that preside over the development of the organism. Growth
functions describe changes in the individual or population
size through time. Empirical models are defined, according
to Burkhart (1997), as flexible models that are well adjusted
to a data set and intend to describe real observed situations,
independent of their formulation. Sometimes the distinction
is not clear, because it is usual for mechanistic models to use
empirical functions to describe particular physiological, bio-
chemical, or physical processes (Burkhart 1997). On the other
hand, as mentioned by Zeide (1997), process-based models
can have such complexity that their practical use is made
difficult. The use of empirical functions or models does not
mean that they are less creative or scientific than other ap-
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proaches but, as referred by Burkhart (1997) and Dixon et
al. (1990), it depends on the study objectives, the available
data, and the level of the process to be described.

Empirical models can express in their structure basic growth
processes, with biological interpretation, such as happens with
the von Bertalanffy model (Zeide 1993). Von Bertalanffy
considered, as a theoretical assumption, that growth results
from two opposite processes, one represented by anabolism
and the other by catabolism. The anabolic rate is propor-
tional to the organism surface (or its mass to the power of
2/3), while the catabolic rate is proportional to its mass.
Then, growth is obtained from the following expression:

[1]
d
d
Y
t

Y Ym= −η γ

where Y is the organism mass (or volume), η and γ are the
anabolic and catabolic constants, respectively, and m is an
allometric constant of the anabolic rate. This approach is the
origin of one of the most widely used growth functions, the
Bertalanffy–Richards function. It has a biological interpreta-
tion, as shown by Pienaar and Turnbull (1973).

A similar approach was used by Zeide (1993) to examine
different growth functions, where plant growth is considered
the result of two opposite factors. One expresses the biologi-
cal potential for unlimited growth and the other represents
environmental and increased age impositions. The expansion
factor prevails in earlier stages of the tree life, while in the
final life stages growth decreases as a result of resources and
age limitations. The common tendency is that the growth ex-
pansion is proportional to tree dimension, while the decrease
of the growth rate is more variable, reflecting a great number of
factors that reduce growth (decreasing resources, competition,
reproduction, diseases, disturbances). Therefore, differential
growth functions can be decomposed into two components
that represent growth expansion and decline. Using different
transformations (differentiation, decomposition, logarithmization),
Zeide (1993) showed that different forest-growth functions
(Hossfeld, Gompertz, logistic, monomolecular, Bertalanffy–
Richards, Levakovic, Korf, Weibull, Yoshida and Sloboda)
could be expressed considering these two factors and thus
conferring a biological interpretation to the empirical func-
tions.

In dominant height growth modeling, empirical models
have been extensively used for the development of decision
tools for practical use in forest management. Based on the
objectives of the present work, the function of von Bertalanffy,
as modified by Richards (1959), was chosen:

[2] Y A ce kt m= − − −( )1
1

1

Being a four-parameter function, it has great flexibility,
assuming different forms depending on the value of the pa-
rameter m; c is a position parameter that usually assumes a
value of 1, implying that Y = 0 for t = 0; m is related to
curve shape; A is the asymptote; and k regulates the growth
rate for a fixed value of m. The growth rate is given by
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The Bertalanffy–Richards function is one of the most used
in forest tree and stand-growth studies (Zeide 1993). It has
been used in studies with English oak (Quercus robur L.)
(Trencia 1992) and Pyrenean oak (Bengoa et al. 1991).

In this work, a dominant height growth model is presented
for Pyrenean oak stands (Quercus pyrenaica Willd.) in Por-
tugal, with the aim to estimate stand dominant-height devel-
opment and site quality. Based on the data, an evaluation of
the model was done for dominant-height and site-index esti-
mations.

Data

Information was collected in 33 installed study plots of
500 m2 from the natural extent of Pyrenean oak stands in
Portugal. Stands are pure and even aged and represent a
wide range of site conditions (regions of occurrence, geology,
elevations, aspect, slope). The stem analysis method was
used to obtain information concerning growth of the domi-
nant trees. The criteria proposed by Tennent and Burkhart
(1981) was used, selecting two dominant trees whose diame-
ters correspond to the mean diameter of the 100 largest trees
per hectare and whose heights are in an interval of 5% of the
mean dominant height. Trees were cut and sectioned in 1-m
length logs above the DBH level. From each tree stem, disks
were collected from the bottom of each log and from the tree
top. Tree diameter at breast height (DBH) and total height
were measured. Ring reading was done in a laboratory using
a tree-ring measuring device, to obtain tree growth trends.

Breast-height age ranged from 38 to 115 years, with an
average of 58.8 years old. The most preponderant age-class
was the 50- to 60-year-old class. For tree height, the average
was 14.4 m, ranging from 8.5 to 27.0 m. The majority of
trees fell within the 10–15 and 15–20 m height classes.

Model derivation

In the Bertalanffy–Richards function, for simplicity we
substitute q = [1/(1 – m)] and obtain

[4] Y t A ce kt q( ) ( )= − −1

The age used is at breast height (td). This is in conformity
with several authors such as Carmean and Lenthall (1989),
Edminster et al. (1992), Ker and Bowling (1991), and Huang
(1997). In the first stages, growth is affected in several ways
by non-site factors, causing an erratic or non-normal behav-
ior. Competition from spontaneous vegetation, superficial
soil characteristics, initial stocking, silvicultural manipula-
tions, wildlife, and frost damage are some of the factors that
can influence initial height growth, creating fluctuations. In
addition, age is simply easier to measure at breast height.

The GADA approach
Bailey and Clutter (1974) introduced a technique now

known as the algebraic difference approach (ADA). Site
equations derived from this methodology are mathematically
sound and give consistent predictions. Cieszewski and Bailey
(2000) extended this method and presented the generalized
algebraic difference approach (GADA), a new generic meth-
odology for the derivation of flexible dynamic equations that
allows desired properties such as variable asymptotes, poly-
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morphism, and parsimony. The application of the GADA
implies the selection of a base equation (in our case, the
Bertalanffy–Richards function) and the identification of any
desired number of site-specific parameters. Then, the param-
eter changes among different sites are defined and replaced
by a new variable X. This variable is a quantification of par-
ticular dynamics associated with the site and individual
characteristics of growth. It can be either a variable or a
function and can describe the relative rates of change.

To apply the GADA, an analysis of variance (ANOVA)
was carried out on the equation parameters in relation to the
site index of each plot. The analysis was done by aggregating
plots into five classes corresponding to a desired established
number of site-quality classes. Table 1 shows the average
and standard deviation of the Bertalanffy–Richards equation
parameters for each site class and the associated F-statistic
probability from the ANOVA. It can be seen that parameters
k and q do not present significant variations. Only the pa-
rameter A changes significantly among the site classes, be-
ing a site-specific parameter, giving different asymptotes for
each site curve.

The dynamic model
From the base function Y (eq. 4) as a function of t and

parameters A, k, and q, the site-specific parameter A is de-
pendent on X. The base equation is changed to the explicit
three-dimensional site equation (Cieszewski and Bailey 2000):

[5] Y t X X ce kt q( , ) ( )= − −1

Now the solution for X, using the equation’s initial condi-
tions Y0 and t0, is

[6] X Y ce Y cekt q kt q= − = −− − − −( ) ( )1 10
0

which can be substituted into eq. 5, resulting in
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Equation 7 is the dynamic site equation with an implicit
initial condition. Based on this methodology, the same
equation can be used either for SI or dominant-height esti-
mations. Also, height-growth estimations are time-interval
independent.

Model fitting with all possible growth
intervals and results

In site-index modeling, the trend has been to use algebraic
difference equations (Bailey and Clutter 1974; Clutter et al.
1983; Payandeh and Wang 1994; Huang 1997; Goelz and
Burk 1998; Bailey and Cieszewski 2000; Cieszewski and
Bailey 2000). Such equations allow one to obtain compatible
dominant height growth and site-index models. A crucial
point mentioned by Goelz and Burk (1992) is that in domi-
nant-height modeling, two processes are involved: (i) site-
index estimation for a base age giving height at any age; and
(ii) height estimation for a desirable age from SI at the base
age. In such estimations, height is assumed to be measured
with error when it appears in the left-hand side of the equa-
tion but is fixed when it appears on the right-hand side. To
simultaneously optimize both processes, that is, the regres-
sion of Y on X and X on Y, and to avoid parameter bias,
Goelz and Burk (1992, 1996) suggest the use of an algebraic
difference equation that considers all possible growth inter-
vals in both directions in the data structure. Huang (1997)
also found that this data structure provides the most stable
and consistent results.

The dynamic eq. 7 obtained by using the GADA was fit-
ted to a database of all possible growth intervals by nonlin-
ear regression using SAS/ETS (SAS Institute Inc. 1995). As
expected, residuals displayed heteroscedasticity, as can be
seen in Fig. 1. Goelz and Burk (1996) proposed with a simi-
lar equation the use of the following weight factor, p:

[8] p
e
e
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where t0 > t, and whose positions must be inverted when t0 < t.
However, we found it more appropriate to use the logarithmic
transformation, as was done by Bailey and Clutter (1974)
and Amateis and Burkhart (1985). Taking the logarithm of
eq. 7 and renaming the variables as Y = hd and t = td, we ob-
tain (with c = 1)
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The parameter estimates and fit statistics are presented in
Table 2. With this equation, residuals displayed a homoge-
neous distribution (Fig. 2).

© 2005 NRC Canada

Carvalho and Parresol 95

Class A sA k sk q sq

1 26.914 3.018 2.503×10–2 6.181×10–3 1.132 2.630×10–1

2 20.236 2.370 2.535×10–2 3.020×10–3 0.966 1.077×10–1

3 18.786 3.577 2.352×10–2 8.569×10–3 1.005 2.623×10–2

4 15.924 5.005 2.569×10–2 1.509×10–2 0.919 1.257×10–1

5 12.300 3.898 2.810×10–2 1.468×10–2 1.021 4.150×10–2

P <0.0001 0.957 0.172

Table 1. Average and standard deviation of the A, k, and q parameters of the Bertalanffy–
Richards function for five site-index classes and the associated F-statistic probability (P)
from the analysis of variance.



Autoregressive error structure
The occurrence of residual serial correlation is usual in re-

peated measurements made on the same tree, as happens
with stem analysis. A nonlinear model can be represented in
the following way:

[10] hi = f(ti,�) + ei

where hi is height, ti is age, � is the parameter vector, and
the residuals are assumed to be independent and identically
distributed with homogeneous variance (ei~N(0,σ2)). When
residuals are not independent, the standard procedure is to
expand the residual term to consider first-order autocorrelation
(Monserud 1984; Judge et al. 1988; Johnston 1991; Wang
and Payandeh 1994; Huang 1997):

[11] e ei i i= +−ρ ε1

where the residuals εi are now independent and identically
distributed and have homogeneous variance.

Goelz and Burk (1992) indicated that when using all pos-
sible growth intervals, model [10] is more complex and be-
comes

[12] hi,j = f(ti, hj, tj, �) + ei,j

where hij is the estimated height at age i using ti, hj, and tj,
with age i ≠ j as predictor variables. Consequently, the resid-
ual term must be expanded to

[13] e e eij i j i j ij= + +− −ρ γ ε1 1, ,
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hd SI40

Age, td (years) ME SE MAE RMSE ME SE MAE RMSE

10 –0.205 0.532 0.448 0.580 0.560 2.053 1.225 2.528
15 –0.182 0.568 0.470 0.607 0.360 1.222 0.929 1.761
20 –0.147 0.535 0.436 0.564 0.234 0.849 0.692 0.642
25 –0.109 0.449 0.361 0.470 0.148 0.608 0.489 0.164
30 –0.071 0.325 0.260 0.339 0.085 0.389 0.311 0.027
35 –0.035 0.173 0.139 0.179 0.038 0.187 0.151 0.001
40 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
45 0.055 0.193 0.159 0.205 –0.052 0.180 0.149 0.001
50 0.134 0.380 0.314 0.412 –0.119 0.336 0.278 0.018
55 0.235 0.573 0.479 0.635 –0.188 0.486 0.400 0.082
60 0.484 0.711 0.666 0.886 –0.392 0.575 0.539 0.265
65 0.650 0.772 0.842 1.059 –0.508 0.603 0.657 0.467
70 0.672 0.982 0.991 1.190 –0.509 0.744 0.751 0.659
75 0.787 1.143 1.161 1.388 –0.580 0.843 0.856 0.996
80 1.004 1.494 1.500 1.401 –0.723 0.976 1.080 0.822
85 1.052 1.012 1.052 1.056 –0.742 0.663 0.742 0.507
90 1.207 1.010 1.207 1.209 –0.836 0.555 0.836 0.492
95 1.401 1.385 1.401 1.410 –0.955 0.853 0.955 0.830
100 1.511 1.426 1.511 1.516 –1.016 0.965 1.016 1.064

Note: mean error, ME = −
=
∑( � ) /y y ni
i

n

1
1

; standard deviation, SE = − −
=
∑( ) / ( )e e ni
i

n
2

1

1 ; mean absolute error,

MAE = −
=
∑( � ) /y y ni i
i

n

1

; and root mean squared error, RMSE = −
=
∑( � ) /y y ni i
i

n
2

1

. All errors are in metres.

Table 3. Statistics of the bias from estimations of hd and SI40, for 5-year periods.

Fig. 1. Scatterplot of residuals from height estimations by using eq. 7.

Equation k sk q sq ρ γ R2 MSE

Logarithmic 0.200×10–1 (0.498×10–3) 0.915 (0.126×10–2) 0.998 0.492×10–1

Logarithmic + autocorrelation 0.210×10–1 (0.929×10–4) 0.915 (0.243×10–3) 0.114 0.607 0.999 0.166×10–2

Table 2. Regression results for eqs. 9 and 12 listing values of parameters k and q and their respective standard errors (sk, sq) in
parentheses, parameters ρ and γ, and statistics R2 and MSE.



Equation 13 represents the autocorrelation structure of eq. 12.
The ρ parameter considers the autocorrelation between the
current residual and the residual by estimating hi–1 using hj
as predictor. The γ parameter considers the autocorrelation
between the current residual and the residual from estimat-
ing hi by using hj–1 as predictor.

Residual autocorrelation was evaluated by using Durbin’s
t test (Johnston 1991). This test consists in evaluating the
significance of the correlation parameters of the residuals
structure (eq. 13), by a t test. The test showed that the residuals
are significantly correlated (for �ρ , t = 24.88, P < 0.0001; and
for �γ, t = 26.47, P < 0.0001).

Final model
As suggested by Goelz and Burk (1992), it is possible to

efficiently estimate parameters by considering the residuals
expansion from eq. 13. This was realized with SAS/ETS
(SAS Institute Inc. 1995), which allows dynamical updating
of residuals. Parameter estimates, parameter standard errors,
R2, and MSE are presented in Table 2. The values of ρ and γ
are also presented. Goelz and Burk (1996) proposed a cor-
rection for the standard errors, because the number of obser-
vations are artificially increased, by using the expression

Ntpd / Npd, where Ntpd is the number of observations
using all possible differences and Npd is the number of ob-
servations using only the first growth difference.

As we can see, there are no large changes on parameter
estimates by using the equation with logarithmic transforma-
tion or considering the structure of the residual term. How-
ever, the incorporation of the autocorrelation error structure
gives lower parameter standard errors and thus results in
more efficient parameter estimates. The R2 value has in-
creased slightly and MSE has been reduced. Thus, the com-
patible equation for Pyrenean oak dominant height growth
and site-index classification is the following

[14] 1 1 09151
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The correction factor to apply for antilogarithmic conversion
is exp( � / )σ2 2 = 0.00083, corresponding to an average per-
centage correction of 0.5%, which is negligible.

Model evaluation

We intend to give an idea of the accuracy and precision of
the presented Pyrenean oak site model. Different statistics
were calculated to evaluate the accuracy and precision of
both dominant-height and site-index estimations. The statis-
tics are the mean error (ME), standard deviation (SE), mean
absolute error (MAE), and root mean squared error (RMSE).
Formulas are presented in Table 3. These statistics refer to
the bias from observed values in each plot and the estima-
tions from eq. 14, obtained for quinquennial periods from 10
to 100 years old (Table 3). For this purpose an arbitrary base
age of 40 years was chosen.

Figures 3 and 4 show the amount of the mean error (solid
line) and standard deviation, SE (broken lines: mean error ±
SE), for total dominant height and site-index estimations, re-
spectively. As expected, the statistics have a value of zero at
the reference age (40 years old). For ages further from the
reference age, there is an increment on the error of the pre-
dictions, proportionally bigger for ages above 40 years for hd
estimation, and inversely for SI estimations. For dominant-
height estimations, error has a negative sign until base age,
and error changes inversely after this age. The opposite hap-
pens with SI estimations. Globally, and in absolute terms,
there is a maximal mean error of 0.5 m (10–15 years old) to
1.5 m (80–100 years old) for hd estimations, while the maxi-
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Fig. 2. Scatterplot of residuals from height estimations by using
eq. 9.

Fig. 3. Comparative error of dominant height (hd) as estimated
by eq. 14 across ages (solid line: mean error; broken lines: mean
error ± SE).

Fig. 4. Comparative error of site index (SI40) as estimated by
eq. 14 across ages (solid line: mean error; broken lines: mean
error ± SE).



mal mean error for SI estimations is 1.2 m (10 years old) to
1.0 m (80–100 years old).

Discussion

The moment of maximal current increment is given by
ln(q/k), which in the present study occurs on average at
3.8 years old, which is very early. This means that the in-
flection point is imperceptible or not represented in the growth
curve, and the relative growth rate decreases with the size Y.
A similar behavior was determined by Carvalho (1995) in
stands of the same species located in the Nogueira mountain
of northeast Portugal, using the Hossfeld function, where the
maximal increment happened at around 5 years of age. The
initial fast growth pattern of this species is also evidenced by
the number of years to achieve breast height, which is nor-
mally about 4 years. Zeide (1993) also observed such a pat-
tern with several forest species.

The use of a dynamic equation derived from the general-
ized algebraic difference approach (Cieszewski and Bailey
2000) allows two different estimation processes. First, the
estimation of a SI using height at some age; second, the esti-
mation of dominant height at a desired age given height at
base age. The residual-term expansion, to consider the exis-
tence of serial correlation that characterizes data from re-
peated measurements in the same individual, has led to a
decrease of the parameter standard errors (asymptotically
more efficient), a slight increase of the coefficient of deter-
mination, and a reduction of the mean square error. The site
model also has the path of invariance property, that is, itera-
tive computations give the same values at a given final age.

Concerning the precision analysis of dominant-height and
site-index estimations, we obtained an average maximal
error between –0.2 m at age (td) 10 years and 1.5 m at age
100 years. The root mean squared error (RMSE) ranged
between 0.6 and 1.5 m for the same ages. For site-index
estimations, the average maximal error was between 0.6
and –1.0 m, and the RMSE was between 2.5 and 1.1 m, for
the same ages. This larger value of 2.5 m refers to a particu-
larly low age, becoming 1.8 m at age 15 years and 0.6 m at
age 20 years. The RMSE, expressed as a percentage of the
mean, was 6.0% for height estimations and 5.3% for site-
index estimations. It was also observed that the size of the
errors in these two estimation processes happens in an oppo-
site way with age. That is, site-index estimations have larger
bias below the reference age, while for height estimations
bias happens in older ages. Errors in site-index estimations
are higher in initial growth stages. This is in agreement with
some authors such as Carmean and Lenthall (1989) and Huang
(1997) when they mention that it is in these ages where ma-
jor fluctuations in tree dominance status occurs.
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